Skip to main content

Advertisement

Log in

Active treatment of murine tumors with a highly attenuated vaccinia virus expressing the tumor associated antigen 5T4 (TroVax) is CD4+ T cell dependent and antibody mediated

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

5T4 is a tumor associated antigen that is expressed on the surface of a wide spectrum of human adenocarcinomas. The highly attenuated virus, modified vaccinia Ankara, has been engineered to express human 5T4 (h5T4). In a pre-clinical murine model, the recombinant virus (TroVax) induces protection against challenge with CT26–h5T4 (a syngeneic tumor line expressing h5T4). Anti-tumor activity is long lived, with protection still evident 6 months after the final vaccination. In a therapeutic setting, injection of mice with TroVax results in a reduction in tumor burden of >90%. Depletion of CD8+ T cells has no effect upon therapy in the active treatment model, whereas depletion of CD4+ T cells completely abrogates anti-tumor activity. In a prophylactic setting, depletion of CD4+ and CD8+ T cells after the induction of a h5T4 immune response has no deleterious effect on protection following challenge with CT26–h5T4. In light of these studies, the role of antibodies in protection against tumor challenge was investigated. 5T4 specific polyclonal serum decreased tumor burden by approximately 70%. Thus, we conclude that CD4+ T cells are essential for the induction of a protective immune response and that antibodies are the likely effector moiety in this xenogeneic murine tumor model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abrams SI, Hodge JW, McLaughlin JP, Steinberg SM, Kantor JA, Schlom J (1997) Adoptive immunotherapy as an in vivo model to explore antitumor mechanisms by a recombinant anticancer vaccine. J Immunother 20:48

    Article  PubMed  CAS  Google Scholar 

  2. Brattain MG, Strobel-Stevens J, Fine D, Webb M, Sarrif AM (1980) Establishment of mouse colonic carcinoma cell lines with different metastatic properties. Cancer Res 40:2142

    PubMed  CAS  Google Scholar 

  3. Bronte V, Carroll MW, Goletz TJ, Wang M, Rosenberg SA, Moss B, Restifo NP (1997) Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc Natl Acad Sci USA 94:3183–3188

    Article  PubMed  CAS  Google Scholar 

  4. Carroll MW, Moss B (1997) Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 24:198

    Article  Google Scholar 

  5. Carroll MW, Overwijk WW, Chamberlain RS, Rosenberg SA, Moss B, Restifo NP (1997) Highly attenuated modified vaccinia virus Ankara (MVA) as an effective recombinant vector: a murine tumor model. Vaccine 15:387

    Article  PubMed  CAS  Google Scholar 

  6. Carroll MW, Restifo NP (2000) Poxviruses as vectors for cancer immunotherapy. In: Stern PL, Beverly PCL, Carroll MW (eds) Cancer vaccines and immunotherapy. Cambridge University Press, Cambridge, UK, pp 47–65

    Google Scholar 

  7. Clark MR (1997) IgG effector mechanisms. Chem Immunol 65:88

    Google Scholar 

  8. Cooley S, Burns LJ, Repka T, Miller JS (1999) Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu. Exp Hematol 27:1533

    Article  PubMed  CAS  Google Scholar 

  9. Earl P, Wyatt LS, Moss B, Carroll MW (1998) Generation of vaccinia virus recombinant viruses. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology, supplement 43, vol 2. Wiley Interscience, New York, NY, pp16.17.1–16.17.19

  10. Earl PL, Hugin AW, Moss B (1990) Removal of cryptic poxvirus transcription termination signals from the human immunodeficiency virus type 1 envelope gene enhances expression and immunogenicity of a recombinant vaccinia virus. J Virol 64:2448

    PubMed  CAS  Google Scholar 

  11. Eck SC, Turka LA (2001) Adoptive transfer enables tumor rejection targeted against a self-antigen without the induction of autoimmunity. Cancer Res 61:3077

    PubMed  CAS  Google Scholar 

  12. Gavin MA, Gilbert MJ, Riddell SR, Greenberg PD, Bevan MJ (1993) Alkali hydrolysis of recombinant proteins allows for the rapid identification of class I MHC-restricted CTL epitopes. J Immunol 151:3971

    PubMed  CAS  Google Scholar 

  13. Gutheil JC, Campbell TN, Pierce PR, Watkins JD, Huse WD, Bodkin DJ, Cheresh DA (2000) Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody for integrin alphabeta 3. Clin Cancer Res 6:3056

    PubMed  CAS  Google Scholar 

  14. Hara I, Takechi Y, Houghton AN (1995) Implicating a role for immune recognition of self in tumor rejection: passive immunization against the brown locus protein. J Exp Med 182:1609

    Article  PubMed  CAS  Google Scholar 

  15. Hawkins WG, Gold JS, Dyall R, Wolchok JD, Bowne WB, Srinivasan R, Houghton AN, Lewis JJ (2000) Immunization with DNA coding for gp100 results in CD4 T-cell independent antitumor immunity. Surgery 128:273

    Article  PubMed  CAS  Google Scholar 

  16. Hodge JW, McLaughlin JP, Kantor JA, Schlom J (1997) Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine 15:759

    Article  PubMed  CAS  Google Scholar 

  17. Hole N, Stern PL (1988) A 72 kD trophoblast glycoprotein defined by a monoclonal antibody. Br J Cancer 57:239

    PubMed  CAS  Google Scholar 

  18. Moss B (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci USA 15:11341

    Article  Google Scholar 

  19. Mulryan K, Ryan MG, Myers KA, Shaw D, Wang W, Kingsman SM, Stern PL, Carroll MW (2002) Attenuated recombinant vaccinia virus expressing oncofetal antigen (tumor-associated antigen) 5T4 induces active therapy of established tumors. Mol Cancer Ther 1:1129

    PubMed  CAS  Google Scholar 

  20. Myers KA, Rahi-Saund V, Davison MD, Young JA, Cheater AJ, Stern PL (1994) Isolation of a cDNA encoding 5T4 oncofetal trophoblast glycoprotein. J Biol Chem 269:9319

    PubMed  CAS  Google Scholar 

  21. Myers KA, Ryan MG, Stern PL, Shaw D, Embelton MJ, Kingsman SM, Carroll MW (2002) Targeting immune effector molecules to human tumor cells through genetic delivery of 5T4-specific scFv fusion proteins. Caner Gene Ther 9:884

    Article  CAS  Google Scholar 

  22. Overwijk WW, Lee DS, Surman DR, Irvine KR, Touloukian CE, Chan CC, Carroll MW, Moss B, Rosenberg SA, Restifo NP (1999) Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4+ T lymphocytes. Proc Natl Acad Sci USA 96:2982

    Article  PubMed  CAS  Google Scholar 

  23. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA (1999) Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 26:60

    PubMed  CAS  Google Scholar 

  24. Starzynska T, Marsh PJ, Schofield PF, Roberts SA, Myers KA, Stern PL (1994) Prognostic significance of 5T4 oncofetal antigen expression in colorectal carcinoma. Br J Cancer 69:899

    PubMed  CAS  Google Scholar 

  25. Steitz J, Bruck J, Knop J, Tuting T (2001) Adenovirus-transduced dendritic cells stimulate cellular immunity to melanoma via a CD4+ T cell-dependent mechanism. Gene Ther 8:1255

    Article  PubMed  CAS  Google Scholar 

  26. Sutter G, Moss B (1992) Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc Natl Acad Sci USA 89:10847

    Article  PubMed  CAS  Google Scholar 

  27. Tse E, Rabbitts TH (2000) Intracellular antibody-caspase-mediated cell killing: an approach for application in cancer therapy. Proc Natl Acad Sci USA 97:12266

    Article  PubMed  CAS  Google Scholar 

  28. Tuting T, Gambotto A, DeLeo A, Lotze MT, Robbins PD, Storkus WJ (1999) Induction of tumor antigen-specific immunity using plasmid DNA immunization in mice. Cancer Gene Ther 6:73

    Article  PubMed  CAS  Google Scholar 

  29. Vollmers HP, Zimmermann U, Krenn V, Timmermann W, Illert B, Hensel F, Hermann R, Theide A, Wilhelm M, Ruckle-Lanz H, Reindl L, Muller-Hermelink HK (1998) Adjuvant therapy for gastric adenocarcinoma with the apoptosis-inducing human monoclonal antibody SC-1: first clinical and histopathological results. Oncol Rep 5:549

    PubMed  CAS  Google Scholar 

  30. Wang M, Bronte V, Chen PW, Gritz L, Panicali D, Rosenberg SA, Restifo NP (1995) Active immunotherapy of cancer with a nonreplicating recombinant fowlpox virus encoding a model tumor-associated antigen. J Immunol 154:4685

    PubMed  CAS  Google Scholar 

  31. Wyatt LS, Shors ST, Murphy BR, Moss B (1996) Development of a replication-deficient recombinant vaccinia virus vaccine effective against parainfluenza virus 3 infection in an animal model. Vaccine 14:1451

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Pauline Henbest for her technical expertise and assistance and Peter Treasure for statistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Harrop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrop, R., Ryan, M.G., Myers, K.A. et al. Active treatment of murine tumors with a highly attenuated vaccinia virus expressing the tumor associated antigen 5T4 (TroVax) is CD4+ T cell dependent and antibody mediated. Cancer Immunol Immunother 55, 1081–1090 (2006). https://doi.org/10.1007/s00262-005-0096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0096-4

Keywords

Navigation