Skip to main content

Advertisement

Log in

Diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a systematic review and meta-analysis

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to conduct a systematic review and perform a meta-analysis on the diagnostic performances of 18F-fluorodeoxyglucose positron emission tomography (FDG PET) for giant cell arteritis (GCA), with or without polymyalgia rheumatica (PMR).

Methods

MEDLINE, Embase and the Cochrane Library were searched for articles in English that evaluated FDG PET in GCA or PMR. All complete studies were reviewed and qualitatively analysed. Studies that fulfilled the three following criteria were included in a meta-analysis: (1) FDG PET used as a diagnostic tool for GCA and PMR; (2) American College of Rheumatology and Healey criteria used as the reference standard for the diagnosis of GCA and PMR, respectively; and (3) the use of a control group.

Results

We found 14 complete articles. A smooth linear or long segmental pattern of FDG uptake in the aorta and its main branches seems to be a characteristic pattern of GCA. Vessel uptake that was superior to liver uptake was considered an efficient marker for vasculitis. The meta-analysis of six selected studies (101 vasculitis and 182 controls) provided the following results: sensitivity 0.80 [95% confidence interval (CI) 0.63–0.91], specificity 0.89 (95% CI 0.78–0.94), positive predictive value 0.85 (95% CI 0.62–0.95), negative predictive value 0.88 (95% CI 0.72–0.95), positive likelihood ratio 6.73 (95% CI 3.55–12.77), negative likelihood ratio 0.25 (95% CI 0.13–0.46) and accuracy 0.84 (95% CI 0.76–0.90).

Conclusion

We found overall valuable diagnostic performances for FDG PET against reference criteria. Standardized FDG uptake criteria are needed to optimize these diagnostic performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ostberg G. An arteritis with special reference to polymyalgia arteritica. Acta Pathol Microbiol Scand Suppl 1973;237 Suppl 237:1–59.

    PubMed  Google Scholar 

  2. Hutchinson J. II. On a peculiar form of fibrous tumor, which tends to multiplicity and indefinite growth. Ann Surg 1885;1(5):423–6.

    PubMed  CAS  Google Scholar 

  3. Schmidt WA, Seifert A, Gromnica-Ihle E, Krause A, Natusch A. Ultrasound of proximal upper extremity arteries to increase the diagnostic yield in large-vessel giant cell arteritis. Rheumatology (Oxford) 2008;47(1):96–101. doi:10.1093/rheumatology/kem322.

    Article  CAS  Google Scholar 

  4. Aiello PD, Trautmann JC, McPhee TJ, Kunselman AR, Hunder GG. Visual prognosis in giant cell arteritis. Ophthalmology 1993;100(4):550–5.

    PubMed  CAS  Google Scholar 

  5. González-Gay MA, García-Porrúa C, Llorca J, Hajeer AH, Brañas F, Dababneh A. Visual manifestations of giant cell arteritis. Trends and clinical spectrum in 161 patients. Medicine (Baltimore) 2000;79(5):283–92.

    Article  Google Scholar 

  6. Salvarani C, Cimino L, Macchioni P, Consonni D, Cantini F, Bajocchi G, et al. Risk factors for visual loss in an Italian population-based cohort of patients with giant cell arteritis. Arthritis Rheum 2005;53(2):293–7. doi:10.1002/art.21075.

    Article  PubMed  Google Scholar 

  7. Evans JM, O’Fallon WM, Hunder GG. Increased incidence of aortic aneurysm and dissection in giant cell (temporal) arteritis. A population-based study. Ann Intern Med 1995;122(7):502–7.

    PubMed  CAS  Google Scholar 

  8. Nuenninghoff DM, Hunder GG, Christianson TJ, McClelland RL, Matteson EL. Incidence and predictors of large-artery complication (aortic aneurysm, aortic dissection, and/or large-artery stenosis) in patients with giant cell arteritis: a population-based study over 50 years. Arthritis Rheum 2003;48(12):3522–31. doi:10.1002/art.11353.

    Article  PubMed  Google Scholar 

  9. Boesen P, Sørensen SF. Giant cell arteritis, temporal arteritis, and polymyalgia rheumatica in a Danish county. A prospective investigation, 1982–1985. Arthritis Rheum 1987;30(3):294–9.

    Article  PubMed  CAS  Google Scholar 

  10. Schaufelberger C, Bengtsson BA, Andersson R. Epidemiology and mortality in 220 patients with polymyalgia rheumatica. Br J Rheumatol 1995;34(3):261–4.

    Article  PubMed  CAS  Google Scholar 

  11. Salvarani C, Gabriel SE, O’Fallon WM, Hunder GG. Epidemiology of polymyalgia rheumatica in Olmsted County, Minnesota, 1970–1991. Arthritis Rheum 1995;38(3):369–73.

    Article  PubMed  CAS  Google Scholar 

  12. Elling P, Olsson AT, Elling H. Synchronous variations of the incidence of temporal arteritis and polymyalgia rheumatica in different regions of Denmark; association with epidemics of Mycoplasma pneumoniae infection. J Rheumatol 1996;23(1):112–9.

    PubMed  CAS  Google Scholar 

  13. Salvarani C, Gabriel SE, O’Fallon WM, Hunder GG. The incidence of giant cell arteritis in Olmsted County, Minnesota: apparent fluctuations in a cyclic pattern. Ann Intern Med 1995;123(3):192–4.

    PubMed  CAS  Google Scholar 

  14. Franzen P, Sutinen S, von Knorring J. Giant cell arteritis and polymyalgia rheumatica in a region of Finland: an epidemiologic, clinical and pathologic study, 1984–1988. J Rheumatol 1992;19(2):273–6.

    PubMed  CAS  Google Scholar 

  15. Gonzalez-Gay MA. Giant cell arteritis and polymyalgia rheumatica: two different but often overlapping conditions. Semin Arthritis Rheum 2004;33(5):289–93.

    Article  PubMed  Google Scholar 

  16. Weyand CM, Goronzy JJ. Giant-cell arteritis and polymyalgia rheumatica. Ann Intern Med 2003;139(6):505–15.

    PubMed  Google Scholar 

  17. Moosig F, Czech N, Mehl C, Henze E, Zeuner RA, Kneba M, et al. Correlation between 18-fluorodeoxyglucose accumulation in large vessels and serological markers of inflammation in polymyalgia rheumatica: a quantitative PET study. Ann Rheum Dis 2004;63(7):870–3. doi:10.1136/ard.2003.01169263/7/870.

    Article  PubMed  CAS  Google Scholar 

  18. Blockmans D, De Ceuninck L, Vanderschueren S, Knockaert D, Mortelmans L, Bobbaers H. Repetitive 18-fluorodeoxyglucose positron emission tomography in isolated polymyalgia rheumatica: a prospective study in 35 patients. Rheumatology (Oxford) 2007;46(4):672–7. doi:10.1093/rheumatology/kel376.

    Article  CAS  Google Scholar 

  19. Cimmino MA, Zampogna G, Parodi M. Is FDG-PET useful in the evaluation of steroid-resistant PMR patients? Rheumatology (Oxford) 2008;47(6):926–7. doi:10.1093/rheumatology/ken098.

    Article  CAS  Google Scholar 

  20. Hauser WA, Ferguson RH, Holley KE, Kurland LT. Temporal arteritis in Rochester, Minnesota, 1951 to 1967. Mayo Clin Proc 1971;46(9):597–602.

    PubMed  CAS  Google Scholar 

  21. Hall S, Persellin S, Lie JT, O’Brien PC, Kurland LT, Hunder GG. The therapeutic impact of temporal artery biopsy. Lancet 1983;2(8361):1217–20.

    Article  PubMed  CAS  Google Scholar 

  22. Roth AM, Milsow L, Keltner JL. The ultimate diagnoses of patients undergoing temporal artery biopsies. Arch Ophthalmol 1984;102(6):901–3.

    PubMed  CAS  Google Scholar 

  23. Salvarani C, Macchioni P, Zizzi F, Mantovani W, Rossi F, Castri C, et al. Epidemiologic and immunogenetic aspects of polymyalgia rheumatica and giant cell arteritis in northern Italy. Arthritis Rheum 1991;34(3):351–6.

    Article  PubMed  CAS  Google Scholar 

  24. Gonzalez-Gay MA, Garcia-Porrua C, Llorca J, Gonzalez-Louzao C, Rodriguez-Ledo P. Biopsy-negative giant cell arteritis: clinical spectrum and predictive factors for positive temporal artery biopsy. Semin Arthritis Rheum 2001;30(4):249–56. doi:10.1053/sarh.2001.16650.

    Article  PubMed  CAS  Google Scholar 

  25. Hunder GG, Bloch DA, Michel BA, Stevens MB, Arend WP, Calabrese LH, et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 1990;33(8):1122–8.

    Article  PubMed  CAS  Google Scholar 

  26. Calamia KT, Hunder GG. Giant cell arteritis (temporal arteritis) presenting as fever of undetermined origin. Arthritis Rheum 1981;24(11):1414–8.

    Article  PubMed  CAS  Google Scholar 

  27. Salvarani C, Cantini F, Hunder GG. Polymyalgia rheumatica and giant-cell arteritis. Lancet 2008;372(9634):234–45. doi:10.1016/S0140-6736(08)61077-6.

    Article  PubMed  Google Scholar 

  28. Healey LA. Long-term follow-up of polymyalgia rheumatica: evidence for synovitis. Semin Arthritis Rheum 1984;13(4):322–8.

    Article  PubMed  CAS  Google Scholar 

  29. Karassa FB, Matsagas MI, Schmidt WA, Ioannidis JP. Meta-analysis: test performance of ultrasonography for giant-cell arteritis. Ann Intern Med 2005;142(5):359–69. doi:142/5/359.

    PubMed  Google Scholar 

  30. Blockmans D, Bley T, Schmidt W. Imaging for large-vessel vasculitis. Curr Opin Rheumatol 2009;21(1):19–28. doi:10.1097/BOR.0b013e32831cec7b.

    Article  PubMed  Google Scholar 

  31. Narváez J, Narváez JA, Nolla JM, Sirvent E, Reina D, Valverde J. Giant cell arteritis and polymyalgia rheumatica: usefulness of vascular magnetic resonance imaging studies in the diagnosis of aortitis. Rheumatology (Oxford) 2005;44(4):479–83. doi:10.1093/rheumatology/keh513.

    Article  Google Scholar 

  32. Blockmans D, Maes A, Stroobants S, Nuyts J, Bormans G, Knockaert D, et al. New arguments for a vasculitic nature of polymyalgia rheumatica using positron emission tomography. Rheumatology (Oxford) 1999;38(5):444–7.

    Article  CAS  Google Scholar 

  33. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003;3:25. doi:10.1186/1471-2288-3-25.

    Article  PubMed  Google Scholar 

  34. Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, Bossuyt PN, Kleijnen J. Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol 2006;6:9. doi:10.1186/1471-2288-6-9.

    Article  PubMed  Google Scholar 

  35. Wallace BC, Schmid CH, Lau J, Trikalinos TA. Meta-Analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Med Res Methodol 2009;9:80. doi:10.1186/1471-2288-9-80.

    Article  PubMed  Google Scholar 

  36. Scheel AK, Meller J, Vosshenrich R, Kohlhoff E, Siefker U, Müller GA, et al. Diagnosis and follow up of aortitis in the elderly. Ann Rheum Dis 2004;63(11):1507–10. doi:10.1136/ard.2003.015651.

    Article  PubMed  CAS  Google Scholar 

  37. Blockmans D, Stroobants S, Maes A, Mortelmans L. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch. Am J Med 2000;108(3):246–9.

    Article  PubMed  CAS  Google Scholar 

  38. Meller J, Strutz F, Siefker U, Scheel A, Sahlmann CO, Lehmann K, et al. Early diagnosis and follow-up of aortitis with [(18)F]FDG PET and MRI. Eur J Nucl Med Mol Imaging 2003;30(5):730–6. doi:10.1007/s00259-003-1144-y.

    Article  PubMed  CAS  Google Scholar 

  39. Bleeker-Rovers CP, Bredie SJ, van der Meer JW, Corstens FH, Oyen WJ. F-18-fluorodeoxyglucose positron emission tomography in diagnosis and follow-up of patients with different types of vasculitis. Neth J Med 2003;61(10):323–9.

    PubMed  CAS  Google Scholar 

  40. Walter MA, Melzer RA, Schindler C, Müller-Brand J, Tyndall A, Nitzsche EU. The value of [18F]FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Eur J Nucl Med Mol Imaging 2005;32(6):674–81. doi:10.1007/s00259-004-1757-9.

    Article  PubMed  Google Scholar 

  41. Both M, Ahmadi-Simab K, Reuter M, Dourvos O, Fritzer E, Ullrich S, et al. MRI and FDG-PET in the assessment of inflammatory aortic arch syndrome in complicated courses of giant cell arteritis. Ann Rheum Dis 2008;67(7):1030–3. doi:10.1136/ard.2007.082123.

    Article  PubMed  CAS  Google Scholar 

  42. Henes JC, Müller M, Krieger J, Balletshofer B, Pfannenberg AC, Kanz L, et al. [18F] FDG-PET/CT as a new and sensitive imaging method for the diagnosis of large vessel vasculitis. Clin Exp Rheumatol 2008;26(3 Suppl 49):S47–52.

    PubMed  CAS  Google Scholar 

  43. Lehmann P, Buchtala S, Achajew N, Haerle P, Ehrenstein B, Lighvani H, et al. 18F-FDG PET as a diagnostic procedure in large vessel vasculitis-a controlled, blinded re-examination of routine PET scans. Clin Rheumatol 2011;30(1):37–42. doi:10.1007/s10067-010-1598-9.

    Article  PubMed  Google Scholar 

  44. Blockmans D, de Ceuninck L, Vanderschueren S, Knockaert D, Mortelmans L, Bobbaers H. Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis Rheum 2006;55(1):131–7. doi:10.1002/art.21699.

    Article  PubMed  Google Scholar 

  45. Hautzel H, Sander O, Heinzel A, Schneider M, Müller HW. Assessment of large-vessel involvement in giant cell arteritis with 18F-FDG PET: introducing an ROC-analysis-based cutoff ratio. J Nucl Med 2008;49(7):1107–13. doi:10.2967/jnumed.108.051920.

    Article  PubMed  Google Scholar 

  46. Brodmann M, Lipp RW, Passath A, Seinost G, Pabst E, Pilger E. The role of 2-18F-fluoro-2-deoxy-D-glucose positron emission tomography in the diagnosis of giant cell arteritis of the temporal arteries. Rheumatology (Oxford) 2004;43(2):241–2. doi:10.1093/rheumatology/keh025keh025.

    Article  CAS  Google Scholar 

  47. Kerr GS, Hallahan CW, Giordano J, Leavitt RY, Fauci AS, Rottem M, et al. Takayasu arteritis. Ann Intern Med 1994;120(11):919–29.

    PubMed  CAS  Google Scholar 

  48. Hoffman GS, Ahmed AE. Surrogate markers of disease activity in patients with Takayasu arteritis. A preliminary report from The International Network for the Study of the Systemic Vasculitides (INSSYS). Int J Cardiol 1998;66 Suppl 1:S191–4. discussion S195.

    Article  PubMed  Google Scholar 

  49. Arnaud L, Haroche J, Malek Z, Archambaud F, Gambotti L, Grimon G, et al. Is (18)F-fluorodeoxyglucose positron emission tomography scanning a reliable way to assess disease activity in Takayasu arteritis? Arthritis Rheum 2009;60(4):1193–200. doi:10.1002/art.24416.

    Article  PubMed  Google Scholar 

  50. Belhocine T, Blockmans D, Hustinx R, Vandevivere J, Mortelmans L. Imaging of large vessel vasculitis with (18)FDG PET: illusion or reality? A critical review of the literature data. Eur J Nucl Med Mol Imaging 2003;30(9):1305–13. doi:10.1007/s00259-003-1209-y.

    Article  PubMed  Google Scholar 

  51. Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med 2004;45(11):1816–21.

    PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Agostini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besson, F.L., Parienti, JJ., Bienvenu, B. et al. Diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 38, 1764–1772 (2011). https://doi.org/10.1007/s00259-011-1830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1830-0

Keywords

Navigation