Skip to main content
Log in

Radioembolisation with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Introduction

Radioembolisation with 90Y-microspheres is a new locoregional treatment of hepatic lesions, usually applied as single cycle. Multi-cycle treatments might be considered as a strategy to improve the risk-benefit balance. With the aim to derive suitable information for patient tailored therapy, available patients’ dosimetric data were reviewed according to the linear–quadratic model and converted into biological effective dose (BED) values. Single vs. multi-cycle approaches were compared through radiobiological perspective.

Materials and methods

Twenty patients with metastatic lesions underwent radioembolisation. The 90Y-administered activity (AA) was established in order to respect a precautionary limit dose (40 Gy) for the non-tumoral liver (NTL). BED was calculated setting α/β = 2.5 Gy (NTL), 10 Gy (tumours); T 1/2,eff = T 1/2,phys = 64.2 h; T 1/2,rep = 2.5 h (NTL), 1.5 h (tumours). The BED to NTL was considered as a constraint for multi-cycle approach. The AA for two cycles and the percent variations of AA, tumour dose, BED were estimated.

Results

In one-cycle, for a prescribed BED to NTL of 64 Gy (NTL dose = 40 Gy), AA was 1.7 (0.9–3.2) GBq, tumour dose was 130 (65–235) Gy, and tumour BED was 170 (75–360) Gy. Considering two cycles, ∼15% increase was found for AA and dose to NTL, with unvaried BED for NTL. Tumour dose increase was 20 (10–35) Gy; tumour BED increase was 10 (3–11) Gy. In different protocols allowing 80 Gy to NTL, the BED sparing estimated was ∼50 Gy (two cycles) and 65 Gy (three cycles).

Conclusions

From a radiobiological perspective, multi-cycle treatments would allow administering higher activities with increased tumour irradiation and preserved radiation effects on NTL. Trials comparing single vs. multiple cycles are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: Technical and methodologic considerations. J Vasc Interv Radiol 2006;17:1251–78.

    PubMed  Google Scholar 

  2. Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 2: special topics. J Vasc Interv Radiol 2006;17:1425–39.

    PubMed  Google Scholar 

  3. Salem R, Thurston KG. Radioembolization with yttrium-90 microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies: part 3: comprehensive literature review and future direction. J Vasc Interv Radiol 2006;17:1571–93.

    Article  PubMed  Google Scholar 

  4. Ho S, Lau WY, Leung TW, Chan M, Johnson PJ, Li AK. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med 1996;23:947–52.

    Article  PubMed  CAS  Google Scholar 

  5. Ferrari M, Cremonesi M, Bartolomei M, De Cicco C, Bonomo G, Orsi F, et al. Different evaluations for safe 90Y-microspheres in Selective Internal Radiation Therapy (SIRT). Eur J Nucl Med Mol Imaging. 2007;34(2 Suppl):S178.

    Google Scholar 

  6. Gulec SA, Mesoloras G, Stabin M. Dosimetric techniques in 90Y-microsphere therapy of liver cancer: the MIRD equations for dose calculations. J Nucl Med 2006;47:1209–11.

    PubMed  CAS  Google Scholar 

  7. DeNardo GL, Schlom J, Buchsbaum DJ, Meredith RF, O’Donoghue JA, Sgouros G, et al. Rationales, evidence, and design considerations for fractionated radioimmunotherapy. Cancer 2002;94(4 Suppl):1332–48.

    Article  PubMed  CAS  Google Scholar 

  8. Bodei L, Cremonesi M, Ferrari M, Pacifici M, Grana CM, Bartolomei M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging, 2008 Apr 22. doi:10.1007/s00259-008-0778-1.

  9. Dale RG. Dose-rate effects in targeted radiotherapy. Phys Med Biol 1996;41:1871–84.

    Article  PubMed  CAS  Google Scholar 

  10. Dale R, Carabe-Fernandez A. The radiobiology of conventional radiotherapy and its application to radionuclide therapy. Cancer Biother Radiopharm 2005;20:47–51.

    Article  PubMed  CAS  Google Scholar 

  11. SIR-Spheres Yttrium-90 microspheres [package insert]. Lane Cove, Australia: Sirtex Medical. 2004.

  12. Cremonesi M, Ferrari M, Grana CM, Vanazzi A, Stabin M, Bartolomei M, et al. High-dose radioimmunotherapy with 90Y-Ibritumomab tiuxetan: comparative dosimetric study for tailored treatment. J Nucl Med 2007;48:1871–9.

    Article  PubMed  Google Scholar 

  13. Stabin M, Siegel J, Lipsztein J, Hunt J, Brill A, Sparks R, et al. RADAR (Radiation Dose Assessment Resource) www.doseinfo-radar.com.

  14. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005;46:1023–7.

    PubMed  Google Scholar 

  15. Krishnan S, Lin EH, Gunn GB, Chandra A, Beddar AS, Briere TM, et al. Conformal radiotherapy of the dominant liver metastasis: a viable strategy for treatment of unresectable chemotherapy refractory colorectal cancer liver metastases. Am J Clin Oncol 2006;29:562–7.

    Article  PubMed  Google Scholar 

  16. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991;21:109–22.

    PubMed  CAS  Google Scholar 

  17. Garrean S, Espat NJ. Yttrium-90 internal radiation therapy for hepatic malignancy. Surgical Oncology 2005;14:179–93.

    Article  PubMed  Google Scholar 

  18. Gray BN, Burton MA, Kelleher D, Klemp P, Matz L. Tolerance of the liver to the effects of Yttrium-90 radiation. Int J Radiat Oncol Biol Phys 1990;18:619–23.

    PubMed  CAS  Google Scholar 

  19. Sato KT, Lewandowski RJ, Mulcahy MF, Atassi B, Ryu RK, Gates VL, et al. Unresectable chemorefractory liver metastases: radioembolization with 90Y microspheres—safety, efficacy, and survival. Radiology 2008;247:507–15.

    Article  PubMed  Google Scholar 

  20. Kennedy AS, Nutting C, Coldwell D, Gaiser J, Drachenberg C. Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys 2004;60:1552–63.

    PubMed  CAS  Google Scholar 

  21. Stubbs RS, O’Brien I, Correia MM. Selective internal radiation therapy with 90Y microspheres for colorectal liver metastases: single-centre experience with 100 patients. ANZ J Surg 2006;76:696–703.

    Article  PubMed  Google Scholar 

  22. Campbell AM, Bailey IH, A Burton MA. Tumour dosimetry in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol 2001;46:487–98.

    Article  PubMed  CAS  Google Scholar 

  23. Lau WY, Leung WT, Ho S, Leung NW, Chan M, Lin J, et al. Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres: a phase I and II study. Br J Cancer 1994;70:994–9.

    PubMed  CAS  Google Scholar 

  24. Sangro B, Bilbao JI, Boan J, Martinez-Cuesta A, Benito A, Rodriguez J, et al. Radioembolization using 90Y-resin microspheres for patients with advanced hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2006;66:792–800.

    PubMed  CAS  Google Scholar 

  25. Dancey JE, Shepherd FA, Paul K, Sniderman KW, Houle S, Gabrys J, et al. Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med 2000;41:1673–81.

    PubMed  CAS  Google Scholar 

  26. Lewandowski RJ, Thurston KG, Goin JE, Wong CY, Gates VL, Van Buskirk M, et al. 90Y microsphere (TheraSphere) treatment for unresectable colorectal cancer metastases of the liver: response to treatment at targeted doses of 135–150 Gy as measured by [18F]fluorodeoxyglucose positron emission tomography and computed tomographic imaging. J Vasc Interv Radiol 2005;16:1641–51.

    PubMed  Google Scholar 

  27. Campbell AM, Bailey IH, Burton MA. Analysis of the distribution of intra-arterial microspheres in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol 2000;45:1023–33.

    Article  PubMed  CAS  Google Scholar 

  28. Lau WY, Ho S, Leung TW, Chan M, Ho R, Johnson PJ, et al. Selective internal radiation therapy for nonresectable hepatocellular carcinoma with intraarterial infusion of 90yttrium microspheres. Int J Radiat Oncol Biol Phys 1998;40:583–92.

    PubMed  CAS  Google Scholar 

  29. Gray B, Van Hazel G, Hope M, Burton M, Moroz P, Anderson J, et al. Randomised trial of SIR-Spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol 2001;12:1711–20.

    Article  PubMed  CAS  Google Scholar 

  30. Fertil B, Malaise EP. Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves. Int J Radiat Oncol Biol Phys 1985;11:1699–707.

    PubMed  CAS  Google Scholar 

  31. Strigari L, D’Andrea M, Maini CL, Sciuto R, Benassi M. Biological optimization of heterogeneous dose distributions in systemic radiotherapy. Med Phys 2006;33:1857–66.

    Article  PubMed  CAS  Google Scholar 

  32. Bernhardt P, Ahlman H, Forssell-Aronsson E. Modelling of metastatic cure after radionuclide therapy: influence of tumor distribution, cross-irradiation, and variable activity concentration. Med Phys 2004;31:2628–35.

    Article  PubMed  CAS  Google Scholar 

  33. Atthey M, Nahum AE, Flower MA, McCready VR. Effects of cellular repair and proliferation on targeted radionuclide therapy: a modelling study. Phys Med Biol 2000;45:N15–20.

    Article  PubMed  CAS  Google Scholar 

  34. Antipas V, Dale RG, Coles IP. A theoretical investigation into the role of tumour radiosensitivity, clonogen repopulation, tumour shrinkage and radionuclide RBE in permanent brachytherapy implants of 125I and 103Pd. Phys Med Biol 2001;46(10):2557–69.

    Article  PubMed  CAS  Google Scholar 

  35. Jones B, Dale RG. Mathematical models of tumour and normal tissue response. Acta Oncol 1999;38:883–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

None of the Authors have any duality or conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Paganelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cremonesi, M., Ferrari, M., Bartolomei, M. et al. Radioembolisation with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment. Eur J Nucl Med Mol Imaging 35, 2088–2096 (2008). https://doi.org/10.1007/s00259-008-0857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0857-3

Keywords

Navigation