Skip to main content

Advertisement

Log in

Current status and recommendations for imaging in neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis (SWN) are three clinically distinct tumor predisposition syndromes with a shared tendency to develop peripheral and central nervous system neoplasms. Disease expression and complications of NF1, NF2, and SWN are highly variable, necessitating a multidisciplinary approach to care in order to optimize outcomes. This review will discuss the imaging appearance of NF1, NF2, and SWN and highlight the important role that imaging plays in informing management decisions in people with tumors associated with these syndromes. Recent technological advances, including the role of both whole-body and localized imaging strategies, routine anatomic and advanced magnetic resonance (MR) imaging sequences such as diffusion-weighted imaging (DWI) with quantitative apparent diffusion coefficient (ADC) mapping, and metabolic imaging techniques (MR spectroscopy and positron emission testing) are discussed in the context of the diagnosis and management of people with NF1, NF2, and SWN based on the most up-to-date clinical imaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. National Institutes of Health consensus development conference. Neurofibromatosis. Conference statement. Arch Neurol. 1988;45(05):575–8.

  2. Mulvihill JJ, Parry DM, Sherman JL, Pikus A, Kaiser-Kupfer MI, Eldridge R. NIH conference. Neurofibromatosis 1 (Recklinghausen disease) and neurofibromatosis 2 (bilateral acoustic neurofibromatosis). An update. Ann Intern Med. 1990;113(01):39–52.

    CAS  PubMed  Google Scholar 

  3. Baser ME, Friedman JM, Wallace AJ, Ramsden RT, Joe H, Evans DG. Evaluation of clinical diagnostic criteria for neurofibromatosis 2. Neurology. 2002;59(11):1759–65.

    CAS  PubMed  Google Scholar 

  4. Plotkin SR, Blakeley JO, Evans DG, Hanemann CO, Hulsebos TJ, Hunter-Schaedle K, et al. Update from the 2011 International Schwannomatosis Workshop: from genetics to diagnostic criteria. Am J Med Genet A. 2013;161A(3):405–16.

    PubMed  Google Scholar 

  5. Evans DG, King AT, Bowers NL, Tobi S, Wallace AJ, Perry M, et al. Identifying the deficiencies of current diagnostic criteria for neurofibromatosis 2 using databases of 2777 individuals with molecular testing. Genet Med. 2018.

  6. Smith MJ, Bowers NL, Bulman M, Gokhale C, Wallace AJ, King AT, et al. Revisiting neurofibromatosis type 2 diagnostic criteria to exclude LZTR1-related schwannomatosis. Neurology. 2017;88(1):87–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith MJ, Kulkarni A, Rustad C, Bowers NL, Wallace AJ, Holder SE, et al. Vestibular schwannomas occur in schwannomatosis and should not be considered an exclusion criterion for clinical diagnosis. Am J Med Genet. 2012;158A(1):215–9.

    PubMed  Google Scholar 

  8. Stewart DR, Korf BR, Nathanson KL, Stevenson DA, Yohay K. Care of adults with neurofibromatosis type 1: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018;20(7):671–82. https://doi.org/10.1038/gim.2018.28.

    Article  PubMed  Google Scholar 

  9. Murphey MD, Smith WS, Smith SE, Kransdorf MJ, Temple HT. From the archives of the AFIP. Imaging of musculoskeletal neurogenic tumors: radiologic-pathologic correlation. Radiographics. 1999;19(5):1253–80.

    CAS  PubMed  Google Scholar 

  10. Bhargava R, Parham DM, Lasater OE, Chari RS, Chen G, Fletcher BD. MR imaging differentiation of benign and malignant peripheral nerve sheath tumors: use of the target sign. Pediatr Radiol. 1997;27(2):124–9.

    CAS  PubMed  Google Scholar 

  11. Caltabiano R, Magro G, Polizzi A, Praticò AD, Ortensi A, D’Orazi V, et al. A mosaic pattern of INI1/SMARCB1 protein expression distinguishes schwannomatosis and NF2-associated peripheral schwannomas from solitary peripheral schwannomas and NF2-associated vestibular schwannomas. Childs Nerv Syst. 2017;33(6):933–40.

    PubMed  Google Scholar 

  12. Plotkin SR, Wick A. Neurofibromatosis and schwannomatosis. Semin Neurol. 2018;38(1):73–85. https://doi.org/10.1055/s-0038-1627471.

    Article  PubMed  Google Scholar 

  13. Ahlawat S, Fayad LM, Khan MS, Bredella MA, Harris GJ, Evans DG, et al. Current whole-body MRI applications in the neurofibromatoses: NF1, NF2, and schwannomatosis. Neurology. 2016;87(7 Suppl 1):S31–9.

    PubMed  PubMed Central  Google Scholar 

  14. Merker VL, Bredella MA, Cai W, Kassarjian A, Harris GJ, Muzikansky A, et al. Relationship between whole-body tumor burden, clinical phenotype, and quality of life in patients with neurofibromatosis. Am J Med Genet A. 2014;164A(6):1431–7.

    PubMed  Google Scholar 

  15. Plotkin SR, Bredella MA, Cai W, et al. Quantitative assessment of whole-body tumor burden in adult patients with neurofibromatosis. PLoS One. 2012;7:e35711.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kluwe L, Nguyen R, Vogt J, et al. Internal tumor burden in neurofibromatosis type I patients with large NF1 deletions. Genes Chromosom Cancer. 2012;51:447–51.

    CAS  PubMed  Google Scholar 

  17. Nguyen R, Kluwe L, Fuensterer C, Kentsch M, Friedrich RE, Mautner VF. Plexiform neurofibromas in children with neurofibromatosis type 1: frequency and associated clinical deficits. J Pediatr. 2011;159:652–655.e2.

    PubMed  Google Scholar 

  18. Cai W, Kassarjian A, Bredella MA, et al. Tumor burden in patients with neurofibromatosis types 1 and 2 and schwannomatosis: determination on whole-body MR images. Radiology. 2009;250:665–73.

    PubMed  Google Scholar 

  19. Van Meerbeeck SF, Verstraete KL, Janssens S, Mortier G. Whole-body MR imaging in neurofibromatosis type 1. Eur J Radiol. 2009;69:236–42.

    PubMed  Google Scholar 

  20. Jaremko JL, MacMahon PJ, Torriani M, et al. Whole-body MRI in neurofibromatosis: incidental findings and prevalence of scoliosis. Skelet Radiol. 2012;41:917–23.

    Google Scholar 

  21. Mautner VF, Asuagbor FA, Dombi E, Fünsterer C, Kluwe L, Wenzel R, et al. Assessment of benign tumor burden by whole-body MRI in patients with neurofibromatosis 1. Neuro-Oncology. 2008;10(4):593–8.

    PubMed  PubMed Central  Google Scholar 

  22. Nguyen R, Jett K, Harris GJ, et al. Benign whole-body tumor volume is a risk factor malignant peripheral nerve sheath tumors in neurofibromatosis type 1. J Neuro-Oncol. 2014;116:307–13.

    CAS  Google Scholar 

  23. Fayad LM, Blakeley J, Plotkin S, Widemann B, Jacobs MA. Whole body MRI at 3T with quantitative diffusion-weighted imaging and contrast-enhanced sequences for the characterization of peripheral lesions in patients with neurofibromatosis type 2 and schwannomatosis. ISRN Radiol. 2013;2013:627932.

    PubMed  PubMed Central  Google Scholar 

  24. Ahlawat S, Baig A, Blakeley JO, Jacobs MA, Fayad LM. Multiparametric whole-body anatomic, functional, and metabolic imaging characteristics of peripheral lesions in patients with schwannomatosis. J Magn Reson Imaging. 2016;44(4):794–803.

    PubMed  Google Scholar 

  25. Plotkin SR, Halpin C, Blakeley JO, Slattery WH 3rd, Welling DB, Chang SM, et al. Suggested response criteria for phase II antitumor drug studies for neurofibromatosis type 2 related vestibular schwannoma. J Neuro-Oncol. 2009;93(1):61–77.

    CAS  Google Scholar 

  26. Ahlawat S, Khandheria P, Del Grande F, Morelli J, Subhawong TK, Demehri S, et al. Interobserver variability of selective region-of-interest measurement protocols for quantitative diffusion-weighted imaging in soft tissue masses: comparison with whole tumor volume measurements. J Magn Reson Imaging. 2016;43(2):446–54.

    PubMed  Google Scholar 

  27. Soldatos T, Ahlawat S, Montgomery E, Chalian M, Jacobs MA, Fayad LM. Multiparametric assessment of treatment response in high-grade soft-tissue sarcomas with anatomic and functional MR imaging sequences. Radiology. 2016;278(3):831–40.

    PubMed  Google Scholar 

  28. Ahlawat S, Fayad LM. Imaging cellularity in benign and malignant peripheral nerve sheath tumors: utility of the “target sign” by diffusion-weighted imaging. Eur J Radiol. 2018;102:195–201. https://doi.org/10.1016/j.ejrad.2018.03.018.

    Article  PubMed  Google Scholar 

  29. Demehri S, Belzberg A, Blakeley J, Fayad LM. Conventional and functional MR imaging of peripheral nerve sheath tumors: initial experience. AJNR Am J Neuroradiol. 2014;35(8):1615–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168:497–505.

    CAS  PubMed  Google Scholar 

  31. Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA. Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology. 2012;265(2):340–56.

    PubMed  PubMed Central  Google Scholar 

  32. Subhawong TK, Jacobs MA, Fayad LM. Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics. 2014;34(5):1163–77.

    PubMed  PubMed Central  Google Scholar 

  33. Gross AM, Singh G, Akshintala S, Baldwin A, Dombi E, Ukwuani S, et al. Association of plexiform neurofibroma volume changes and development of clinical morbidities in neurofibromatosis 1. Neuro-Oncology. 2018;20(12):1643–51.

    PubMed  PubMed Central  Google Scholar 

  34. Weiss B, Widemann BC, Wolters P, Dombi E, Vinks A, Cantor A, et al. Sirolimus for progressive neurofibromatosis type 1-associated plexiform neurofibromas: a neurofibromatosis clinical trials consortium phase II study. Neuro-Oncology. 2015;17(4):596–603. https://doi.org/10.1093/neuonc/nou235 Erratum in: Neuro Oncol. 2015 Jun;17(6):905.

    Article  CAS  PubMed  Google Scholar 

  35. Belasco JB, Schorry E, Brofferio A, Starosta AJ, Gillespie A, Doyle AL, et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N Engl J Med. 2016;375(26):2550–60. https://doi.org/10.1056/NEJMoa1605943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fountain JW, Wallace MR, Bruce MA, Seizinger BR, Menon AG, Gusella JF, et al. Physical mapping of a translocation breakpoint in neurofibromatosis. Science. 1989;244(4908):1085–7.

    CAS  PubMed  Google Scholar 

  37. Evans DG, Howard E, Giblin C, Clancy T, Spencer H, Huson SM, et al. Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family geneticregister service. Am J Med Genet A. 2010;152A(2):327.

    CAS  PubMed  Google Scholar 

  38. Stephens K, Kayes L, Riccardi VM, Rising M, Sybert VP, Pagon RA. Preferential mutation of the neurofibromatosis type 1 gene in paternally derived chromosomes. Hum Genet. 1992;88(3):279–82.

    CAS  PubMed  Google Scholar 

  39. Ruggieri M. Huson SM the clinical and diagnostic implications of mosaicism in the neurofibromatoses. Neurology. 2001;56(11):1433.

    CAS  PubMed  Google Scholar 

  40. Seminog OO, Goldacre MJ. Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage study. Br J Cancer. 2013;108(1):193–8.

    CAS  PubMed  Google Scholar 

  41. Laycock-van Spyk S, Thomas N, Cooper DN, Upadhyaya M. Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. Hum Genomics. 2011;5(6):623–90.

    PubMed  Google Scholar 

  42. Miles DK, Freedman MH, Stephens K, Pallavicini M, Sievers EL, Weaver M, et al. Patterns of hematopoietic lineage involvement in children with neurofibromatosis type 1 and malignant myeloid disorders. Blood. 1996;88(11):4314–20.

    CAS  PubMed  Google Scholar 

  43. Wilding A, Ingham SL, Lalloo F, et al. Life expectancy in hereditary cancer predisposing diseases: an observational study. J Med Genet. 2012;49(04):264–9.

    PubMed  Google Scholar 

  44. Uusitalo E, Rantanen M, Kallionpää RA, Pöyhönen M, Leppävirta J, Ylä-Outinen H, et al. Distinctive cancer associations in patients with neurofibromatosis type 1. J Clin Oncol. 2016;34(17):1978–86.

    PubMed  Google Scholar 

  45. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet. 2002;39(5):311–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sørensen SA, Mulvihill JJ, Nielsen A. Long-term follow-up of von Recklinghausen neurofibromatosis. Survival and malignant neoplasms. N Engl J Med. 1986;314(16):1010–5.

    PubMed  Google Scholar 

  47. Walker L, Thompson D, Easton D, Ponder B, Ponder M, Frayling I, et al. A prospective study of neurofibromatosis type 1 cancer incidence in the UK. Br J Cancer. 2006;95(2):233–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yap YS, Munusamy P, Lim C, Chan CHT, Prawira A, Loke SY, et al. Breast cancer in women with neurofibromatosis type 1 (NF1): a comprehensive case series with molecular insights into its aggressive phenotype. Breast Cancer Res Treat. 2018. https://doi.org/10.1007/s10549-018-4851-6.

    CAS  PubMed  Google Scholar 

  49. Wang X, Teer JK, Tousignant RN, Levin AM, Boulware D, Chitale DA, et al. Breast cancer risk and germline genomic profiling of women with neurofibromatosis type 1 who developed breast cancer. Genes Chromosom Cancer. 2018;57(1):19–27. https://doi.org/10.1002/gcc.22503.E.

  50. Howell SJ, Hockenhull K, Salih Z, Evans DG. Increased risk of breast cancer in neurofibromatosis type 1: current insights. Breast Cancer (Dove Med Press). 2017;9:531–6.

    Google Scholar 

  51. Seminog OO, Goldacre MJ. Age-specific risk of breast cancer in women with neurofibromatosis type 1. Br J Cancer. 2015;112(9):1546–8. https://doi.org/10.1038/bjc.2015.78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Duong TA, Sbidian E, Valeyrie-Allanore L, et al. Mortality associated with neurofibromatosis 1: a cohort study of 1895 patients in 1980-2006 in France. Orphanet J Rare Dis. 2011;6:18.

    PubMed  PubMed Central  Google Scholar 

  53. Poyhonen M, Niemela S, Herva R. Risk of malignancy and death in neurofibromatosis. Arch Pathol Lab Med. 1997;121(2):139–43.

    CAS  PubMed  Google Scholar 

  54. Kumar MG, Emnett RJ, Bayliss SJ, Gutmann DH. Glomus tumors in individuals with neurofibromatosis type 1. J Am Acad Dermatol. 2014;71(1):44–8. https://doi.org/10.1016/j.jaad.2014.01.913.

    Article  PubMed  Google Scholar 

  55. Shinall MC, Solórzano CC. Pheochromocytoma in Neurofibromatosis type 1: when should it be suspected? Endocr Pract. 2014;20(8):792–6. https://doi.org/10.4158/EP13417.

    Article  PubMed  Google Scholar 

  56. Evans DG. Are we ready for targeted early breast cancer detection strategies in women with NF1 aged 30-49 years? Am J Med Genet A. 2012;158a:3054–5.

    PubMed  Google Scholar 

  57. Daly MB, Pilarski R, Berry M, Buys SS, Farmer M, Friedman S, et al. NCCN guidelines insights: genetic/familial high-risk assessment: breast and ovarian, version 2.2017. J Natl Compr Cancer Netw. 2017;15(1):9–20.

    CAS  Google Scholar 

  58. Dubov T, Toledano-Alhadef H, Chernin G, Constantini S, Cleper R, Ben-Shachar S. High prevalence of elevated blood pressure among children with neurofibromatosis type 1. Pediatr Nephrol. 2016;31(1):131–6. https://doi.org/10.1007/s00467-015-3191-6.

    Article  PubMed  Google Scholar 

  59. Valentin T, Le Cesne A, Ray-Coquard I, et al. Management and prognosis of malignant peripheral nerve sheath tumors: the experience of the French Sarcoma Group (GSF-GETO). Eur J Cancer. 2016;56:77–84.

    CAS  PubMed  Google Scholar 

  60. Sani I, Albanese A. Endocrine long-term follow-up of children with neurofibromatosis type 1 and optic pathway glioma. Horm Res Paediatr. 2017;87(3):179–88. https://doi.org/10.1159/000458525.

    Article  CAS  PubMed  Google Scholar 

  61. Gaudino S, Quaglio F, Schiarelli C, Martucci M, Tartaglione T, Gualano MR, et al. Spontaneous modifications of contrast enhancement in childhood non-cerebellar pilocytic astrocytomas. Neuroradiology. 2012;54:989–95.

    PubMed  Google Scholar 

  62. de Blank PMK, Fisher MJ, Liu GT, Gutmann DH, Listernick R, Ferner RE, et al. Optic pathway gliomas in Neurofibromatosis type 1: an update: surveillance, treatment indications, and biomarkers of vision. J Neuroophthalmol. 2017;37(Suppl 1):S23–32. https://doi.org/10.1097/WNO.0000000000000550 Review.

    Article  PubMed  Google Scholar 

  63. Azizi AA, Slavc I, Theisen BE, Rausch I, Weber M, Happak W, et al. Monitoring of plexiform neurofibroma in children and adolescents with neurofibromatosis type 1 by [(18) F]FDG-PET imaging. Is it of value in asymptomatic patients? Pediatr Blood Cancer. 2018;65(1). https://doi.org/10.1002/pbc.26733.

    Google Scholar 

  64. Meany H, Dombi E, Reynolds J, Whatley M, Kurwa A, Tsokos M, et al. 18-fluorodeoxyglucose-positron emission tomography (FDG-PET) evaluation of nodular lesions in patients with neurofibromatosis type 1 and plexiform neurofibromas (PN) or malignant peripheral nerve sheath tumors (MPNST). Pediatr Blood Cancer. 2013;60(1):59–64.

    CAS  PubMed  Google Scholar 

  65. Zhang L, Dessouky R, Xi Y, Chhabra A, Le LQ. Clinical value of multiparametric whole-body magnetic resonance imaging over whole-spine magnetic resonance imaging in patients with neurofibromatosis type I. World Neurosurg. 2017;108:729–37.

    PubMed  Google Scholar 

  66. Higham CS, Dombi E, Rogiers A, Bhaumik S, Pans S, Connor SEJ, et al. The characteristics of 76 atypical neurofibromas as precursors to neurofibromatosis 1-associated malignant peripheral nerve sheath tumors. Neuro-Oncology. 2018;20(6):818–25.

    PubMed  PubMed Central  Google Scholar 

  67. Derlin T, Tornquist K, Münster S, Apostolova I, Hagel C, Friedrich RE, et al. Comparative effectiveness of 18F-FDG PET/CT versus whole-body MRI for detection of malignant peripheral nerve sheath tumors in neurofibromatosis type 1. Clin Nucl Med. 2013;38(1):e19–25.

    PubMed  Google Scholar 

  68. Chirindel A, Chaudhry M, Blakeley JO, Wahl R. 18F-FDG PET/CT qualitative and quantitative evaluation in neurofibromatosis type 1 patients for detection of malignant transformation: comparison of early to delayed imaging with and without liver activity normalization. J Nucl Med. 2015;56(3):379–85. https://doi.org/10.2967/jnumed.114.142372.

    Article  PubMed  Google Scholar 

  69. Ferner RE, Lucas JD, O’Doherty MJ, et al. Evaluation of 18fluorodeoxyglucose positron emission tomography (18FDGPET) in the detection of malignant peripheral nerve sheath tumours arising from within plexiform neurofibromas in neurofibromatosis 1. J Neurol Neurosurg Psychiatry. 2000;68:353–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cardona S, Schwarzbach M, Hinz U, Dimitrakopoulou-Strauss A, Attigah N, Mechtersheimer G, et al. Evaluation of F18-deoxyglucose positron emission tomography (FDG-PET) to assess the nature of neurogenic tumours. Eur J Surg Oncol. 2003;29:536–41.

    CAS  PubMed  Google Scholar 

  71. Bredella MA, Torriani M, Hornicek F, Ouellette HA, Palmer WE, Williams Z, et al. Value of PET in the assessment of patients with neurofibromatosis type 1. AJR Am J Roentgenol. 2007;189:928–35.

    PubMed  Google Scholar 

  72. Ferner RE, Golding JF, Smith M, Calonje E, Jan W, Sanjayanathan V, et al. [18F]2-fluoro-2-deoxy-d-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol. 2008;19(2):390–4.

    CAS  PubMed  Google Scholar 

  73. Warbey VS, Ferner RE, Dunn JT, Calonje E, O’Doherty MJ. [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging. 2009;36(5):751–7.

    CAS  PubMed  Google Scholar 

  74. Salamon J, Veldhoen S, Apostolova I, et al. 18F-FDG PET/CT for detection of malignant peripheral nerve sheath tumours in neurofibromatosis type 1:tumour-to-liver ratio is superior to an SUVmax cut-off. Eur Radiol. 2014;24:405–12.

    PubMed  Google Scholar 

  75. Urban T, Lim R, Merker VL, et al. Anatomic and metabolic evaluation of peripheral nerve sheath tumors in patients with neurofibromatosis 1 using whole-body MRI and (18)F-FDG PET fusion. Clin Nucl Med. 2014;39:e301–7.

    PubMed  Google Scholar 

  76. Fayad LM, Wang X, Blakeley JO, Durand DJ, Jacobs MA, Demehri S, et al. Characterization of peripheral nerve sheath tumors with 3T proton MR spectroscopy. AJNR Am J Neuroradiol. 2014;35(5):1035–41.

    CAS  PubMed  Google Scholar 

  77. Friedman JM. Neurofibromatosis 1. 1998 Oct 2 [updated 2018 May 17]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A, editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993-2018. Available from http://www.ncbi.nlm.nih.gov/books/NBK1109/PubMed.

  78. Evans DG. Neurofibromatosis 2 [bilateral acoustic neurofibromatosis, central neurofibromatosis, NF2, neurofibromatosis type II]. Genet Med. 2009;11(9):599–610.

    PubMed  Google Scholar 

  79. Evans DG. Neurofibromatosis 2. 1998 Oct 14 [updated 2018 mar 15]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A, editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993-2018.

    Google Scholar 

  80. Baser ME, Friedman JM, Aeschilman D, et al. Predictors of the risk of mortality in neurofibromatosis 2. Am J Hum Genet. 2002;71:715–23.

    PubMed  PubMed Central  Google Scholar 

  81. Patronas NJ, Courcoutsakis N, Bromley CM, Katzman GL, MacCollin M, Parry DM. Intramedullary and spinal canal tumors in patients with neurofibromatosis 2: MR imaging findings and correlation with genotype. Radiology. 2001;218:434–42.

    CAS  PubMed  Google Scholar 

  82. Dow G, Biggs N, Evans G, Gillespie J, Ramsden RT, King A. Spinal tumors in neurofibromatosis type 2: is emerging knowledge of genotype predictive of natural history? J Neurosurg Spine. 2005;2:574–9.

    PubMed  Google Scholar 

  83. Merker VL, Esparza S, Smith MJ, Stemmer-Rachamimov A, Plotkin SR. Clinical features of schwannomatosis: a retrospective analysis of 87 patients. Oncologist. 2012;17(10):1317–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. MacCollin M, Chiocca EA, Evans DG, Friedman JM, Horvitz R, Jaramillo D, et al. Diagnostic criteria for schwannomatosis. Neurology. 2005;64(11):1838–45.

    CAS  PubMed  Google Scholar 

  85. Kehrer-Sawatzki H, Kluwe L, Friedrich RE, Summerer A, Schäfer E, Wahlländer U, et al. Phenotypic and genotypic overlap between mosaic NF2 and schwannomatosis in patients with multiple non-intradermal schwannomas. Hum Genet. 2018. https://doi.org/10.1007/s00439-018-1909-9.

    CAS  PubMed  Google Scholar 

  86. Evans DG, Bowers NL, Tobi S, Hartley C, Wallace AJ, King AT, et al. Schwannomatosis: a genetic and epidemiological study. J Neurol Neurosurg Psychiatry. 2018;89:1215–9.

    PubMed  Google Scholar 

  87. Lieber B, Han B, Allen J, Fatterpekar G, Agarwal N, Kazemi N, et al. Utility of positron emission tomography in schwannomatosis. J Clin Neurosci. 2016;30:138–40. https://doi.org/10.1016/j.jocn.2016.01.027.

    Article  PubMed  Google Scholar 

  88. Beylergil V, Haque S, Carver A, Bilsky MH, Carrasquillo JA. Schwannomatosis/ neurofibromatosis type 2 associated multiple schwannomas visualized on FDG-PET/CT. Rev Esp Med Nucl Imagen Mol. 2013;32(4):275–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Ahlawat.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlawat, S., Blakeley, J.O., Langmead, S. et al. Current status and recommendations for imaging in neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. Skeletal Radiol 49, 199–219 (2020). https://doi.org/10.1007/s00256-019-03290-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-019-03290-1

Keywords

Navigation