Skip to main content
Log in

Current findings, future trends, and unsolved problems in studies of medicinal mushrooms

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The target of the present review is to draw attention to many critically important unsolved problems in the future development of medicinal mushroom science in the twenty-first century. Special attention is paid to mushroom polysaccharides. Many, if not all, higher Basidiomycetes mushrooms contain biologically active polysaccharides in fruit bodies, cultured mycelium, and cultured broth. The data on mushroom polysaccharides are summarized for approximately 700 species of higher Hetero- and Homobasidiomycetes. The chemical structure of polysaccharides and its connection to antitumor activity, including possible ways of chemical modification, experimental testing and clinical use of antitumor or immunostimulating polysaccharides, and possible mechanisms of their biological action, are discussed. Numerous bioactive polysaccharides or polysaccharide–protein complexes from medicinal mushrooms are described that appear to enhance innate and cell-mediated immune responses and exhibit antitumor activities in animals and humans. Stimulation of host immune defense systems by bioactive polymers from medicinal mushrooms has significant effects on the maturation, differentiation, and proliferation of many kinds of immune cells in the host. Many of these mushroom polymers were reported previously to have immunotherapeutic properties by facilitating growth inhibition and destruction of tumor cells. While the mechanism of their antitumor actions is still not completely understood, stimulation and modulation of key host immune responses by these mushroom polymers appears central. Particularly and most importantly for modern medicine are polysaccharides with antitumor and immunostimulating properties. Several of the mushroom polysaccharide compounds have proceeded through phases I, II, and III clinical trials and are used extensively and successfully in Asia to treat various cancers and other diseases. A total of 126 medicinal functions are thought to be produced by medicinal mushrooms and fungi including antitumor, immunomodulating, antioxidant, radical scavenging, cardiovascular, antihypercholesterolemia, antiviral, antibacterial, antiparasitic, antifungal, detoxification, hepatoprotective, and antidiabetic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammerpohl O, Tiwari S, Kalthoff H (2010) Target gene discovery for novel therapeutic agents in cancer treatment. Methods Mol Biol 576:427–445

    Article  CAS  Google Scholar 

  • Bagchi D, Preuss H (2005) Phytopharmaceuticals in cancer chemoprevention. CRC, Boca Raton

    Google Scholar 

  • Boh B, Berivic M (2007) Grifola frondosa (Diks.:Fr.) S.F. Gray (Maitake mushroom): medicinal properties, active compounds, and biotechnological cultivation. Int J Med Mushrooms 9:89–108

    Article  CAS  Google Scholar 

  • Buchalo AS, Didukh MY (2005) Micromorphological characteristics of culinary-medicinal mushrooms and fungi in cultures. Int J Med Mushrooms 7:249–262

    Article  Google Scholar 

  • Buchalo AS, Mykchaylova O, Lomberg M, Wasser SP (2009) Microstructures of vegetative mycelium of macromycetes in pure culture. Alterpress, Kiev

    Google Scholar 

  • Chang ST (1999) Global impact of edible and medicinal mushrooms on human welfare in the 21st century: nongreen revolution. Int J Med Mushrooms 1:1–8

    Google Scholar 

  • Chang ST (2006) The need for scientific validation of culinary-medicinal mushroom products. Int J Med Mushrooms 8:187–195

    Article  CAS  Google Scholar 

  • Chang ST, Buswell JA (2003) Medicinal mushrooms—a prominent source of nutriceuticals for the 21st century. Curr Trends Nutraceutical Res 1:257–280

    CAS  Google Scholar 

  • Chen J, Seviour R (2007) Medicinal importance of fungal β-(1-3), (1-6)-glucans. Mycol Res 111:635–652

    Article  CAS  Google Scholar 

  • Chihara G, Maeda Y, Hamuro J, Sasaki T, Fukuoka F (1969) Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) Sing. Nature 222:687–688

    Article  CAS  Google Scholar 

  • Chihara G, Hamuia J, Maeda YY, Arai Y, Fukuoka F (1970) Fractionation and purification of the polysaccharides with marked antitumour activity especially lentinan from Lentinus edodes. Cancer Res 30:2776–2781

    CAS  Google Scholar 

  • Cicerone RJ (2009) How to keep science moving. Science 342:439

    Article  Google Scholar 

  • Dai Y-Ch, Yang Z-L, Ui B-K, Yu Ch-J, Zhou L-W (2009) Species diversity and utilization of medicinal mushrooms and fungi in China (review). Int J Med Mushrooms 11:287–302

    Article  Google Scholar 

  • Deng G, Lim H, Seidman A, Fornier M, D’Andrea G, Wesa K, Yeung S, Cunningham-Rundles S, Vickers AJ, Cassileth B (2009) A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J Cancer Res Clin Oncol 135:1215–1221

    Article  CAS  Google Scholar 

  • Didukh MY, Wasser SP, Nevo E (2003) Medicinal value of species of the family Agaricaceae Cohn (higher Basidiomycetes) current stage of knowledge and future perspectives. Int J Med Mushrooms 5:133–152

    Article  CAS  Google Scholar 

  • Didukh MY, Wasser SP, Nevo E (2004) Impact of the family Agaricaceae (Fr.) Cohn on nutrition and medicine. Gentner, Ruggell

    Google Scholar 

  • Dotan N, Wasser SP, Mahajna J (2010) The culinary-medicinal mushroom Coprinus comatus as a natural antiandrogenic modulator. Integr Cancer Ther XX:1–12

    Google Scholar 

  • Endo A (2004) The origin of the statins. Int Congr Ser 1262:3–8

    Article  CAS  Google Scholar 

  • Falch BH, Espevik T, Ryan L, Stokke BT (2000) The cytokine stimulating activity of (1-3)-beta-D-glucans is dependent on the triple helix conformation. Carbohydr Res 329:587–596

    Article  CAS  Google Scholar 

  • Gao Y, Zhou S, Chen G, Dai X, Ye JA (2002) Phase I/II study of a Ganoderma lucidum extract (Ganopoly) in patients with advanced cancer. Int J Med Mushrooms 4:207–214

    Google Scholar 

  • Gao Y, Zhou Sh, Huang M, Xu A (2003) Antibacterial and antiviral value of the genus Ganoderma P. Karst. species (Aphyllophoromycetideae): a review. Int J Med Mushrooms 5:235–246

    Article  CAS  Google Scholar 

  • Gao Y, Lan J, Dai X, Ye J, Zhou Sh (2004) A phase I/II study of Ling Zhi mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) extract in patients with type II diabetes mellitus. Int J Med Mushrooms 6:96–107

    Google Scholar 

  • Geijtenbeek TBH, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9:465–479

    Article  CAS  Google Scholar 

  • Graham LM, Brown GD (2009) The Dectin-2 family of C-type lectins in immunity and homeostasis. Cytokine 48:148–155

    Article  Google Scholar 

  • Harada T, Ohno N (2008) Dectin-1 and GM-CSF on immunomodulating activities of fungal 6-branched 1, 3-ß-glucans. Int J Med Mushrooms 10:101–114

    Article  CAS  Google Scholar 

  • Hawksworth DL (2001) Mushrooms: the extent of the unexplored potential. Int J Med Mushrooms 3:333–340

    Google Scholar 

  • Hobbs ChR (2000) Medicinal value of Lentinus edodes (Berk.) Sing. (Agaricomycetideae). A literature review. Int J Med Mushrooms 2:287–302

    CAS  Google Scholar 

  • Hobbs ChR (2004) Medicinal value of Turkey Tail fungus Trametes versicolor (L.:Fr.) Pilát (Aphyllophoromycetideae). Int J Med Mushrooms 6:195–218

    Article  CAS  Google Scholar 

  • Hobbs ChR (2005) The chemistry, nutritional value, immunopharmacology, and safety of the traditional food of medicinal split-gill fungus Schizophyllum commune Fr.:Fr. (Aphyllophoromycetideae). A literature review. Int J Med Mushrooms 7:127–140

    Article  CAS  Google Scholar 

  • Holliday H, Cleaver M (2008) Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes). A review. Int J Med Mushrooms 10:209–218

    Article  Google Scholar 

  • Ichinohe T, Ainai A, Nakamura T, Akiyama Y, Maeyama J, Odagiri T, Tashiro M, Takahashi H, Sawa H, Tamura S, Chiba J, Kurata T, Sata T, Hasegawa H (2010) Induction of cross-protective immunity against influenza A virus H5N1 by intranasal vaccine with extracts of mushroom mycelia. J Med Virol 82:128–137

    Article  CAS  Google Scholar 

  • Ishibashi KI, Dogasaki C, Iriki T, Motoi M, Kurone YI, Miura NN, Adachi LS, Ohno N (2005) Anti-β-glucan antibody in bovine sera. Int J Med Mushrooms 7:513

    Article  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  Google Scholar 

  • Jong Sh-C (2005) Protecting intellectual property assets of mushroom genetic resources for invention and innovation. Int J Med Mushrooms 7:348–349

    Google Scholar 

  • Kerrigan R (2005) Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia 97:12–24

    Article  Google Scholar 

  • Kim HG, Yoon DH, Lee WH, Han SK, Shrestha B, Kim CH, Lim MH, Chang W, Lim S, Choi S, Song WO, Sung JM, Hwang KC, Kim TW (2007) Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-kB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage. J Ethnopharmacol 114:307–315

    Article  CAS  Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2008) Ainsworth & Brisby’s dictionary of the fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  • Lehmann J, Kunze R (2000) Water-soluble low molecular weight beta-glucans for modulating immunological responses in mammalian system. US Patent 6143883

  • Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier. Science 325:161–165

    Article  Google Scholar 

  • Lin Z-B (2009) Lingzh. From mystery to science. Peking University Press, Beijing

    Google Scholar 

  • Liu JJ, Gunn L, Hansen R, Yan J (2009) Combined yeast-derived beta glucan with anti-tumor monoclonal antibody for cancer immunotherapy. Exper Mol Pathol 86:208–214

    Article  CAS  Google Scholar 

  • Mahajna J, Dotan N, Zaidman B-Z, Petrova RD, Wasser SP (2009) Pharmacological values of medicinal mushrooms for prostate cancer therapy: the case of Ganoderma lucidum. Nutrit Cancer 61(1):16–26

    Article  CAS  Google Scholar 

  • Mahajna J, Dotan N, Zaidman B-Z, Petrova RD, Wasser SP (2010) Pharmacological values of medicinal mushrooms for prostate cancer therapy: the case of Ganoderma lucidum. Nutr Cancer 61:16–26

    Article  Google Scholar 

  • Maruyama H, Ikekawa T (2007) Immunomodulation and antitumor activity of a mushroom product, proflamin, isolated from Flammulina velutipes (W.Curt.:Fr.) Singer (Agaricomycetideae). Int J Med Mushrooms 9:109–122

    Article  CAS  Google Scholar 

  • McKenna DJ, Jones K, Hughes K, Humphrey Sh (2002) Botanical medicines. The desk reference for major herbal supplements, 2nd edn. The Haworth Herbal, New York

    Google Scholar 

  • Miller H, Zhang J, KuoLee R, Patel GB, Chen W (2007) Intestinal M cells: the fallible sentinels? World J Gastroenterol 14:1477–1486

    Google Scholar 

  • Mizuno T (1999) The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan (Review). Int J Med Mushrooms 1:9–29

    CAS  Google Scholar 

  • Mizuno T, Zhuang AK, Okamoto H, Kiho T, Ukai Sh, Leclerc S, Meijer L (1999) Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus (Pers.:Fr.) Pil. (Aphyllophoromycetideae). Int J Med Mushrooms 1:301–316

    CAS  Google Scholar 

  • Moncalvo J-M, Rivarden L (1997) A nomenclatural study of the Ganodermataeae. Fungiflora, Oslo

    Google Scholar 

  • Mueller GM, Schmit JP (2007) Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 16:1–5

    Article  Google Scholar 

  • Nagaoka MH, Nagaoka H, Kondo K, Akiyama H, Maitani T (2006) Measurement of a genotoxic hydrazine, agaritine, and its derivatives by HPL with fluorescence derivatization in the Agaricus mushroom and its products. Chem Pharmaceut Bull 54:922–924

    Article  CAS  Google Scholar 

  • Ohno N (2005) Structural diversity and physiological functions of β-glucans. Int J Med Mushrooms 7:167–173

    Article  CAS  Google Scholar 

  • Pamer EG (2007) Immune responses to commensal and environmental microbes. Nat Immunol 8:1173–1178

    Article  CAS  Google Scholar 

  • Park YM, Won JH, Kim YH, Choi JW, Park HJ, Lee KT (2005) In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus. J Ethnopharmacol 101:120–128

    Article  Google Scholar 

  • Park H-G, Shim YY, Choi S-O, Park W-M (2009) New method development for nanoparticle extraction of water-soluble β-(1-3)-D-glucan from edible mushrooms, Sparassis crispa and Phellinus linteus. Agricultural and Food Chem 57:2147–2154

    Article  CAS  Google Scholar 

  • Petrova RD, Reznick AZ, Wasser SP, Denchev CM, Nevo E, Mahajna J (2008) Fungal metabolites modulating NF-kB activity: an approach to cancer therapy and chemoprevention (review). Oncol Rep 19:299–308

    CAS  Google Scholar 

  • Petrova RD, Mahajna J, Wasser SP, Ruimi N, Denchev CM, Sussan S, Nevo E, Reznick AZ (2009) Marasmius oreades substances block NF-kappaB activity through interference with IKK activation pathway. Mol Biol Rep 36:737–744

    Article  CAS  Google Scholar 

  • Pöder R (2005) The Ice man's fungi: facts and mysteries. Int J Med Mushrooms 7:357–359

    Google Scholar 

  • Pollack A (2009) Drug firms see fortune in treating cancer. Int Herald Tribune, pp 15–16

  • Radic N, Jevnikar Z, Obermajer N, Kristl J, Kos J, Pohleven F, Strukelj B (2010) Influence of culinary-medicinal maitake mushroom, Grifola frondosa (Dicks:Fr.) S.F. Gray (Aphyllophoromycetideae) polysaccharides on gene expression in Jurkat T lymphocytes. Int J Med Mushrooms 12:245–256

    Article  CAS  Google Scholar 

  • Reshetnikov SV, Wasser SP, Tan KK (2001) Higher Basidiomycota as source of antitumor and immunostimulating polysaccharides. Int J Med Mushrooms 3:361–394

    CAS  Google Scholar 

  • Roberts RM, Smith GW, Bazer FW, Cibelli J, Seidel GE Jr, Bauman DE, Reynolds LP, Ireland JJ (2009) Farm animal research in crisis. Science 324:468–469

    Article  CAS  Google Scholar 

  • Rouhana-Toubi A, Wasser SP, Fares F (2009) Ethyl acetate extracts of submerged cultured mycelium of higher Basidiomycetes mushrooms inhibit human ovarian cancer cell growth. Int J Med Mushrooms 11:29–37

    Article  Google Scholar 

  • Rowan NJ, Smith JE, Sullivan R (2003) Immunomodulatory activities of mushroom glucans and polysaccharide–protein complexes in animals and humans (a review). Int J Med Mushrooms 5:95–110

    Article  CAS  Google Scholar 

  • Ruimi N, Petrova RD, Agbaria R, Sussan S, Wasser SP, Reznick AZ, Mahajna J (2010a) Inhibition of TNFα-induced iNOS expression in HSV-tk transduced 9 L glioblastoma cell lines by Marasmius oreades substances through NF-kB- and MAPK-dependent mechanisms. Mol Biol Rep 37:3801–3812

    Article  CAS  Google Scholar 

  • Ruimi N, Rwashdeh H, Wasser SP, Konkimalia B, Efferth T, Borgatti M, Gambari R, Mahajna J (2010b) Daedalea gibbosa substances inhibit LPS-induced expression of iNOS by suppression of NF-kB and MAPK activities in RAW 264.7 macrophage cells. Int J Mol Med 25:421–432

    Google Scholar 

  • Smith JE, Sullivan R, Rowan NJ (2003) The role of polysaccharides derived from medicinal mushrooms in cancer treatment programs: current perspectives (review). Int J Med Mushrooms 5:217–234

    Article  CAS  Google Scholar 

  • Sullivan R, Smith JE, Rowan NJ (2006) Medicinal mushrooms and cancer therapy. Translating a traditional practice into Western medicine. Perspect Biol Med 49:159–170

    Article  CAS  Google Scholar 

  • Tada R, Adachi Y, Ishibashi K-I, Tsubaki K, Ohno N (2008) Binding capacity of a barley β-D-glucan to the β-glucan recognition molecule Dectin-1. J Agr Food Chem 56:1442–1450

    Article  CAS  Google Scholar 

  • Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, Brown GD (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8:31–38

    Article  CAS  Google Scholar 

  • Tiwari U, Cummins E (2009) Factors influencing beta-glucan levels and molecular weight in cereal-based products. Cereal Chem 86:290–301

    Article  CAS  Google Scholar 

  • Van Griensven LJLD (2009) Culinary-medicinal mushrooms: must action be taken. Int J Med Mushrooms 11:281–286

    Article  Google Scholar 

  • Verticka V, Vetrickova J (2009) Effects of yeast-derived beta-glucan on blood cholesterol and mactophage functionality. J Immunotoxicol 6:30–35

    Article  Google Scholar 

  • Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274

    Article  CAS  Google Scholar 

  • Wasser SP (2007a) Medicinal mushrooms: ancient traditions, contemporary knowledge, and scientific enquiries. Int J Med Mushrooms 9:187–189

    Article  Google Scholar 

  • Wasser SP (2007b) Molecular identification of species of the genus Agaricus. Why should we look at morphology? Int J Med Mushrooms 9:85–88

    Article  Google Scholar 

  • Wasser SP (2010a) Medicinal mushroom science: history, current status, future trends, and unsolved problems. Int J Med Mushrooms 12(1):1–16

    Article  CAS  Google Scholar 

  • Wasser SP (2010b) Shiitake. In: Encyclopedia of dietary supplements, 2nd edn. Informa Healthcare, New York, pp 719–726

    Google Scholar 

  • Wasser SP (2010c) Reishi. In: Encyclopedia of dietary supplements, 2nd edn. Informa Healthcare, New York, pp 680–690

    Google Scholar 

  • Wasser SP, Akavia E (2008) Regulatory issues of mushrooms as functional foods and dietary supplements: safety and efficacy. In: Cheung PCK (ed) Mushrooms as functional foods. Wiley, New York, pp 199–221

    Chapter  Google Scholar 

  • Wasser SP, Weis AL (1999) Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: current perspectives (review). Int J Med Mushrooms 1:31–62

    CAS  Google Scholar 

  • Wasser SP, Didukh MY, Amazonas MALA, Nevo E, Stamets P, Eira AF (2002) Is widely cultivated culinary-medicinal Royal Sun Agaricus (the Himematsutake mushroom) indeed Agaricus blazei Murrill? Int J Med Mushrooms 4:267–290

    Google Scholar 

  • Wasser SP, Didukh MY, Amazonas MALA, Nevo E, Stamets P, Eira AF (2005) Is a widely cultivated culinary-medicinal Royal Sun Agaricus (Champignon do Brazil, or the Himematsutake mushroom) Agaricus brasiliensis S. Wasser et al. indeed a synonym of A. subrufescens Peck? Int J Med Mushrooms 7:507–511

    Article  Google Scholar 

  • Wasser SP, Zmitrovich IV, Didukh MY, Spirin WA, Malysheva VF (2006) Morphological traits of Ganoderma lucidum complex highlighting G. tsugae var. jannieae: the current generalization. Gantner, Ruggell

    Google Scholar 

  • Wasson RG (1968) Soma. In: Divine mushroom of immortality. Harcourt Brace Jovanovich, New York

    Google Scholar 

  • Yang Q-Y (1999) Advanced research in PSP. The Hong Kong Association for Health Care, Tsim Sha Tsu, Kowloon

    Google Scholar 

  • Yassin M, Wasser SP, Mahajna J (2008) Substances from the medicinal mushroom Daedalea gibbosa inhibit kinase activity of native and T315I mutated Bcr-Abl. Int J Oncol 32:1197–1204

    Google Scholar 

  • Yuen JWM, Gohel MDI (2005) Anticancer effects of Ganoderma lucidum: a review of scientific evidence. Nutrit Cancer 53:11–17

    Article  CAS  Google Scholar 

  • Zaidman B-Z, Yassin M, Mahajna J, Wasser SP (2005) Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol 67:453–468

    Article  CAS  Google Scholar 

  • Zaidman B-Z, Wasser SP, Nevo E, Mahajna J (2008) Coprinus comatus and Ganoderma lucidum interfere with androgen receptor function in LNCaP prostate cancer cells. Mol Biol Rep 35:107–117

    Article  CAS  Google Scholar 

  • Zhang M, Cui SW, Cheung PCK, Wang Q (2007) Antitumor polysaccharides from mushrooms: a review on their isolation, structural characteristics and antitumor activity. Trends Food Sci Technol 18:4–19

    Article  Google Scholar 

  • Zhao J-D (1989) The Ganodermataceae of China. Bibliotheca Mycologica 132. Cramer, Berlin

  • Zhou X, Lin JY, Zhao J, Sun X, Tang K (2005) Ganodermataceae: natural products and their related pharmacological functions. Amer J Chinese Med 35:559–574

    Article  Google Scholar 

  • Zhuang C, Wasser SP (2004) Medicinal value of culinary-medicinal Maitake mushroom Grifola frondosa (Dicks.:Fr.) S.F.Gray (Aphyllophoromycetideae). Review. Int J Med Mushrooms 6:287–313

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank all of my colleagues who have contributed their time and effort in sending information and data to help me with the preparation of this paper: Dr. John Holiday (USA), Christopher Hobbs (USA), Professor Ha Won Kim (South Korea), Professor Naohito Ohno (Japan), Professor Peter C.K. Cheung (Hong Kong), Professor Shufeng Zhou (Australia), Professor Reinhold Pöder (Austria), Dr. Daniel Job (Switzerland), Dr. Cun Zhuang (USA), Professor G. Guzmàn (Mexico), Dr. Roumiana Petrova (Bulgaria), and Dr. Jamal Mahajna (Israel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon P. Wasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasser, S.P. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89, 1323–1332 (2011). https://doi.org/10.1007/s00253-010-3067-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3067-4

Keywords

Navigation