Skip to main content

Advertisement

Log in

Do RANKL inhibitors (denosumab) affect inflammation and immunity?

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

An Erratum to this article was published on 17 July 2010

An Erratum to this article was published on 17 July 2010

Abstract

Receptor activator of nuclear factor kappa B ligand (RANKL) and its natural antagonist, osteoprotegerin (OPG), are, respectively, an indispensable factor and a potent inhibitor for osteoclast differentiation, activity, and survival. The development of a human monoclonal antibody to RANKL, denosumab, constitutes a novel approach to prevent fragility fractures in osteoporosis, skeletal complications of malignancy, and potentially bone erosions in rheumatoid arthritis (RA). In addition to being expressed by osteoblasts, RANKL is abundantly produced by activated T cells, and synoviocytes in RA, whereas its receptor, RANK, is also expressed by monocytes/macrophages and dendritic cells. However, in preclinical and clinical studies of RA—including patients with some degree of immunosuppression—RANKL inhibitors did not significantly alter inflammatory processes. RANKL, RANK, and OPG deficiency in murine models highlights the important role of this pathway in the development and maturation of the immune system in rodents, including functions of T and/or B cells, whereas OPG overexpression in mice and rats seems innocuous with regard to immunity. In contrast, loss-of-function mutations in humans have more limited effects on immune cells. In clinical studies, the overall rate of infections, cancer, and death was similar with denosumab and placebo. Nevertheless, the risk of severe infections and cancer in some specific tissues remains to be carefully scrutinized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  2. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  CAS  PubMed  Google Scholar 

  3. Wada T, Nakashima T, Hiroshi N, Penninger JM (2006) RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12:17–25

    Article  CAS  PubMed  Google Scholar 

  4. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, van der Heiden A, Itie A, Wakeham A, Khoo W, Sasaki T, Cao Z, Penninger JM, Paige CJ, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV, Mak TW (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13:1015–1024

    Article  CAS  PubMed  Google Scholar 

  5. Wada T, Nakashima T, Oliveira-dos-Santos AJ, Gasser J, Hara H, Schett G, Penninger JM (2005) The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med 11:394–399

    Article  CAS  PubMed  Google Scholar 

  6. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    Article  CAS  PubMed  Google Scholar 

  7. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309

    Article  CAS  PubMed  Google Scholar 

  8. Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, Bredius R, Mancini G, Cant A, Bishop N, Grabowski P, Del Fattore A, Messina C, Errigo G, Coxon FP, Scott DI, Teti A, Rogers MJ, Vezzoni P, Villa A, Helfrich MH (2007) Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet 39:960–962

    Article  CAS  PubMed  Google Scholar 

  9. Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, Moratto D, Mazzolari E, Clayton-Smith J, Orchard P, Coxon FP, Helfrich MH, Crockett JC, Mellis D, Vellodi A, Tezcan I, Notarangelo LD, Rogers MJ, Vezzoni P, Villa A, Frattini A (2008) Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSFiiA (RANK) mutations. Am J Hum Genet 83:64–76

    Article  CAS  PubMed  Google Scholar 

  10. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  11. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  CAS  PubMed  Google Scholar 

  12. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–3545

    Article  CAS  PubMed  Google Scholar 

  13. Ominsky MS, Stolina M, Li X, Corbin TJ, Asuncion FJ, Barrero M, Niu QT, Dwyer D, Adamu S, Warmington KS, Grisanti M, Tan HL, Ke HZ, Simonet WS, Kostenuik PJ (2009) One year of transgenic overexpression of osteoprotegerin in rats suppressed bone resorption and increased vertebral bone volume, density, and strength. J Bone Miner Res 24:1234–1246

    Article  CAS  PubMed  Google Scholar 

  14. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, Peacock M, Miller PD, Lederman SN, Chesnut CH, Lain D, Kivitz AJ, Holloway DL, Zhang C, Peterson MC, Bekker PJ (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354:821–831

    Article  CAS  PubMed  Google Scholar 

  15. Miller PD, Bolognese MA, Lewiecki EM, McClung MR, Ding B, Austin M, Liu Y, San Martin J, Amg Bone Loss Study G (2008) Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone 43:222–229

    Article  CAS  PubMed  Google Scholar 

  16. Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, van der Heijde D, Zhou L, Tsuji W, Newmark R (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58:1299–1309

    Article  CAS  PubMed  Google Scholar 

  17. Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192

    Article  CAS  PubMed  Google Scholar 

  18. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, Weitzmann MN (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109:3839–3848

    Article  CAS  PubMed  Google Scholar 

  20. Dewhirst FE, Stashenko PP, Mole JE, Tsurumachi T (1985) Purification and partial sequence of human osteoclast-activating factor: identity with interleukin 1 beta. J Immunol 135:2562–2568

    CAS  PubMed  Google Scholar 

  21. Lee SK, Gardner AE, Kalinowski JF, Jastrzebski SL, Lorenzo JA (2006) RANKL-stimulated osteoclast-like cell formation in vitro is partially dependent on endogenous interleukin-1 production. Bone 38:678–685

    Article  CAS  PubMed  Google Scholar 

  22. Ogata Y, Kukita A, Kukita T, Komine M, Miyahara A, Miyazaki S, Kohashi O (1999) A novel role of IL-15 in the development of osteoclasts: inability to replace its activity with IL-2. J Immunol 162:2754–2760

    CAS  PubMed  Google Scholar 

  23. Butler DM, Malfait A-M, Mason LJ, Warden PJ, Kollias G, Maini RN, Feldmann M, Brennan FM (1997) DBA/1 mice expressing the human TNF-alpha transgene develop a severe, erosive arthritis. J Immunol 159:2867–2876

    CAS  PubMed  Google Scholar 

  24. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408:600–605

    Article  CAS  PubMed  Google Scholar 

  25. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T et al (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145:3297–3303

    CAS  PubMed  Google Scholar 

  26. Weitzmann MN, Cenci S, Rifas L, Brown C, Pacifici R (2000) Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96:1873–1878

    CAS  PubMed  Google Scholar 

  27. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352

    Article  CAS  PubMed  Google Scholar 

  28. Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR (1986) Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 319:516–518

    Article  CAS  PubMed  Google Scholar 

  29. Walsh NC, Crotti TN, Goldring SR, Gravallese EM (2005) Rheumatic diseases: the effects of inflammation on bone. Immunol Rev 208:228–251

    Article  CAS  PubMed  Google Scholar 

  30. Klaus J, Armbrecht G, Steinkamp M, Bruckel J, Rieber A, Adler G, Reinshagen M, Felsenberg D, von Tirpitz C (2002) High prevalence of osteoporotic vertebral fractures in patients with Crohn's disease. Gut 51:654–658

    Article  CAS  PubMed  Google Scholar 

  31. Cenci S, Toraldo G, Weitzmann MN, Roggia C, Gao Y, Qian WP, Sierra O, Pacifici R (2003) Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc Natl Acad Sci USA 100:10405–10410

    Article  CAS  PubMed  Google Scholar 

  32. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179

    Article  CAS  PubMed  Google Scholar 

  33. Seshasayee D, Wang H, Lee WP, Gribling P, Ross J, Van Bruggen N, Carano R, Grewal IS (2004) A novel in vivo role for osteoprotegerin ligand in activation of monocyte effector function and inflammatory response. J Biol Chem 279:30202–30209

    Article  CAS  PubMed  Google Scholar 

  34. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD, Antoni C, Leeb B, Elliott MJ, Woody JN, Schaible TF, Feldmann M (1998) Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 41:1552–1563

    Article  CAS  PubMed  Google Scholar 

  35. Moreland LW, Baumgartner SW, Schiff MH, Tindall EA, Fleischmann RM, Weaver AL, Ettlinger RE, Cohen S, Koopman WJ, Mohler K, Widmer MB, Blosch CM (1997) Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med 337:141–147

    Article  CAS  PubMed  Google Scholar 

  36. Nishimoto N, Yoshizaki K, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Hashimoto J, Azuma J, Kishimoto T (2004) Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 50:1761–1769

    Article  CAS  PubMed  Google Scholar 

  37. Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E, Woodworth T, Alten R (2008) Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371:987–997

    Article  CAS  PubMed  Google Scholar 

  38. Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Present DH, Braakman T, DeWoody KL, Schaible TF, Rutgeerts PJ (1997) A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn's disease. Crohn's Disease cA2 Study Group. N Engl J Med 337:1029–1035

    Article  CAS  PubMed  Google Scholar 

  39. Ito H, Takazoe M, Fukuda Y, Hibi T, Kusugami K, Andoh A, Matsumoto T, Yamamura T, Azuma J, Nishimoto N, Yoshizaki K, Shimoyama T, Kishimoto T (2004) A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn's disease. Gastroenterology 126:989–996, discussion 947

    Article  CAS  PubMed  Google Scholar 

  40. Lange U, Teichmann J, Muller-Ladner U, Strunk J (2005) Increase in bone mineral density of patients with rheumatoid arthritis treated with anti-TNF-alpha antibody: a prospective open-label pilot study. Rheumatology (Oxford) 44:1546–1548

    Article  CAS  Google Scholar 

  41. Smolen JS, Han C, van der Heijde DM, Emery P, Bathon JM, Keystone E, Maini RN, Kalden JR, Aletaha D, Baker D, Han J, Bala M, St Clair EW (2009) Radiographic changes in rheumatoid arthritis patients attaining different disease activity states with methotrexate monotherapy and infliximab plus methotrexate: the impacts of remission and TNF-blockade. Ann Rheum Dis 68:823–827

    Article  CAS  PubMed  Google Scholar 

  42. Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, Smolen J, Emery P, Harriman G, Feldmann M, Lipsky P (1999) Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354:1932–1939

    Article  CAS  PubMed  Google Scholar 

  43. Keystone EC, Kavanaugh AF, Sharp JT, Tannenbaum H, Hua Y, Teoh LS, Fischkoff SA, Chartash EK (2004) Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo- controlled, 52-week trial. Arthritis Rheum 50:1400–1411

    Article  CAS  PubMed  Google Scholar 

  44. Nishimoto N, Hashimoto J, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Murata N, van der Heijde D, Kishimoto T (2007) Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an x ray reader-blinded randomised controlled trial of tocilizumab. Ann Rheum Dis 66:1162–1167

    Article  CAS  PubMed  Google Scholar 

  45. Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD, Siegel JN, Braun MM (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345:1098–1104

    Article  CAS  PubMed  Google Scholar 

  46. Gardam MA, Keystone EC, Menzies R, Manners S, Skamene E, Long R, Vinh DC (2003) Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect Dis 3:148–155

    Article  CAS  PubMed  Google Scholar 

  47. Crum NF, Lederman ER, Wallace MR (2005) Infections associated with tumor necrosis factor-alpha antagonists. Medicine (Baltimore) 84:291–302

    Article  CAS  Google Scholar 

  48. Gomez-Reino JJ, Carmona L, Valverde VR, Mola EM, Montero MD (2003) Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report. Arthritis Rheum 48:2122–2127

    Article  CAS  PubMed  Google Scholar 

  49. Olleros ML, Guler R, Vesin D, Parapanov R, Marchal G, Martinez-Soria E, Corazza N, Pache JC, Mueller C, Garcia I (2005) Contribution of transmembrane tumor necrosis factor to host defense against Mycobacterium bovis bacillus Calmette-Guerin and Mycobacterium tuberculosis infections. Am J Pathol 166:1109–1120

    CAS  PubMed  Google Scholar 

  50. Roach DR, Bean AG, Demangel C, France MP, Briscoe H, Britton WJ (2002) TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol 168:4620–4627

    CAS  PubMed  Google Scholar 

  51. Arnett HA, Wang Y, Matsushima GK, Suzuki K, Ting JP (2003) Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocyte regeneration. J Neurosci 23:9824–9832

    CAS  PubMed  Google Scholar 

  52. Kotake S, Udagawa N, Hakoda M, Mogi M, Yano K, Tsuda E, Takahashi K, Furuya T, Ishiyama S, Kim KJ, Saito S, Nishikawa T, Takahashi N, Togari A, Tomatsu T, Suda T, Kamatani N (2001) Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum 44:1003–1012

    Article  CAS  PubMed  Google Scholar 

  53. Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, Koshihara Y, Oda H, Nakamura K, Tanaka S (2000) Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 43:259–269

    Article  CAS  PubMed  Google Scholar 

  54. Kim KW, Cho ML, Lee SH, Oh HJ, Kang CM, Ju JH, Min SY, Cho YG, Park SH, Kim HY (2007) Human rheumatoid synovial fibroblasts promote osteoclastogenic activity by activating RANKL via TLR-2 and TLR-4 activation. Immunol Lett 110:54–64

    Article  CAS  PubMed  Google Scholar 

  55. Pettit AR, Ji H, von Stechow D, Muller R, Goldring SR, Choi Y, Benoist C, Gravallese EM (2001) TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 159:1689–1699

    CAS  PubMed  Google Scholar 

  56. Stolina M, Schett G, Dwyer D, Vonderfecht S, Middleton S, Duryea D, Pacheco E, Van G, Bolon B, Feige U, Zack D, Kostenuik P (2009) RANKL inhibition by osteoprotegerin prevents bone loss without affecting local or systemic inflammation parameters in two rat arthritis models: comparison with anti-TNFalpha or anti-IL-i therapies. Arthritis Res Ther 11:R187

    Article  PubMed  Google Scholar 

  57. Redlich K, Hayer S, Maier A, Dunstan CR, Tohidast-Akrad M, Lang S, Turk B, Pietschmann P, Woloszczuk W, Haralambous S, Kollias G, Steiner G, Smolen JS, Schett G (2002) Tumor necrosis factor alpha-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum 46:785–792

    Article  CAS  PubMed  Google Scholar 

  58. McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442

    Article  CAS  PubMed  Google Scholar 

  59. Andrews NA (2008) Denosumab and the treatment of rheumatoid arthritis: in an occupied field, where will a RANKL inhibitor fit in? IBMS BoneKEy 5:351–556. http://www.bonekey-ibms.org/cgi/content/full/ibmske;5/i0/35i

  60. Byrne FR, Morony S, Warmington K, Geng Z, Brown HL, Flores SA, Fiorino M, Yin SL, Hill D, Porkess V, Duryea D, Pretorius JK, Adamu S, Manoukian R, Danilenko DM, Sarosi I, Lacey DL, Kostenuik PJ, Senaldi G (2005) CD4 + CD45RBHi T cell transfer induced colitis in mice is accompanied by osteopenia which is treatable with recombinant human osteoprotegerin. Gut 54:78–86

    Article  CAS  PubMed  Google Scholar 

  61. Ashcroft AJ, Cruickshank SM, Croucher PI, Perry MJ, Rollinson S, Lippitt JM, Child JA, Dunstan C, Felsburg PJ, Morgan GJ, Carding SR (2003) Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity 19:849–861

    Article  CAS  PubMed  Google Scholar 

  62. Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM, Choi Y (1997) TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 186:2075–2080

    Article  CAS  PubMed  Google Scholar 

  63. Josien R, Li HL, Ingulli E, Sarma S, Wong BR, Vologodskaia M, Steinman RM, Choi Y (2000) TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp Med 191:495–502

    Article  CAS  PubMed  Google Scholar 

  64. Mebius RE (2003) Organogenesis of lymphoid tissues. Nat Rev Immunol 3:292–303

    Article  CAS  PubMed  Google Scholar 

  65. Rennert PD, Browning JL, Mebius R, Mackay F, Hochman PS (1996) Surface lymphotoxin alpha/beta complex is required for the development of peripheral lymphoid organs. J Exp Med 184:1999–2006

    Article  CAS  PubMed  Google Scholar 

  66. Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA (1997) Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity 6:491–500

    Article  CAS  PubMed  Google Scholar 

  67. Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K (1998) The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9:59–70

    Article  CAS  PubMed  Google Scholar 

  68. Kim D, Mebius RE, MacMicking JD, Jung S, Cupedo T, Castellanos Y, Rho J, Wong BR, Josien R, Kim N, Rennert PD, Choi Y (2000) Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J Exp Med 192:1467–1478

    Article  CAS  PubMed  Google Scholar 

  69. Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, Inoue J (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4:353–362

    Article  CAS  PubMed  Google Scholar 

  70. Stolina M, Dwyer D, Ominsky MS, Corbin T, Van G, Bolon B, Sarosi I, McCabe J, Zack DJ, Kostenuik P (2007) Continuous RANKL inhibition in osteoprotegerin transgenic mice and rats suppresses bone resorption without impairing lymphorganogenesis or functional immune responses. J Immunol 179:7497–7505

    CAS  PubMed  Google Scholar 

  71. Maruyama K, Takada Y, Ray N, Kishimoto Y, Penninger JM, Yasuda H, Matsuo K (2006) Receptor activator of NF-kappa B ligand and osteoprotegerin regulate proinflammatory cytokine production in mice. J Immunol 177:3799–3805

    CAS  PubMed  Google Scholar 

  72. Treml JF, Hao Y, Stadanlick JE, Cancro MP (2009) The BLyS family: toward a molecular understanding of B cell homeostasis. Cell Biochem Biophys 53:1–16

    Article  CAS  PubMed  Google Scholar 

  73. Yun TJ, Tallquist MD, Aicher A, Rafferty KL, Marshall AJ, Moon JJ, Ewings ME, Mohaupt M, Herring SW, Clark EA (2001) Osteoprotegerin, a crucial regulator of bone metabolism, also regulates B cell development and function. J Immunol 166:1482–1491

    CAS  PubMed  Google Scholar 

  74. Kayagaki N, Yamaguchi N, Abe M, Hirose S, Shirai T, Okumura K, Yagita H (2002) Suppression of antibody production by TNF-related apoptosis-inducing ligand (TRAIL). Cell Immunol 219:82–91

    Article  CAS  PubMed  Google Scholar 

  75. Stolina M, Guo J, Faggioni R, Brown H, Senaldi G (2003) Regulatory effects of osteoprotegerin on cellular and humoral immune responses. Clin Immunol 109:347–354

    Article  CAS  PubMed  Google Scholar 

  76. Stolina M, Ominsky MS, Schroeder J, Atkinson JE, Smith SY, LeSauteur L, Corneu S, Kostenuik PJ (2008) Long-term denosumab treatment of non-human primates had no observed effects on leukocyte subsets or T-cell-dependent immune responses. Second International Conference on Osteoimmunology: Interactions of the Immune and Skeletal Systems. 8–13 June 2008. Aegean Conference Series Vol. 35, p 98

  77. Niederberger V, Niggemann B, Kraft D, Spitzauer S, Valenta R (2002) Evolution of IgM, IgE and IgG(1–4)antibody responses in early childhood monitored with recombinant allergen components: implications for class switch mechanisms. Eur J Immunol 32:576–584

    Article  CAS  PubMed  Google Scholar 

  78. Diamant E, Melamed D (2004) Class switch recombination in B lymphopoiesis: a potential pathway for B cell autoimmunity. Autoimmun Rev 3:464–469

    Article  CAS  PubMed  Google Scholar 

  79. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  80. Padigel UM, Kim N, Choi Y, Farrell JP (2003) TRANCE-RANK costimulation is required for IL-i2 production and the initiation of a Thi-type response to Leishmania major infection in CD40L-deficient mice. J Immunol 171:5437–5441

    CAS  PubMed  Google Scholar 

  81. Bachmann MF, Wong BR, Josien R, Steinman RM, Oxenius A, Choi Y (1999) TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med 189:1025–1031

    Article  CAS  PubMed  Google Scholar 

  82. Josien R, Wong BR, Li HL, Steinman RM, Choi Y (1999) TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 162:2562–2568

    CAS  PubMed  Google Scholar 

  83. Loser K, Mehling A, Loeser S, Apelt J, Kuhn A, Grabbe S, Schwarz T, Penninger JM, Beissert S (2006) Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 12:1372–1379

    Article  CAS  PubMed  Google Scholar 

  84. Barbaroux JB, Beleut M, Brisken C, Mueller CG, Groves RW (2008) Epidermal receptor activator of NF-kappaB ligand controls Langerhans cells numbers and proliferation. J Immunol 181:1103–1108

    CAS  PubMed  Google Scholar 

  85. Lambert C, Oury C, Dejardin E, Chariot A, Piette J, Malaise M, Merville MP, Franchimont N (2007) Further insights in the mechanisms of interleukin-1β stimulation of osteoprotegerin in osteoblast-like cells. J Bone Miner Res 22:1350–1361

    Article  CAS  PubMed  Google Scholar 

  86. Holen I, Croucher PI, Hamdy FC, Eaton CL (2002) Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res 62:1619–1623

    CAS  PubMed  Google Scholar 

  87. Kostenuik PJ, Nguyen HQ, McCabe J, Warmington KS, Kurahara C, Sun N, Chen C, Li L, Cattley RC, Van G, Scully S, Elliott R, Grisanti M, Morony S, Tan HL, Asuncion F, Li X, Ominsky MS, Stolina M, Dwyer D, Dougall WC, Hawkins N, Boyle WJ, Simonet WS, Sullivan JK (2009) Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL. J Bone Miner Res 24:182–195

    Article  CAS  PubMed  Google Scholar 

  88. Canon JR, Roudier M, Bryant R, Morony S, Stolina M, Kostenuik PJ, Dougall WC (2008) Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis 25:119–129

    Article  CAS  PubMed  Google Scholar 

  89. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765

    Article  CAS  PubMed  Google Scholar 

  90. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Wang H, Liu Y, San Martin J (2008) Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab 93:2149–2157

    Article  CAS  PubMed  Google Scholar 

  91. Smith MR, Egerdie B, Hernandez Toriz N, Feldman R, Tammela TL, Saad F, Heracek J, Szwedowski M, Ke C, Kupic A, Leder BZ, Goessl C (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361:745–755

    Article  CAS  PubMed  Google Scholar 

  92. Ellis GK, Bone HG, Chlebowski R, Paul D, Spadafora S, Smith J, Fan M, Jun S (2008) Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol 26:4875–4882

    Article  CAS  PubMed  Google Scholar 

  93. Stopeck A, Body JJ, Fujiwara Y, Lipton A, Steger GG, Viniegra M, Fan M, Braun A, Dansay R, Jun S (2009) Denosumab versus zoledronic acid for the treatment of breast cancer patients with bone metastases: results of a randomized phase 3 study. Eur J Cancer Suppl 7:2

    Article  Google Scholar 

  94. Henry D, von Moos R, Vadhan-Raj S, Hungria V, Spencer A, Hirsh V, Jun S, Yeh H, Dansay R (2009) A double-blind, randomized study of denosumab versus zoledronic acid for the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. Eur J Cancer Suppl 7:11

    Article  Google Scholar 

  95. Fernandez-Valdivia R, Mukherjee A, Ying Y, Li J, Paquet M, DeMayo FJ, Lydon JP (2009) The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev Biol 328:127–139

    Article  CAS  PubMed  Google Scholar 

  96. Min JK, Cho YL, Choi JH, Kim Y, Kim JH, Yu YS, Rho J, Mochizuki N, Kim YM, Oh GT, Kwon YG (2007) Receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) increases vascular permeability: impaired permeability and angiogenesis in eNOS-deficient mice. Blood 109:1495–1502

    Article  CAS  PubMed  Google Scholar 

  97. Miller RE, Branstetter D, Armstrong A, Kennedy B, Jones J, Cowan L, Bussiere J, Dougall WC (2007) Receptor activator of NF-kappa B ligand inhibition suppresses bone resorption and hypercalcemia but does not affect host immune responses to influenza infection. J Immunol 179:266–274

    CAS  PubMed  Google Scholar 

  98. Stout RD, Suttles J, Xu J, Grewal IS, Flavell RA (1996) Impaired T cell-mediated macrophage activation in CD40 ligand-deficient mice. J Immunol 156:8–11

    CAS  PubMed  Google Scholar 

  99. Theill LE, Boyle WJ, Penninger JM (2002) RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 20:795–823

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Jean-Michel Dayer and to Roswitha Rehm for helpful and critical reading of this manuscript and to Dr. Marina Stolina (AMGEN Co., Thousand Oaks, CA, USA) for her contribution to this manuscript. This work was supported by grant numbers 310000–108453 and PMPDA-110347 from the Swiss National Science Foundation and from AETAS, Swiss Foundation for Ageing Research (SFL). Serge Ferrari has received consultant and speaker fees and research grants from AMGEN.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ferrari.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00198-010-1346-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari-Lacraz, S., Ferrari, S. Do RANKL inhibitors (denosumab) affect inflammation and immunity?. Osteoporos Int 22, 435–446 (2011). https://doi.org/10.1007/s00198-010-1326-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1326-y

Keywords

Navigation