Skip to main content
Log in

Interactions between respiration and systemic hemodynamics. Part I: basic concepts

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

The topic of cardiorespiratory interactions is of extreme importance to the practicing intensivist. It also has a reputation for being intellectually challenging, due in part to the enormous volume of relevant, at times contradictory literature. Another source of difficulty is the need to simultaneously consider the interrelated functioning of several organ systems (not necessarily limited to the heart and lung), in other words, to adopt a systemic (as opposed to analytic) point of view. We believe that the proper understanding of a few simple physiological concepts is of great help in organizing knowledge in this field. The first part of this review will be devoted to demonstrating this point. The second part, to be published in a coming issue of Intensive Care Medicine, will apply these concepts to clinical situations. We hope that this text will be of some use, especially to intensivists in training, to demystify a field that many find intimidating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A minor departure of experimental data from Eq. 1, the junction of the horizontal and steep part of actual venous return curves is smooth rather than angular, suggesting a distribution rather than a unique value of P crit.

  2. “Rightward” is enclosed in quotes for the following reason: with a true rightward shift of the venous return curve, i.e., a horizontal translation in the narrow geometric sense, P crit would increase and maximal venous return would not change. This would not be consistent with the differences between curves 1 and 2 shown in Fig. 2b.

  3. Rv is not a simple function of venous geometry and blood rheology, but depends in addition, and nonintuitively, on the distribution of blood flow between parallel vascular beds of different time constants [11]. Hence, its designation as resistance to venous return rather than venous resistance.

  4. By considering Fig. 2d, the geometrically-minded reader might note that intravascular volume expansion, translated into a “rightward” shift of the venous return curve, necessarily leads to a smaller increase in RAP than in MSFP if the heart operates on the ascending part of its function curve (i.e., if cardiac output is preload-dependent).

  5. A further factor which modulates the impact of respiration on LV filling is the influence of lung inflation on pulmonary blood volume and pulmonary venous outflow. Experiments in isolated lungs [38, 39] have indicated that, whether actuated by positive airway or negative pleural pressure, an increase in lung volume can “squeeze” blood out of the pulmonary vascular bed, provided that intra-alveolar vessels are filled at end-expiration, which usually requires a left atrial pressure >3–5 mmHg (more rigorously, West zone 3 conditions, see Sect. “RV afterload” for definition of West zones, and detailed discussion of this issue in [39].

  6. A useful simplification. More rigorously, ventricular afterload is defined as the systolic wall stress (σ), linked to transmural ejection pressure (P), chamber radius (r), and wall thickness (h) by the Laplace relationship σ = P × r/h [42]. Ejection pressure is in turn linked to arterial impedance, which measures the degree to which the arterial system opposes pulsatile blood flow [43].

  7. This is because the alveolar capillaries are in continuity with the pulmonary artery trunk, where intraluminal pressure decreases when ITP decreases, and increases when ITP increases.

References

  1. Wise RA (1994) Historical perspectives on the mechanical interactions of respiration and circulation. In: Perret C (ed) Les interactions cardio-pulmonaires. Arnette, Paris, pp 3–15

    Google Scholar 

  2. Farhi LE (1990) World War II and respiratory physiology: the view from Rochester, New York. J Appl Physiol 69:1565–1570

    PubMed  CAS  Google Scholar 

  3. Carr DT, Essex HE (1945) Certain effects of positive pressure respiration on the circulatory and respiratory systems. Am Heart J 8:53–72

    Google Scholar 

  4. Otis AB, Rahn H, Brontman M, Mullins LJ, Fenn WO (1946) Ballistocardiographic study of changes in cardiac output due to respiration. J Clin Invest 25:413–421

    Article  PubMed  CAS  Google Scholar 

  5. Cournand A, Motley HL, Werko L, Richards DW (1948) Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol 152:162–174

    PubMed  CAS  Google Scholar 

  6. Guyton AC, Jones CE, Coleman TG (1973) Circulatory physiology: cardiac output and its regulation. Saunders, Philadelphia

    Google Scholar 

  7. Rothe CF (1983) Venous system: physiology of the capacitance vessels. In: Shepherd JT, Abboud FM (eds) Handbook of physiology: the cardiovascular system vol. 3: peripheral circulation and organ blood flow, Part 1. American Physiological Society, Bethesda, pp 397–452

    Google Scholar 

  8. Magder S (1994) Venous return and cardiac output. In: Perret C, Feihl F (eds) Les interactions cardio-pulmonaires. Arnette, Paris, pp 29–36

    Google Scholar 

  9. Magder S (2006) Point: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol 101:1523–1525

    Article  PubMed  CAS  Google Scholar 

  10. Guyton AC, Lindsey AW, Abernathy B, Langston JB (1958) Mechanism of increased venous return and cardiac output caused by epinephrine. Am J Physiol 192:126–130

    PubMed  CAS  Google Scholar 

  11. Caldini P, Permutt S, Waddell JA, Riley RL (1974) Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation of dogs. Circ Res 34:606–623

    PubMed  CAS  Google Scholar 

  12. Fessler HE (1997) Heart-lung interactions: applications in the critically ill. (Review) (105 refs). Eur Respir J 10:226–237

    Article  PubMed  CAS  Google Scholar 

  13. Qvist J, Pontoppidan H, Wilson RS, Lowenstein E, Laver MB (1975) Hemodynamic response to mechanical ventilation with PEEP: the effect of hypervolemia. Anesthesiology 42:45–55

    Article  PubMed  CAS  Google Scholar 

  14. Fessler HE, Brower RG, Wise RA, Permutt S (1991) Effects of positive end-expiratory pressure on the gradient for venous return. Am Rev Respir Dis 143:19–24

    PubMed  CAS  Google Scholar 

  15. Nanas S, Magder S (1992) Adaptations of the peripheral circulation to PEEP. Am Rev Respir Dis 146:688–693

    PubMed  CAS  Google Scholar 

  16. Jellinek H, Krenn H, Oczenski W, Veit F, Schwarz S, Fitzgerald RD (2000) Influence of positive airway pressure on the pressure gradient for venous return in humans. J Appl Physiol 88:926–932

    PubMed  CAS  Google Scholar 

  17. Rothe CF, Drees JA (1976) Vascular capacitance and fluid shifts in dogs during prolonged hemorrhagic hypotension. Circ Res 38:347–356

    PubMed  CAS  Google Scholar 

  18. Shoukas AA, Sagawa K (1973) Control of total systemic vascular capacity by the carotid sinus baroreceptor reflex. Circ Res 33:22–33

    PubMed  CAS  Google Scholar 

  19. Deschamps A, Magder S (1992) Baroreflex control of regional capacitance and blood flow distribution with or without alpha-adrenergic blockade. Am J Physiol 263(6 Pt 2):H1755–H1763

    PubMed  CAS  Google Scholar 

  20. Scharf SM, Ingram RH (1977) Influence of abdominal pressure and sympathetic vasoconstriction on the cardiovascular response to positive end-expiratory pressure. Am Rev Respir Dis 116:661–670

    PubMed  CAS  Google Scholar 

  21. Mitzner W, Goldberg H, Lichtenstein S (1976) Effect of thoracic blood volume changes on steady state cardiac output. Circ Res 38:255–261

    PubMed  CAS  Google Scholar 

  22. Risoe C, Hall C, Smiseth OA (1991) Splanchnic vascular capacitance and positive end-expiratory pressure in dogs. J Appl Physiol 70:818–824

    PubMed  CAS  Google Scholar 

  23. Peters J, Hecker B, Neuser D, Schaden W (1993) Regional blood volume distribution during positive and negative airway pressure breathing in supine humans. J Appl Physiol 75:1740–1747

    PubMed  CAS  Google Scholar 

  24. Van Den Berg PCM, Jansen JRC, Pinsky MR (2002) Effect of positive pressure on venous return in volume-loaded cardiac surgical patients. J Appl Physiol 92:1223–1231

    PubMed  Google Scholar 

  25. Fessler HE, Brower RG, Wise RA, Permutt S (1992) Effects of positive end-expiratory pressure on the canine venous return curve. Am Rev Respir Dis 146:4–10

    PubMed  CAS  Google Scholar 

  26. Fessler HE, Brower RG, Shapiro EP, Permutt S (1993) Effects of positive end-expiratory pressure and body position on pressure in the thoracic great veins. Am Rev Respir Dis 148:1657–1664

    PubMed  CAS  Google Scholar 

  27. Brienza N, Revelly JP, Ayuse T, Robotham JL (1995) Effects of PEEP on liver arterial and venous blood flows. Am J Respir Crit Care Med 152:504–510

    PubMed  CAS  Google Scholar 

  28. Marini JJ, Culver BH, Butler J (1981) Effect of positive end-expiratory pressure on canine ventricular function curves. J Appl Physiol 51:1367–1374

    PubMed  CAS  Google Scholar 

  29. Wise RA, Robotham JL, Bromberger-Barnea B, Permutt S (1981) Effect of PEEP on left ventricular function in right-heart-bypassed dogs. J Appl Physiol 51:541–546

    PubMed  CAS  Google Scholar 

  30. Marini JJ, Culver BH, Butler J (1981) Mechanical effect of lung distention with positive pressure on cardiac function. Am Rev Respir Dis 124:382–386

    PubMed  CAS  Google Scholar 

  31. Butler J, Schrijen F, Henriquez A, Polu JM, Albert RK (1988) Cause of the raised wedge pressure on exercise in chronic obstructive pulmonary disease. Am Rev Respir Dis 138:350–354

    PubMed  CAS  Google Scholar 

  32. Janicki JS, Weber KT (1980) Factors influencing the diastolic pressure–volume relation of the cardiac ventricles. [Review] [44 refs]. Fed Proc 39:133–140

    PubMed  CAS  Google Scholar 

  33. Scharf SM (1992) Cardiopulmonary interactions. In: Scharf SM (ed) Cardiopulmonary physiology in critical care. Marcel Dekker, New York, pp 333–355

    Google Scholar 

  34. Kim BH, Ishida Y, Tsuneoka Y, Matsubara N, Hiraoka T, Takeda H, Inoue M, Kamada T, Kimura K, Kozuka T (1987) Effects of spontaneous respiration on right and left ventricular function: evaluation by respiratory and ECG gated radionuclide ventriculography. J Nucl Med 28:173–177

    PubMed  CAS  Google Scholar 

  35. Santamore WP, Heckman JL, Bove AA (1983) Cardiovascular changes from expiration to inspiration during IPPV. Am J Physiol 245:H307–H312

    PubMed  CAS  Google Scholar 

  36. Mitchell JR, Whitelaw WA, Sas R, Smith ER, Tyberg JV, Belenkie I (2005) RV filling modulates LV function by direct ventricular interaction during mechanical ventilation. Am J Physiol 289:H549–H557

    CAS  Google Scholar 

  37. Olsen CO, Tyson GS, Maier GW, Spratt JA, Davis JW, Rankin JS (1983) Dynamic ventricular interaction in the conscious dog. Circ Res 52:85–104

    PubMed  CAS  Google Scholar 

  38. Permutt S, Howell JB, Proctor DF, Riley RL (1961) Effect of lung inflation on static pressure–volume characteristics of pulmonary vessels. J Appl Physiol 16:64–70

    PubMed  CAS  Google Scholar 

  39. Brower R, Wise RA, Hassapoyannes C, Bromberger-Barnea B, Permutt S (1985) Effect of lung inflation on lung blood volume and pulmonary venous flow. J Appl Physiol 58:954–963

    Article  PubMed  CAS  Google Scholar 

  40. Jardin F, Farcot JC, Boisante L, Curien N, Margairaz A, Bourdarias JP (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 304:387–392

    PubMed  CAS  Google Scholar 

  41. Schulman DS, Biondi JW, Zohgbi S, Cecchetti A, Zaret BL, Soufer R (1992) Left ventricular diastolic function during positive end-expiratory pressure. Impact of right ventricular ischemia and ventricular interaction. Am Rev Respir Dis 145:515–521

    PubMed  CAS  Google Scholar 

  42. Opie L (1997) Ventricular function, Chap. 12. In: Opie L (ed) The heart: physiology, from cell to circulation. Lippincott-Raven, Philadelphia, pp 391–420

    Google Scholar 

  43. Nichols WW, O’Rourke MF (1990) Vascular impedance. McDonald’s blood flow in arteries, Chap. 11. Edward Arnold, London, pp 283–329

    Google Scholar 

  44. Scharf SM, Brown R, Tow DE, Parisi AF (1979) Cardiac effects of increased lung volume and decreased pleural pressure in man. J Appl Physiol 47:257–262

    PubMed  CAS  Google Scholar 

  45. Jardin F, Delorme G, Hardy A, Auvert B, Beauchet A, Bourdarias JP (1990) Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology 72:966–970

    Article  PubMed  CAS  Google Scholar 

  46. Buda AJ, Pinsky MR, Ingels NB Jr, Daughters GT 2nd, Stinson EB, Alderman EL (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 301:453–459

    PubMed  CAS  Google Scholar 

  47. Pinsky MR, Summer WR, Wise RA, Permutt S, Bromberger-Barnea B (1983) Augmentation of cardiac function by elevation of intrathoracic pressure. J Appl Physiol 54:950–955

    PubMed  CAS  Google Scholar 

  48. Peters J, Kindred MK, Robotham JL (1988) Transient analysis of cardiopulmonary interactions. II. Systolic events. J Appl Physiol 64:1518–1526

    PubMed  CAS  Google Scholar 

  49. Naughton MT, Bradley TD (1998) Sleep apnea in congestive heart failure. Clin Chest Med 19:99–113

    Article  PubMed  CAS  Google Scholar 

  50. Permutt S, Bromberger-Barnea B, Bane HN (1962) Alveolar Pressure, pulmnary venous pressure, and the vascular waterfall. Med Thorac 19:239–260

    Article  PubMed  CAS  Google Scholar 

  51. Jardin F, Farcot JC, Boisante L, Prost JF, Gueret P, Bourdarias JP (1982) Mechanism of paradoxic pulse in bronchial asthma. Circulation 66:887–894

    PubMed  CAS  Google Scholar 

  52. Manny J, Grindlinger G, Mathe AA, Hechtman HB (1978) Positive end-expiratory pressure, lung stretch, and decreased myocardial contractility. Surgery 84:127–133

    PubMed  CAS  Google Scholar 

  53. Grindlinger GA, Manny J, Justice R, Dunham B, Shepro D, Hechtman HB (1979) Presence of negative inotropic agents in canine plasma during positive end-expiratory pressure. Circ Res 45:460–467

    PubMed  CAS  Google Scholar 

  54. Calvin JE, Driedger AA, Sibbald WJ (1981) Positive end-expiratory pressure (PEEP) does not depress left ventricular function in patients with pulmonary edema. Am Rev Respir Dis 124:121–128

    PubMed  CAS  Google Scholar 

  55. Johnston WE, Vinten-Johansen J, Santamore WP, Case LD, Little WC (1989) Mechanism of reduced cardiac output during positive end-expiratory pressure in the dog. Am Rev Respir Dis 140:1257–1264

    PubMed  CAS  Google Scholar 

  56. Crottogini AJ, Willshaw P, Barra JG, Breitbart GJ, Pichel RH (1988) End-systolic pressure-volume relationships in dogs during ventilation with PEEP. Am J Physiol 254(4 Pt 2):H664–H670

    PubMed  CAS  Google Scholar 

  57. Scharf SM (2001) Ventilatory support in the failing heart. In: Scharf SM, Pinsky MR, Magder S (eds) Respiratory-circulatory interactions in health and disease. Marcel Dekker, New York, pp 519–550

    Google Scholar 

  58. Fessler HE (2001) Mechanical ventilation with PEEP. In: Scharf SM, Pinsky MR, Magder S (eds) Respiratory-circulatory interactions in health and disease. Marcel Dekker, New York, pp 807–836

    Google Scholar 

  59. Tucker HJ, Murray JF (1973) Effects of end-expiratory pressure on organ blood flow in normal and diseased dogs. J Appl Physiol 34:573–577

    PubMed  CAS  Google Scholar 

  60. Hevroy O, Grundnes O, Bjertnaes L, Mjos OD (1989) Myocardial blood flow and oxygen consumption during positive end-expiratory pressure ventilation at different levels of cardiac inotropy and frequency. Crit Care Med 17:48–52

    Article  PubMed  CAS  Google Scholar 

  61. Hevroy O, Reikeras O, Grundnes O, Mjos OD (1988) Cardiovascular effects of positive end-expiratory pressure during acute left ventricular failure in dogs. Clin Physiol 8:287–301

    Article  PubMed  CAS  Google Scholar 

  62. Johnston WE, Vinten-Johansen J, Shugart HE, Santamore WP (1992) Positive end-expiratory pressure potentiates the severity of canine right ventricular ischemia-reperfusion injury. Am J Physiol 262(1 Pt 2):H168–H176

    PubMed  CAS  Google Scholar 

  63. Scharf SM, Bianco JA, Tow DE, Brown R (1981) The effects of large negative intrathoracic pressure on left ventricular function in patients with coronary artery disease. Circulation 63:871–875

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We warmly thank the reviewers for their contribution to this text, in the form of numerous thoughtful, in depth, and very constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Feihl.

Additional information

The second part of this article is available at: doi:10.1007/s00134-008-1298-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feihl, F., Broccard, A.F. Interactions between respiration and systemic hemodynamics. Part I: basic concepts. Intensive Care Med 35, 45–54 (2009). https://doi.org/10.1007/s00134-008-1297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-008-1297-z

Keywords

Navigation