Skip to main content

Advertisement

Log in

Mechanism and biomarkers in aortitis––a review

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Aortitis can be the manifestation of an underlying infectious or noninfectious disease process. An autoimmune cause is suggested in a large proportion of noninfectious causes. Similar to other autoimmune diseases, the pathophysiology of aortitis has been investigated in detail, but the etiology remains unknown. Most cases of aortitis often go undetected for a long time and are often identified at late stages of the disease. Recent advances in imaging techniques have significantly improved the diagnosis of aortitis. However, significant challenges associated with the imaging techniques limit their use. Several routine inflammation-based markers, such as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and inflammatory cytokines, are nonspecific and, therefore, have limited use in the diagnosis of aortitis. The search for more specific serum biomarkers, which can facilitate detection and progression is under progress. Several autoantibodies have been identified, but assigning their role in the pathogenesis as well as their specificity remains a challenge. The current review addresses some of these issues in detail.

Key messages

• Noninfectious aortitis is an autoimmune disease.

• Several biomarkers, including cytokines and autoantibodies, are increased in aortitis.

• Imaging techniques, commonly used to detect aortitis, are associated with the high cost and technical challenges.

• There is a need to develop low-cost biomarker-based detection tools.

• The knowledge of biomarkers in aortitis detection is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bossone E, Pluchinotta FR, Andreas M, Blanc P, Citro R, Limongelli G, Della Corte A, Parikh A, Frigiola A, Lerakis S, Ehrlich M, Aboyans V (2016) Aortitis. Vasc Pharmacol 80:1–10

    CAS  Google Scholar 

  2. Gornik HL, Creager MA (2008) Aortitis. Circulation 117(23):3039–3051

    PubMed  PubMed Central  Google Scholar 

  3. Ramirez FD, Jamison BM, Hibbert B (2016) Infectious aortitis. Int Heart J 57(5):645–648

    PubMed  Google Scholar 

  4. Caspary L (2016) Inflammatory diseases of the aorta. VASA Zeitschrift fur Gefasskrankheiten 45(1):17–29

    PubMed  Google Scholar 

  5. Skeik N, Ostertag-Hill CA, Garberich RF, Alden PB, Alexander JQ, Cragg AH, Manunga JM, Stephenson EJ, Titus JM, Sullivan TM (2017) Diagnosis, management, and outcome of aortitis at a single center. Vasc Endovasc Surg 51(7):470–479

    Google Scholar 

  6. Nwadibia U, Larson E, Fanciullo J (2016) Polymyalgia rheumatica and giant cell arteritis: a review article. S D Med 69(3):121–123

    PubMed  Google Scholar 

  7. Chen JJ, Leavitt JA, Fang C, Crowson CS, Matteson EL, Warrington KJ (2016) Evaluating the incidence of arteritic ischemic optic neuropathy and other causes of vision loss from giant cell arteritis. Ophthalmology 123(9):1999–2003

    PubMed  PubMed Central  Google Scholar 

  8. Maksimowicz-McKinnon K, Clark TM, Hoffman GS (2009) Takayasu arteritis and giant cell arteritis: a spectrum within the same disease? Medicine (Baltimore) 88(4):221–226

    Google Scholar 

  9. Geiger J, Ness T, Uhl M, Lagreze WA, Vaith P, Langer M, Bley TA (2009) Involvement of the ophthalmic artery in giant cell arteritis visualized by 3T MRI. Rheumatology (Oxford) 48(5):537–541

    Google Scholar 

  10. Johnston SL, Lock RJ, Gompels MM (2002) Takayasu arteritis: a review. J Clin Pathol 55(7):481–486

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Soriano A, Muratore F, Pipitone N, Boiardi L, Cimino L, Salvarani C (2017) Visual loss and other cranial ischaemic complications in giant cell arteritis. Nat Rev Rheumatol 13(8):476–484

    PubMed  Google Scholar 

  12. Sreih AG, Alibaz-Oner F, Kermani TA, Aydin SZ, Cronholm PF, Davis T, Easley E, Gul A, Mahr A, McAlear CA, Milman N, Robson JC, Tomasson G, Direskeneli H, Merkel PA (2017) Development of a core set of outcome measures for large-vessel vasculitis: report from OMERACT 2016. J Rheumatol. https://doi.org/10.3899/jrheum.161467

    PubMed  PubMed Central  Google Scholar 

  13. Michel BA, Arend WP, Hunder GG (1996) Clinical differentiation between giant cell (temporal) arteritis and Takayasu’s arteritis. J Rheumatol 23(1):106–111

    CAS  PubMed  Google Scholar 

  14. Kermani TA, Crowson CS, Muratore F, Schmidt J, Matteson EL, Warrington KJ (2015) Extra-cranial giant cell arteritis and Takayasu arteritis: how similar are they? Semin Arthritis Rheum 44(6):724–728

    PubMed  Google Scholar 

  15. Stone JR, Bruneval P, Angelini A, Bartoloni G, Basso C, Batoroeva L, Buja LM, Butany J, d’Amati G, Fallon JT, Gittenberger-de Groot AC, Gouveia RH, Halushka MK, Kelly KL, Kholova I, Leone O, Litovsky SH, Maleszewski JJ, Miller DV, Mitchell RN, Preston SD, Pucci A, Radio SJ, Rodriguez ER, Sheppard MN, Suvarna SK, Tan CD, Thiene G, van der Wal AC, Veinot JP (2015) Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: I. Inflammatory diseases. Cardiovasc Pathol 24(5):267–278

    PubMed  Google Scholar 

  16. Hoffman GS, Calabrese LH (2014) Vasculitis: determinants of disease patterns. Nat Rev Rheumatol 10(8):454–462

    PubMed  Google Scholar 

  17. Svensson LG, Arafat A, Roselli EE, Idrees J, Clifford A, Tan C, Hoffman G, Eng C, Langford C, Rodriguez ER, Gornik HL, Blackstone E, Sabik JF 3rd, Lytle BW (2015) Inflammatory disease of the aorta: patterns and classification of giant cell aortitis, Takayasu arteritis, and nonsyndromic aortitis. J Thorac Cardiovasc Surg 149(2 Suppl):S170–S175

    PubMed  Google Scholar 

  18. Zen Y, Kasashima S, Inoue D (2012) Retroperitoneal and aortic manifestations of immunoglobulin G4-related disease. Semin Diagn Pathol 29(4):212–218

    PubMed  Google Scholar 

  19. Watanabe R, Goronzy JJ, Berry G, Liao YJ, Weyand CM (2016) Giant cell arteritis: from pathogenesis to therapeutic management. Curr Treatm Opt Rheumatol 2(2):126–137

    PubMed  PubMed Central  Google Scholar 

  20. Chakravarti R, Gupta K, Swain M, Willard B, Scholtz J, Svensson LG, Roselli EE, Pettersson G, Johnston DR, Soltesz EG, Yamashita M, Stuehr D, Daly TM, Hoffman GS (2015) 14-3-3 in thoracic aortic aneurysms: identification of a novel autoantigen in large vessel vasculitis. Arthritis Rheumatol 67(7):1913–1921

    PubMed  PubMed Central  Google Scholar 

  21. Kistner A, Bigler MB, Glatz K, Egli SB, Baldin FS, Marquardsen FA, Mehling M, Rentsch KM, Staub D, Aschwanden M, Recher M, Daikeler T, Berger CT (2017) Characteristics of autoantibodies targeting 14-3-3 proteins and their association with clinical features in newly diagnosed giant cell arteritis. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/kew469

  22. Nesher G (2014) Autoimmune aspects of giant cell arteritis. Isr Med Assoc J 16(7):454–455

    PubMed  Google Scholar 

  23. Kuret T, Lakota K, Hocevar A, Burja B, Cucnik S, Sodin-Semrl S (2018) Evaluating the utility of autoantibodies for disease activity and relapse in giant cell arteritis. J Biol Regul Homeost Agents 32(2):313–319

    CAS  PubMed  Google Scholar 

  24. Espinosa G, Tassies D, Font J, Munoz-Rodriguez FJ, Cervera R, Ordinas A, Reverter JC, Ingelmo M (2001) Antiphospholipid antibodies and thrombophilic factors in giant cell arteritis. Semin Arthritis Rheum 31(1):12–20

    CAS  PubMed  Google Scholar 

  25. Baerlecken NT, Linnemann A, Gross WL, Moosig F, Vazquez-Rodriguez TR, Gonzalez-Gay MA, Martin J, Kotter I, Henes JC, Melchers I, Vaith P, Schmidt RE, Witte T (2012) Association of ferritin autoantibodies with giant cell arteritis/polymyalgia rheumatica. Ann Rheum Dis 71(6):943–947

    CAS  PubMed  Google Scholar 

  26. Wang H, Ma J, Wu Q, Luo X, Chen Z, Kou L (2011) Circulating B lymphocytes producing autoantibodies to endothelial cells play a role in the pathogenesis of Takayasu arteritis. J Vasc Surg 53(1):174–180

    PubMed  Google Scholar 

  27. van der Geest KS, Abdulahad WH, Chalan P, Rutgers A, Horst G, Huitema MG, Roffel MP, Roozendaal C, Kluin PM, Bos NA, Boots AM, Brouwer E (2014) Disturbed B cell homeostasis in newly diagnosed giant cell arteritis and polymyalgia rheumatica. Arthritis Rheum 66(7):1927–1938

    Google Scholar 

  28. Clement M, Galy A, Bruneval P, Morvan M, Hyafil F, Benali K, Pasi N, Deschamps L, Pellenc Q, Papo T, Nicoletti A, Sacre K (2016) Tertiary lymphoid organs in Takayasu arteritis. Front Immunol 7:158

    PubMed  PubMed Central  Google Scholar 

  29. Ladich E, Yahagi K, Romero ME, Virmani R (2016) Vascular diseases: aortitis, aortic aneurysms, and vascular calcification. Cardiovasc Pathol 25(5):432–441

    PubMed  Google Scholar 

  30. Ly KH, Regent A, Tamby MC, Mouthon L (2010) Pathogenesis of giant cell arteritis: more than just an inflammatory condition? Autoimmun Rev 9(10):635–645

    CAS  PubMed  Google Scholar 

  31. Weyand CM, Liao YJ, Goronzy JJ (2012) The immunopathology of giant cell arteritis: diagnostic and therapeutic implications. J Neuroophthalmol 32(3):259–265

    PubMed  PubMed Central  Google Scholar 

  32. Schaufelberger C, Andersson R, Nordborg E, Hansson GK, Nordborg C, Wahlstrom J (2008) An uneven expression of T cell receptor V genes in the arterial wall and peripheral blood in giant cell arteritis. Inflammation 31(6):372–383

    CAS  PubMed  Google Scholar 

  33. Fais S, Burgio VL, Silvestri M, Capobianchi MR, Pacchiarotti A, Pallone F (1994) Multinucleated giant cells generation induced by interferon-gamma. Changes in the expression and distribution of the intercellular adhesion molecule-1 during macrophages fusion and multinucleated giant cell formation. Lab Investig 71(5):737–744

    CAS  PubMed  Google Scholar 

  34. Weyand CM, Goronzy JJ (2003) Medium- and large-vessel vasculitis. N Engl J Med 349(2):160–169

    CAS  PubMed  Google Scholar 

  35. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260(5107):547–549

    CAS  PubMed  Google Scholar 

  36. Weyand CM, Goronzy JJ (2013) Immune mechanisms in medium and large-vessel vasculitis. Nat Rev Rheumatol 9(12):731–740

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM (2010) Th17 and Th1 T-cell responses in giant cell arteritis. Circulation 121(7):906–915

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Labarca C, Koster MJ, Crowson CS, Makol A, Ytterberg SR, Matteson EL, Warrington KJ (2016) Predictors of relapse and treatment outcomes in biopsy-proven giant cell arteritis: a retrospective cohort study. Rheumatology (Oxford) 55(2):347–356

    Google Scholar 

  39. Muratore F, Kermani TA, Crowson CS, Green AB, Salvarani C, Matteson EL, Warrington KJ (2015) Large-vessel giant cell arteritis: a cohort study. Rheumatology (Oxford) 54(3):463–470

    Google Scholar 

  40. Corbera-Bellalta M, Planas-Rigol E, Lozano E, Terrades-Garcia N, Alba MA, Prieto-Gonzalez S, Garcia-Martinez A, Albero R, Enjuanes A, Espigol-Frigole G, Hernandez-Rodriguez J, Roux-Lombard P, Ferlin WG, Dayer JM, Kosco-Vilbois MH, Cid MC (2016) Blocking interferon gamma reduces expression of chemokines CXCL9, CXCL10 and CXCL11 and decreases macrophage infiltration in ex vivo cultured arteries from patients with giant cell arteritis. Ann Rheum Dis 75(6):1177–1186

    CAS  PubMed  Google Scholar 

  41. Shirai T, Hilhorst M, Harrison DG, Goronzy JJ, Weyand CM (2015) Macrophages in vascular inflammation--from atherosclerosis to vasculitis. Autoimmunity 48(3):139–151

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Salvarani C, Casali B, Nicoli D, Farnetti E, Macchioni P, Catanoso MG, Chen Q, Bajocchi G, Boiardi L (2003) Endothelial nitric oxide synthase gene polymorphisms in giant cell arteritis. Arthritis Rheum 48(11):3219–3223

    CAS  PubMed  Google Scholar 

  43. Enjuanes A, Benavente Y, Hernandez-Rodriguez J, Queralt C, Yague J, Jares P, de Sanjose S, Campo E, Cid MC (2012) Association of NOS2 and potential effect of VEGF, IL6, CCL2 and IL1RN polymorphisms and haplotypes on susceptibility to GCA--a simultaneous study of 130 potentially functional SNPs in 14 candidate genes. Rheumatology (Oxford) 51(5):841–851

    CAS  Google Scholar 

  44. Gonzalez-Gay MA, Oliver J, Sanchez E, Garcia-Porrua C, Paco L, Lopez-Nevot MA, Ollier WE, Martin J (2005) Association of a functional inducible nitric oxide synthase promoter variant with susceptibility to biopsy-proven giant cell arteritis. J Rheumatol 32(11):2178–2182

    CAS  PubMed  Google Scholar 

  45. Borkowski A, Younge BR, Szweda L, Mock B, Bjornsson J, Moeller K, Goronzy JJ, Weyand CM (2002) Reactive nitrogen intermediates in giant cell arteritis: selective nitration of neocapillaries. Am J Pathol 161(1):115–123

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Samson M, Audia S, Fraszczak J, Trad M, Ornetti P, Lakomy D, Ciudad M, Leguy V, Berthier S, Vinit J, Manckoundia P, Maillefert JF, Besancenot JF, Aho-Glele S, Olsson NO, Lorcerie B, Guillevin L, Mouthon L, Saas P, Bateman A, Martin L, Janikashvili N, Larmonier N, Bonnotte B (2012) Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum 64(11):3788–3798

    CAS  PubMed  Google Scholar 

  47. Weyand CM, Fulbright JW, Hunder GG, Evans JM, Goronzy JJ (2000) Treatment of giant cell arteritis: interleukin-6 as a biologic marker of disease activity. Arthritis Rheum 43(5):1041–1048

    CAS  PubMed  Google Scholar 

  48. Berger CT, Rebholz-Chaves B, Recher M, Manigold T, Daikeler T (2019) Serial IL-6 measurements in patients with tocilizumab-treated large-vessel vasculitis detect infections and may predict early relapses. Ann Rheum Dis 78(7):1012–1014

    PubMed  Google Scholar 

  49. Gloor AD, Yerly D, Adler S, Reichenbach S, Kuchen S, Seitz M, Villiger PM (2018) Immuno-monitoring reveals an extended subclinical disease activity in tocilizumab-treated giant cell arteritis. Rheumatology (Oxford) 57(10):1795–1801

    Google Scholar 

  50. Terrier B, Geri G, Chaara W, Allenbach Y, Rosenzwajg M, Costedoat-Chalumeau N, Fouret P, Musset L, Benveniste O, Six A, Klatzmann D, Saadoun D, Cacoub P (2012) Interleukin-21 modulates Th1 and Th17 responses in giant cell arteritis. Arthritis Rheum 64(6):2001–2011

    CAS  PubMed  Google Scholar 

  51. Pulsatelli L, Boiardi L, Assirelli E, Pazzola G, Muratore F, Addimanda O, Dolzani P, Versari A, Casali M, Magnani L, Pignotti E, Pipitone N, Croci S, Meliconi R, Salvarani C (2017) Interleukin-6 and soluble interleukin-6 receptor are elevated in large-vessel vasculitis: a cross-sectional and longitudinal study. Clin Exp Rheumatol 35 Suppl 103(1):102–110

    PubMed  Google Scholar 

  52. Kong X, Sun Y, Ma L, Chen H, Wei L, Wu W, Ji Z, Ma L, Zhang Z, Zhang Z, Zhao Z, Hou J, Dai S, Yang C, Jiang L (2016) The critical role of IL-6 in the pathogenesis of Takayasu arteritis. Clin Exp Rheumatol 34(3 Suppl 97):S21–S27

    PubMed  Google Scholar 

  53. Chauhan SK, Tripathy NK, Sinha N, Nityanand S (2006) T-cell receptor repertoire of circulating gamma delta T-cells in Takayasu’s arteritis. Clin Immunol 118(2-3):243–249

    CAS  PubMed  Google Scholar 

  54. Saadoun D, Garrido M, Comarmond C, Desbois AC, Domont F, Savey L, Terrier B, Geri G, Rosenzwajg M, Klatzmann D, Fourret P, Cluzel P, Chiche L, Gaudric J, Koskas F, Cacoub P (2015) Th1 and Th17 cytokines drive inflammation in Takayasu arteritis. Arthritis Rheumatol 67(5):1353–1360

    CAS  PubMed  Google Scholar 

  55. Chapelon-Abric C, Saadoun D, Marie I, Comarmond C, Desbois AC, Domont F, Savey L, Cacoub P (2017) Sarcoidosis with Takayasu arteritis: a model of overlapping granulomatosis A report of seven cases and literature review. Int J Rheum Dis. https://doi.org/10.1111/1756-185X.13137

    PubMed  Google Scholar 

  56. Gravanis MB (2000) Giant cell arteritis and Takayasu aortitis: morphologic, pathogenetic and etiologic factors. Int J Cardiol 75(Suppl 1):S21–S33 discussion S5-6

    PubMed  Google Scholar 

  57. Goel R, Kabeerdoss J, Ram B, Prakash JA, Babji S, Nair A, Jeyaseelan L, Jeyaseelan V, Mathew J, Balaji V, Joseph G, Danda D (2017) Serum cytokine profile in Asian Indian patients with Takayasu arteritis and its association with disease activity. Open Rheumatol J 11:23–29

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tripathy NK, Chauhan SK, Nityanand S (2004) Cytokine mRNA repertoire of peripheral blood mononuclear cells in Takayasu’s arteritis. Clin Exp Immunol 138(2):369–374

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ferfar Y, Mirault T, Desbois AC, Comarmond C, Messas E, Savey L, Domont F, Cacoub P, Saadoun D (2016) Biotherapies in large vessel vasculitis. Autoimmun Rev 15(6):544–551

    CAS  PubMed  Google Scholar 

  60. Bienvenu B, Ly KH, Lambert M, Agard C, Andre M, Benhamou Y, Bonnotte B, de Boysson H, Espitia O, Fau G, Fauchais AL, Galateau-Salle F, Haroche J, Heron E, Lapebie FX, Liozon E, Luong Nguyen LB, Magnant J, Manrique A, Matt M, de Menthon M, Mouthon L, Puechal X, Pugnet G, Quemeneur T, Regent A, Saadoun D, Samson M, Sene D, Smets P, Yelnik C, Sailler L, Mahr A, Groupe d’Etude Francais des Arterites des gros Vaisseaux utAotFdMA-IeA-IR (2016) Management of giant cell arteritis: recommendations of the French Study Group for Large Vessel Vasculitis (GEFA). Rev Med Int 37(3):154–165

    CAS  Google Scholar 

  61. Matteson EL, Buttgereit F, Dejaco C, Dasgupta B (2016) Glucocorticoids for management of polymyalgia rheumatica and giant cell arteritis. Rheum Dis Clin N Am 42(1):75–90, viii

    Google Scholar 

  62. Weyand CM, Younge BR, Goronzy JJ (2011) IFN-gamma and IL-17: the two faces of T-cell pathology in giant cell arteritis. Curr Opin Rheumatol 23(1):43–49

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Restuccia G, Boiardi L, Cavazza A, Catanoso M, Macchioni P, Muratore F, Cimino L, Aldigeri R, Crescentini F, Pipitone N, Salvarani C (2016) Flares in biopsy-proven giant cell arteritis in Northern Italy: characteristics and predictors in a long-term follow-up study. Medicine. 95(19):e3524

    PubMed  PubMed Central  Google Scholar 

  64. Nakagomi D, Jayne D (2016) Outcome assessment in Takayasu arteritis. Rheumatology (Oxford) 55(7):1159–1171

    Google Scholar 

  65. Aydin SZ, Merkel PA, Direskeneli H (2015) Outcome measures for Takayasu’s arteritis. Curr Opin Rheumatol 27(1):32–37

    CAS  PubMed  Google Scholar 

  66. Dejaco C, Ramiro S, Duftner C, Besson FL, Bley TA, Blockmans D, Brouwer E, Cimmino MA, Clark E, Dasgupta B, Diamantopoulos AP, Direskeneli H, Iagnocco A, Klink T, Neill L, Ponte C, Salvarani C, Slart R, Whitlock M, Schmidt WA (2018) EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis 77(5):636–643

    PubMed  Google Scholar 

  67. Loricera J, Blanco R, Hernandez JL, Carril JM, Martinez-Rodriguez I, Canga A, Peiro E, Alonso-Gutierrez J, Calvo-Rio V, Ortiz-Sanjuan F, Mata C, Pina T, Gonzalez-Vela MC, Martinez-Amador N, Gonzalez-Gay MA (2015) Non-infectious aortitis: a report of 32 cases from a single tertiary centre in a 4-year period and literature review. Clin Exp Rheumatol 33(2 Suppl 89):S-19-31

    PubMed  Google Scholar 

  68. Vanoli M, Daina E, Salvarani C, Sabbadini MG, Rossi C, Bacchiani G, Schieppati A, Baldissera E, Bertolini G, Itaka Study G (2005) Takayasu’s arteritis: a study of 104 Italian patients. Arthritis Rheum 53(1):100–107

    CAS  PubMed  Google Scholar 

  69. Marie I, Proux A, Duhaut P, Primard E, Lahaxe L, Girszyn N, Louvel JP, Levesque H (2009) Long-term follow-up of aortic involvement in giant cell arteritis: a series of 48 patients. Medicine 88(3):182–192

    PubMed  Google Scholar 

  70. Houthuizen P, Polak PE, Edelbroek MA, Peels CH (2009) Giant cell arteritis as a cardiovascular entity. Neth Heart J 17(7-8):281–283

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nuenninghoff DM, Matteson EL (2003) The role of disease-modifying antirheumatic drugs in the treatment of giant cell arteritis. Clin Exp Rheumatol 21(6 Suppl 32):S29–S34

    CAS  PubMed  Google Scholar 

  72. Schmidt WA (2013) Imaging in vasculitis. Best Pract Res Clin Rheumatol 27(1):107–118

    PubMed  Google Scholar 

  73. Germano G, Monti S, Ponte C, Possemato N, Caporali R, Salvarani C, Macchioni P, Pipitone N (2017) The role of ultrasound in the diagnosis and follow-up of large-vessel vasculitis: an update. Clin Exp Rheumatol 103:194–198

    Google Scholar 

  74. Berger CT, Sommer G, Aschwanden M, Staub D, Rottenburger C, Daikeler T (2018) The clinical benefit of imaging in the diagnosis and treatment of giant cell arteritis. Swiss Med Wkly 148:w14661

    PubMed  Google Scholar 

  75. Jiemy WF, Heeringa P, Kamps J, van der Laken CJ, Slart R, Brouwer E (2018) Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of macrophages in large vessel vasculitis: current status and future prospects. Autoimmun Rev 17(7):715–726

    PubMed  Google Scholar 

  76. Brkic A, Terslev L, Moller Dohn U, Torp-Pedersen S, Schmidt WA, Diamantopoulos AP (2019) Clinical applicability of ultrasound in systemic large vessel vasculitides. Arthritis Rheumatol. https://doi.org/10.1002/art.41039

    Google Scholar 

  77. Blockmans D (2012) Diagnosis and extension of giant cell arteritis. Contribution of imaging techniques. Presse Med 41(10):948–954

    PubMed  Google Scholar 

  78. Pletcher MJ, Pignone M (2011) Evaluating the clinical utility of a biomarker: a review of methods for estimating health impact. Circulation 123(10):1116–1124

    PubMed  PubMed Central  Google Scholar 

  79. Suzuki T, Bossone E, Sawaki D, Janosi RA, Erbel R, Eagle K, Nagai R (2013) Biomarkers of aortic diseases. Am Heart J 165(1):15–25

    CAS  PubMed  Google Scholar 

  80. Monach PA (2014) Biomarkers in vasculitis. Curr Opin Rheumatol 26(1):24–30

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Olthof SC, Krumm P, Henes J, Nikolaou K, la Fougere C, Pfannenberg C, Schwenzer N (2018) Imaging giant cell arteritis and aortitis in contrast enhanced 18F-FDG PET/CT: which imaging score correlates best with laboratory inflammation markers? Eur J Radiol 99:94–102

    PubMed  Google Scholar 

  82. Salvarani C, Cantini F, Boiardi L, Hunder GG (2003) Laboratory investigations useful in giant cell arteritis and Takayasu’s arteritis. Clin Exp Rheumatol 21(6 Suppl 32):S23–S28

    CAS  PubMed  Google Scholar 

  83. Hoffman GS, Ahmed AE (1998) Surrogate markers of disease activity in patients with Takayasu arteritis. A preliminary report from The International Network for the Study of the Systemic Vasculitides (INSSYS). Int J Cardiol 66(Suppl 1):S191–S194 discussion S5

    PubMed  Google Scholar 

  84. O’Connor TE, Carpenter HE, Bidari S, Waters MF, Hedna VS (2014) Role of inflammatory markers in Takayasu arteritis disease monitoring. BMC Neurol 14:62

    PubMed  PubMed Central  Google Scholar 

  85. Kerr GS, Hallahan CW, Giordano J, Leavitt RY, Fauci AS, Rottem M, Hoffman GS (1994) Takayasu arteritis. Ann Intern Med 120(11):919–929

    CAS  PubMed  Google Scholar 

  86. O'Neill L, Rooney P, Molloy D, Connolly M, McCormick J, McCarthy G, Veale DJ, Murphy CC, Fearon U, Molloy E (2015) Regulation of inflammation and angiogenesis in giant cell arteritis by acute-phase serum amyloid A. Arthritis Rheumatol 67(9):2447–2456

    CAS  PubMed  Google Scholar 

  87. Hachulla E, Saile R, Parra HJ, Hatron PY, Gosset D, Fruchart JC, Devulder B (1991) Serum amyloid A concentrations in giant-cell arteritis and polymyalgia rheumatica: a useful test in the management of the disease. Clin Exp Rheumatol 9(2):157–163

    CAS  PubMed  Google Scholar 

  88. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17(2):97–111

    CAS  PubMed  Google Scholar 

  89. Liu M, Liu X, Ren P, Li J, Chai Y, Zheng SJ, Chen Y, Duan ZP, Li N, Zhang JY (2014) A cancer-related protein 14-3-3zeta is a potential tumor-associated antigen in immunodiagnosis of hepatocellular carcinoma. Tumour Biol 35(5):4247–4256

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Maksymowych WP, Boire G, van Schaardenburg D, Wichuk S, Turk S, Boers M, Siminovitch KA, Bykerk V, Keystone E, Tak PP, van Kuijk AW, Landewe R, van der Heijde D, Murphy M, Marotta A (2015) 14-3-3eta autoantibodies: diagnostic use in early rheumatoid arthritis. J Rheumatol 42(9):1587–1594

    CAS  PubMed  Google Scholar 

  91. Funami K, Matsumoto M, Obuse C, Seya T (2016) 14-3-3-zeta participates in TLR3-mediated TICAM-1 signal-platform formation. Mol Immunol 73:60–68

    CAS  PubMed  Google Scholar 

  92. Schuster TB, Costina V, Findeisen P, Neumaier M, Ahmad-Nejad P (2011) Identification and functional characterization of 14-3-3 in TLR2 signaling. J Proteome Res 10(10):4661–4670

    CAS  PubMed  Google Scholar 

  93. Rodriguez-Pla A, Martinez-Murillo F, Savino PJ, Eagle RC Jr, Seo P, Soloski MJ (2009) MMP-12, a novel matrix metalloproteinase associated with giant cell arteritis. Rheumatology (Oxford) 48(11):1460–1461

    Google Scholar 

  94. O’Connell D, Bouazza B, Kokalari B, Amrani Y, Khatib A, Ganther JD, Tliba O (2015) IFN-gamma-induced JAK/STAT, but not NF-kappaB, signaling pathway is insensitive to glucocorticoid in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 309(4):L348–L359

    PubMed  PubMed Central  Google Scholar 

  95. Serra R, Butrico L, Fugetto F, Chibireva MD, Malva A, De Caridi G, Massara M, Barbetta A, Cannistra M, de Franciscis S (2016) Updates in pathophysiology, diagnosis and management of Takayasu arteritis. Ann Vasc Surg 35:210–225

    PubMed  Google Scholar 

  96. Pointer CB, Wenzel TJ, Klegeris A (2019) Extracellular cardiolipin regulates select immune functions of microglia and microglia-like cells. Brain Res Bull 146:153–163

    CAS  PubMed  Google Scholar 

  97. Park MC, Lee SW, Park YB, Lee SK (2006) Serum cytokine profiles and their correlations with disease activity in Takayasu’s arteritis. Rheumatology (Oxford) 45(5):545–548

    CAS  PubMed  Google Scholar 

  98. Tamura N, Maejima Y, Tezuka D, Takamura C, Yoshikawa S, Ashikaga T, Hirao K, Isobe M (2017) Profiles of serum cytokine levels in Takayasu arteritis patients: potential utility as biomarkers for monitoring disease activity. J Cardiol 70(3):278–285

    PubMed  Google Scholar 

  99. Alibaz-Oner F, Yentur SP, Saruhan-Direskeneli G, Direskeneli H (2015) Serum cytokine profiles in Takayasu’s arteritis: search for biomarkers. Clin Exp Rheumatol 33(2 Suppl 89):S-32-5

    PubMed  Google Scholar 

  100. van der Geest KS, Abdulahad WH, Rutgers A, Horst G, Bijzet J, Arends S, Roffel MP, Boots AM, Brouwer E (2015) Serum markers associated with disease activity in giant cell arteritis and polymyalgia rheumatica. Rheumatology (Oxford) 54(8):1397–1402

    Google Scholar 

  101. Roche NE, Fulbright JW, Wagner AD, Hunder GG, Goronzy JJ, Weyand CM (1993) Correlation of interleukin-6 production and disease activity in polymyalgia rheumatica and giant cell arteritis. Arthritis Rheum 36(9):1286–1294

    CAS  PubMed  Google Scholar 

  102. Dasgupta B, Panayi GS (1990) Interleukin-6 in serum of patients with polymyalgia rheumatica and giant cell arteritis. Br J Rheumatol 29(6):456–458

    CAS  PubMed  Google Scholar 

  103. Marquez A, Hernandez-Rodriguez J, Cid MC, Solans R, Castaneda S, Fernandez-Contreras ME, Ramentol M, Morado IC, Narvaez J, Gomez-Vaquero C, Martinez-Taboada VM, Ortego-Centeno N, Sopena B, Monfort J, Garcia-Villanueva MJ, Caminal-Montero L, de Miguel E, Blanco R, Spanish GCAC, Palm O, Molberg O, Latus J, Braun N, Moosig F, Witte T, Beretta L, Santaniello A, Pazzola G, Boiardi L, Salvarani C, Gonzalez-Gay MA, Martin J (2014) Influence of the IL17A locus in giant cell arteritis susceptibility. Ann Rheum Dis 73(9):1742–1745

    CAS  PubMed  Google Scholar 

  104. Carmona FD, Coit P, Saruhan-Direskeneli G, Hernandez-Rodriguez J, Cid MC, Solans R, Castaneda S, Vaglio A, Direskeneli H, Merkel PA, Boiardi L, Salvarani C, Gonzalez-Gay MA, Martin J, Sawalha AH, Spanish GCASG, Italian GCASG, Turkish Takayasu Study G, Vasculitis Clinical Research C (2017) Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy. Sci Rep 7:43953

    PubMed  PubMed Central  Google Scholar 

  105. Palomino-Morales RJ, Vazquez-Rodriguez TR, Torres O, Morado IC, Castaneda S, Miranda-Filloy JA, Callejas-Rubio JL, Fernandez-Gutierrez B, Gonzalez-Gay MA, Martin J (2010) Association between IL-18 gene polymorphisms and biopsy-proven giant cell arteritis. Arthritis Res Ther 12(2):R51

    PubMed  PubMed Central  Google Scholar 

  106. Ahn JK, Seo JM, Yu J, Oh FS, Chung H, Yu HG (2005) Down-regulation of IFN-gamma-producing CD56+ T cells after combined low-dose cyclosporine/prednisone treatment in patients with Behcet’s uveitis. Invest Ophthalmol Vis Sci 46(7):2458–2464

    PubMed  Google Scholar 

  107. Tulunay A, Dozmorov MG, Ture-Ozdemir F, Yilmaz V, Eksioglu-Demiralp E, Alibaz-Oner F, Ozen G, Wren JD, Saruhan-Direskeneli G, Sawalha AH, Direskeneli H (2015) Activation of the JAK/STAT pathway in Behcet’s disease. Genes Immun 16(2):170–175

    CAS  PubMed  Google Scholar 

  108. Torres O, Palomino-Morales R, Vazquez-Rodriguez T, Castaneda S, Morado IC, Miranda-Filloy JA, Amigo-Diaz E, Callejas-Rubio JL, Fernandez-Gutierrez B, Martin J, Gonzalez-Gay MA (2010) Lack of association between IFNGR1 gene polymorphisms and biopsy-proven giant cell arteritis. Clin Exp Rheumatol 28(1 Suppl 57):31–34

    PubMed  Google Scholar 

  109. Dogan S, Piskin O, Solmaz D, Akar S, Gulcu A, Yuksel F, Cakir V, Sari I, Akkoc N, Onen F (2014) Markers of endothelial damage and repair in Takayasu arteritis: are they associated with disease activity? Rheumatol Int 34(8):1129–1138

    CAS  PubMed  Google Scholar 

  110. Goodfellow N, Morlet J, Singh S, Sabokbar A, Hutchings A, Sharma V, Vaskova J, Masters S, Zarei A, Luqmani R (2017) Is vascular endothelial growth factor a useful biomarker in giant cell arteritis? RMD Open 3(1):e000353

    PubMed  PubMed Central  Google Scholar 

  111. Ishihara T, Haraguchi G, Tezuka D, Kamiishi T, Inagaki H, Isobe M (2013) Diagnosis and assessment of Takayasu arteritis by multiple biomarkers. Circ J 77(2):477–483

    CAS  PubMed  Google Scholar 

  112. Sun Y, Ma L, Yan F, Liu H, Ding Y, Hou J, Jiang L (2012) MMP-9 and IL-6 are potential biomarkers for disease activity in Takayasu’s arteritis. Int J Cardiol 156(2):236–238

    PubMed  Google Scholar 

  113. Matsuyama A, Sakai N, Ishigami M, Hiraoka H, Kashine S, Hirata A, Nakamura T, Yamashita S, Matsuzawa Y (2003) Matrix metalloproteinases as novel disease markers in Takayasu arteritis. Circulation. 108(12):1469–1473

    CAS  PubMed  Google Scholar 

  114. Liu Q, Dang A, Chen B, Lv N, Wang X, Zheng D (2014) Function of N-terminal pro-brain natriuretic peptide in Takayasu arteritis disease monitoring. J Rheumatol 41(8):1683–1688

    CAS  PubMed  Google Scholar 

  115. Lozano E, Segarra M, Corbera-Bellalta M, Garcia-Martinez A, Espigol-Frigole G, Pla-Campo A, Hernandez-Rodriguez J, Cid MC (2010) Increased expression of the endothelin system in arterial lesions from patients with giant-cell arteritis: association between elevated plasma endothelin levels and the development of ischaemic events. Ann Rheum Dis 69(2):434–442

    CAS  PubMed  Google Scholar 

  116. Crowther M, Goodall S, Jones JL, Bell PR, Thompson MM (2000) Localization of matrix metalloproteinase 2 within the aneurysmal and normal aortic wall. Br J Surg 87(10):1391–1400

    CAS  PubMed  Google Scholar 

  117. Johnatty RN, Taub DD, Reeder SP, Turcovski-Corrales SM, Cottam DW, Stephenson TJ, Rees RC (1997) Cytokine and chemokine regulation of proMMP-9 and TIMP-1 production by human peripheral blood lymphocytes. J Immunol 158(5):2327–2333

    CAS  PubMed  Google Scholar 

  118. Fukui S, Nunokawa T, Kobayashi S, Kamei S, Yokogawa N, Takizawa Y, Shimada K, Sugii S, Setoguchi K (2016) MMP-3 can distinguish isolated PMR from PMR with GCA: A retrospective study regarding PMR and GCA in Japan. Mod Rheumatol 26(2):259–264

    CAS  PubMed  Google Scholar 

  119. Rodriguez-Pla A, Bosch-Gil JA, Rossello-Urgell J, Huguet-Redecilla P, Stone JH, Vilardell-Tarres M (2005) Metalloproteinase-2 and -9 in giant cell arteritis: involvement in vascular remodeling. Circulation 112(2):264–269

    CAS  PubMed  Google Scholar 

  120. Ishihara T, Haraguchi G, Kamiishi T, Tezuka D, Inagaki H, Isobe M (2011) Sensitive assessment of activity of Takayasu’s arteritis by pentraxin3, a new biomarker. J Am Coll Cardiol 57(16):1712–1713

    PubMed  Google Scholar 

  121. Norata GD, Marchesi P, Pulakazhi Venu VK, Pasqualini F, Anselmo A, Moalli F, Pizzitola I, Garlanda C, Mantovani A, Catapano AL (2009) Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis. Circulation 120(8):699–708

    CAS  PubMed  Google Scholar 

  122. Dagna L, Salvo F, Tiraboschi M, Bozzolo EP, Franchini S, Doglioni C, Manfredi AA, Baldissera E, Sabbadini MG (2011) Pentraxin-3 as a marker of disease activity in Takayasu arteritis. Ann Intern Med 155(7):425–433

    PubMed  Google Scholar 

  123. Iwagaitsu S, Naniwa T (2017) Improvement of arterial wall lesions in parallel with decrease of plasma pentraxin-3 levels in a patient with refractory Takayasu arteritis after treatment with tocilizumab. Case Rep Rheumatol 2017:4580967

    PubMed  PubMed Central  Google Scholar 

  124. Tombetti E, Di Chio MC, Sartorelli S, Papa M, Salerno A, Bottazzi B, Bozzolo EP, Greco M, Rovere-Querini P, Baldissera E, Del Maschio A, Mantovani A, De Cobelli F, Sabbadini MG, Manfredi AA (2014) Systemic pentraxin-3 levels reflect vascular enhancement and progression in Takayasu arteritis. Arthritis Res Ther 16(6):479

    PubMed  PubMed Central  Google Scholar 

  125. Alibaz-Oner F, Aksu K, Yentur SP, Keser G, Saruhan-Direskeneli G, Direskeneli H (2016) Plasma pentraxin-3 levels in patients with Takayasu’s arteritis during routine follow-up. Clin Exp Rheumatol 34(3 Suppl 97):S73–S76

    PubMed  Google Scholar 

  126. Mahadavan G, Nguyen TH, Horowitz JD (2014) Brain natriuretic peptide: a biomarker for all cardiac disease? Curr Opin Cardiol 29(2):160–166

    PubMed  Google Scholar 

  127. Planas-Rigol E, Terrades-Garcia N, Corbera-Bellalta M, Lozano E, Alba MA, Segarra M, Espigol-Frigole G, Prieto-Gonzalez S, Hernandez-Rodriguez J, Preciado S, Lavilla R, Cid MC (2017) Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis. Ann Rheum Dis 76(9):1624–1634

    PubMed  Google Scholar 

  128. Direskeneli H, Aydin SZ, Kermani TA, Matteson EL, Boers M, Herlyn K, Luqmani RA, Neogi T, Seo P, Suppiah R, Tomasson G, Merkel PA (2011) Development of outcome measures for large-vessel vasculitis for use in clinical trials: opportunities, challenges, and research agenda. J Rheumatol 38(7):1471–1479

    PubMed  PubMed Central  Google Scholar 

  129. Nakagomi D, Cousins C, Sznajd J, Furuta S, Mohammad AJ, Luqmani R, Jayne D (2017) Development of a score for assessment of radiologic damage in large-vessel vasculitis (Combined Arteritis Damage Score, CARDS). Clin Exp Rheumatol 35 Suppl 103(1):139–145

    PubMed  Google Scholar 

  130. Grosse K, Witte T, Moosig F, Hoyer BF, Lansche C, Schmidt RE, Baerlecken NT (2014) Association of ferritin antibodies with Takayasu arteritis. Clin Rheumatol 33(10):1523–1526

    CAS  PubMed  Google Scholar 

  131. Regent A, Dib H, Ly KH, Agard C, Tamby MC, Tamas N, Weksler B, Federici C, Broussard C, Guillevin L, Mouthon L (2011) Identification of target antigens of anti-endothelial cell and anti-vascular smooth muscle cell antibodies in patients with giant cell arteritis: a proteomic approach. Arthritis Res Ther 13(3):R107

    PubMed  PubMed Central  Google Scholar 

  132. Lopez-Hoyos M, Alvarez L, Ruiz Soto M, Blanco R, Jose Bartolome M, Martinez-Taboada VM (2008) Serum levels of antibodies to Chlamydia pneumoniae and human HSP60 in giant cell arteritis patients. Clin Exp Rheumatol 26(6):1107–1110

    CAS  PubMed  Google Scholar 

  133. Weyand CM, Goronzy JJ (1995) Giant cell arteritis as an antigen-driven disease. Rheum Dis Clin N Am 21(4):1027–1039

    CAS  Google Scholar 

  134. Gilden D, White T, Khmeleva N, Katz BJ, Nagel MA (2016) Blinded search for varicella zoster virus in giant cell arteritis (GCA)-positive and GCA-negative temporal arteries. J Neurol Sci 364:141–143

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gillot JM, Masy E, Davril M, Hachulla E, Hatron PY, Devulder B, Dessaint JP (1997) Elastase derived elastin peptides: putative autoimmune targets in giant cell arteritis. J Rheumatol 24(4):677–682

    CAS  PubMed  Google Scholar 

  136. Dovrat S, Caspi M, Zilberberg A, Lahav L, Firsow A, Gur H, Rosin-Arbesfeld R (2014) 14-3-3 and beta-catenin are secreted on extracellular vesicles to activate the oncogenic Wnt pathway. Mol Oncol 8(5):894–911

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Fleming SD, Tsokos GC (2006) Complement, natural antibodies, autoantibodies and tissue injury. Autoimmun Rev 5(2):89–92

    CAS  PubMed  Google Scholar 

  138. Nowling TK, Gilkeson GS (2011) Mechanisms of tissue injury in lupus nephritis. Arthritis Res Ther 13(6):250

    PubMed  PubMed Central  Google Scholar 

  139. Vargas ME, Watanabe J, Singh SJ, Robinson WH, Barres BA (2010) Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc Natl Acad Sci U S A 107(26):11993–11998

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Caja S, Maki M, Kaukinen K, Lindfors K (2011) Antibodies in celiac disease: implications beyond diagnostics. Cell Mol Immunol 8(2):103–109

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Elkon K, Casali P (2008) Nature and functions of autoantibodies. Nat Clin Pract Rheumatol 4(9):491–498

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Graver JC, Boots AMH, Haacke EA, Diepstra A, Brouwer E, Sandovici M (2019) Massive B-Cell infiltration and organization into artery tertiary lymphoid organs in the aorta of large vessel giant cell arteritis. Front Immunol 10:83

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hoyer BF, Mumtaz IM, Loddenkemper K, Bruns A, Sengler C, Hermann KG, Maza S, Keitzer R, Burmester GR, Buttgereit F, Radbruch A, Hiepe F (2012) Takayasu arteritis is characterised by disturbances of B cell homeostasis and responds to B cell depletion therapy with rituximab. Ann Rheum Dis 71(1):75–79

    CAS  PubMed  Google Scholar 

  144. McGowan JE, Kratch J, Chattopadhyay S, Joe B, Conti HR, Chakravarti R (2017) Bioinformatic analysis reveals new determinants of antigenic 14-3-3 proteins and a novel antifungal strategy. PLoS One 12(12):e0189503

    PubMed  PubMed Central  Google Scholar 

  145. Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV (2010) Serum ferritin: past, present and future. Biochim Biophys Acta 1800(8):760–769

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Pagnoux C, Cohen P, Guillevin L (2006) Vasculitides secondary to infections. Clin Exp Rheumatol 24(2 Suppl 41):S71–S81 Epub 2006/07/25

    CAS  PubMed  Google Scholar 

  147. Helweg-Larsen J, Tarp B, Obel N, Baslund B (2002) No evidence of parvovirus B19, Chlamydia pneumoniae or human herpes virus infection in temporal artery biopsies in patients with giant cell arteritis. Rheumatology (Oxford) 41(4):445–449

    CAS  Google Scholar 

  148. Gilden D, White T, Khmeleva N, Heintzman A, Choe A, Boyer PJ, Grose C, Carpenter JE, Rempel A, Bos N, Kandasamy B, Lear-Kaul K, Holmes DB, Bennett JL, Cohrs RJ, Mahalingam R, Mandava N, Eberhart CG, Bockelman B, Poppiti RJ, Tamhankar MA, Fogt F, Amato M, Wood E, Durairaj V, Rasmussen S, Petursdottir V, Pollak L, Mendlovic S, Chatelain D, Keyvani K, Brueck W, Nagel MA (2015) Prevalence and distribution of VZV in temporal arteries of patients with giant cell arteritis. Neurology 84(19):1948–1955

    PubMed  PubMed Central  Google Scholar 

  149. Muratore F, Croci S, Tamagnini I, Zerbini A, Bellafiore S, Belloni L, Boiardi L, Bisagni A, Pipitone N, Parmeggiani M, Cavazza A, Salvarani C (2017) No detection of varicella-zoster virus in temporal arteries of patients with giant cell arteritis. Semin Arthritis Rheum. https://doi.org/10.1016/j.semarthrit.2017.02.005

    PubMed  Google Scholar 

  150. Russo MG, Waxman J, Abdoh AA, Serebro LH (1995) Correlation between infection and the onset of the giant cell (temporal) arteritis syndrome. A trigger mechanism? Arthritis Rheum 38(3):374–380

    CAS  PubMed  Google Scholar 

  151. Manna R, Latteri M, Cristiano G, Todaro L, Scuderi F, Gasbarrini G (1998) Anticardiolipin antibodies in giant cell arteritis and polymyalgia rheumatica: a study of 40 cases. Br J Rheumatol 37(2):208–210

    CAS  PubMed  Google Scholar 

  152. Arora P, Malik M, Sachdeva R, Saxena L, Das J, Ramachandran VG, Pal R (2017) Innate and humoral recognition of the products of cell death: differential antigenicity and immunogenicity in lupus. Clin Exp Immunol 187(3):353–368

    CAS  PubMed  Google Scholar 

  153. Kaplan A, Bueno M, Fournier AE (2017) Extracellular functions of 14-3-3 adaptor proteins. Cell Signal 31:26–30

    CAS  PubMed  Google Scholar 

  154. McGowan J, Peter C, Chattopadhyay S, Chakravarti R (2019) 14-3-3zeta: a novel immunogen promotes inflammatory cytokine production. Front Immunol. https://doi.org/10.3389/fimmu.2019.01553

  155. Ma J, Luo X, Wu Q, Chen Z, Kou L, Wang H (2010) Circulation levels of acute phase proteins in patients with Takayasu arteritis. J Vasc Surg. 201051 (3):700-6. Epub 2010/01/27. PubMed PMID: 20100644 https://doi.org/10.1016/j.jvs.2009.09.038

    PubMed  Google Scholar 

Download references

Funding

We thank the American Heart Association (15SDG2308025) and UT startup funds for their financial support to Dr. Ritu Chakravarti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Chakravarti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhuri, B., ELJack, A., Kahaleh, B. et al. Mechanism and biomarkers in aortitis––a review. J Mol Med 98, 11–23 (2020). https://doi.org/10.1007/s00109-019-01838-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01838-1

Keywords

Navigation