Skip to main content
Log in

Molecular mechanisms underlying the onset of degenerative aortic valve disease

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Morbidity from degenerative aortic valve disease is increasing worldwide, concomitant with the ageing of the general population and the habitual consumption of diets high in calories and cholesterol. Immunohistologic studies have suggested that the molecular mechanism occurring in the degenerate aortic valve resembles that of atherosclerosis, prompting the testing of HMG CoA reductase inhibitors (statins) for the prevention of progression of native and bioprosthetic aortic valve degeneration. However, the effects of these therapies remain controversial. Although the molecular mechanisms underlying the onset of aortic valve degeneration are largely unknown, research in this area is advancing rapidly. The signaling components involved in embryonic valvulogenesis, such as Wnt, TGF-β1, BMP, and Notch, are also involved in the onset of aortic valve degeneration. Furthermore, investigations into extracellular matrix remodeling, angiogenesis, and osteogenesis in the aortic valve have been reported. Having noted avascularity of normal cardiac valves, we recently identified chondromodulin-I (chm-I) as a crucial anti-angiogenic factor. The expression of chm-I is restricted to cardiac valves from late embryogenesis to adulthood in the mouse, rat, and human. In human degenerate atherosclerotic valves, the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases and angiogenesis is observed in the area of chm-I downregulation. Gene targeting of chm-I resulted in VEGF expression, angiogenesis, and calcification in the aortic valves of aged mice, and aortic stenosis is detected by echocardiography, indicating that chm-I is a crucial factor for maintaining normal cardiac valvular function by preventing angiogenesis. The present review focuses on the animal models of aortic valve degeneration and recent studies on the molecular mechanisms underlying the onset of degenerative aortic valve disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Freeman RV, Otto CM (2005) Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 111:3316–3326

    Article  PubMed  Google Scholar 

  2. Mohler ER 3rd, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS (2001) Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528

    PubMed  Google Scholar 

  3. Rajamannan NM, Gersh B, Bonow RO (2003) Calcific aortic stenosis: from bench to the bedside—emerging clinical and cellular concepts. Heart 89:801–805

    Article  PubMed  Google Scholar 

  4. Rajamannan NM, Otto CM (2004) Targeted therapy to prevent progression of calcific aortic stenosis. Circulation 110:1180–1182

    Article  PubMed  Google Scholar 

  5. Osman L, Yacoub MH, Latif N, Amrani M, Chester AH (2006) Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation 114:I547–552

    Article  PubMed  Google Scholar 

  6. Rajamannan NM, Bonow RO, Rahimtoola SH (2007) Calcific aortic stenosis: an update. Nat Clin Pract Cardiovasc Med 4:254–262

    Article  PubMed  CAS  Google Scholar 

  7. Skowasch D, Steinmetz M, Nickenig G, Bauriedel G (2006) Is the degeneration of aortic valve bioprostheses similar to that of native aortic valves? Insights into valvular pathology. Expert Rev Med Devices 3:453–462

    Article  PubMed  Google Scholar 

  8. Maganti K, Rajamannan N (2008) Slowing the progression of aortic stenosis. Curr Treat Options Cardiovasc Med 10:18–26

    Article  PubMed  Google Scholar 

  9. Mohler ER 3rd, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS (2001) Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528

    PubMed  Google Scholar 

  10. Kim KM (1976) Calcification of matrix vesicles in human aortic valve and aortic media. Fed Proc 35:156–162

    PubMed  CAS  Google Scholar 

  11. Kim KM, Chang SH, Trump BF, Spurgeon H (1986) Calcification in aging canine aortic valve. Scan Electron Microsc 3:1151–1156

    Google Scholar 

  12. Ortolani F, Bonett A, Tubaro F, Petrelli L, Contin M, Nori SL, Spina M, Marchini M (2007) Ultrastructural characterization of calcification onset and progression in subdermally implanted aortic valves. Histochemical and spectrometric data. Histol Histopathol 22:261–272

    PubMed  CAS  Google Scholar 

  13. Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orszulak T, Fullerton DA, Tajik AJ, Bonow RO, Spelsberg T (2003) Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107:2181–2184

    Article  PubMed  Google Scholar 

  14. Lee YS, Chou YY (1998) Pathogenetic mechanism of senile calcific aortic stenosis: the role of apoptosis. Chin Med J (Engl) 111:934–939

    CAS  Google Scholar 

  15. Helske S, Kupari M, Lindstedt KA, Kovanen PT (2007) Aortic valve stenosis: an active atheroinflammatory process. Curr Opin Lipidol 18:483–491

    Article  PubMed  CAS  Google Scholar 

  16. Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, Weissleder R (2007) Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115:377–386

    Article  PubMed  CAS  Google Scholar 

  17. O'Brien KD (2006) Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arterioscler Thromb Vasc Biol 26:1721–1728

    Article  PubMed  CAS  Google Scholar 

  18. Hinton RB Jr., Lincoln J, Deutsch GH, Osinska H, Manning PB, Benson DW, Yutzey KE (2006) Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res 98:1431–1438

    Article  PubMed  CAS  Google Scholar 

  19. Rosenhek R, Rader F, Loho N, Gabriel H, Heger M, Klaar U, Schemper M, Binder T, Maurer G, Baumgartner H (2004) Statins but not angiotensin-converting enzyme inhibitors delay progression of aortic stenosis. Circulation 110:1291–1295

    Article  PubMed  CAS  Google Scholar 

  20. Rosenhek R (2005) Statins for aortic stenosis. N Engl J Med 352:2441–2443

    Article  PubMed  CAS  Google Scholar 

  21. Cowell SJ, Newby DE, Prescott RJ, Bloomfield P, Reid J, Northridge DB, Boon NA (2005) A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med 352:2389–2397

    Article  PubMed  CAS  Google Scholar 

  22. Antonini-Canterin F, Zuppiroli A, Popescu BA, Granata G, Cervesato E, Piazza R, Pavan D, Nicolosi GL (2003) Effect of statins on the progression of bioprosthetic aortic valve degeneration. Am J Cardiol 92:1479–1482

    Article  PubMed  CAS  Google Scholar 

  23. Colli A, Gherli T, Mestres CA, Pomar JL (2007) Degeneration of native and tissue prosthetic valve in aortic position: do statins play an effective role in prevention? Int J Cardiol 116:144–152

    Article  PubMed  Google Scholar 

  24. Rajamannan NM, Sangiorgi G, Springett M, Arnold K, Mohacsi T, Spagnoli LG, Edwards WD, Tajik AJ, Schwartz RS (2001) Experimental hypercholesterolemia induces apoptosis in the aortic valve. J Heart Valve Dis 10:371–374

    PubMed  CAS  Google Scholar 

  25. Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, Singh RJ, Stone NJ, Bonow RO, Spelsberg TC (2002) Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation 105:2660–2665

    Article  PubMed  CAS  Google Scholar 

  26. Drolet MC, Arsenault M, Couet J (2003) Experimental aortic valve stenosis in rabbits. J Am Coll Cardiol 41:1211–1217

    Article  PubMed  Google Scholar 

  27. Rajamannan NM, Subramaniam M, Caira F, Stock SR, Spelsberg TC (2005) Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the Lrp5 receptor pathway. Circulation 112:I229–234

    PubMed  Google Scholar 

  28. Guerraty M, Mohler ER 3rd (2007) Models of aortic valve calcification. J Investig Med 55:278–283

    Article  PubMed  Google Scholar 

  29. Tanaka K, Sata M, Fukuda D, Suematsu Y, Motomura N, Takamoto S, Hirata Y, Nagai R (2005) Age-associated aortic stenosis in apolipoprotein E-deficient mice. J Am Coll Cardiol 46:134–141

    Article  PubMed  CAS  Google Scholar 

  30. Drolet MC, Roussel E, Deshaie Y, Couet J, Arsenault M (2006) A high fat/high carbohydrate diet induces aortic valve disease in C57BL/6J mice. J Am Coll Cardiol 47:850–855

    Article  PubMed  CAS  Google Scholar 

  31. Jian B, Jones PL, Li Q, Mohler ER 3rd, Schoen FJ, Levy RJ (2001) Matrix metalloproteinase-2 is associated with tenascin-C in calcific aortic stenosis. Am J Pathol 159:321–327

    PubMed  CAS  Google Scholar 

  32. Mohler ER 3rd, Adam LP, McClelland P, Graham L, Hathaway DR (1997) Detection of osteopontin in calcified human aortic valves. Arterioscler Thromb Vasc Biol 17:547–552

    PubMed  Google Scholar 

  33. Steitz SA, Speer MY, McKee MD, Liaw L, Almeida M, Yang H, Giachelli CM (2002) Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol 161:2035–2046

    PubMed  CAS  Google Scholar 

  34. Ghazvini-Boroujerdi M, Clark J, Narula N, Palmatory E, Connolly JM, DeFelice S, Xu J, Jian B, Hazelwood S, Levy RJ (2004) Transcription factor Egr-1 in calcific aortic valve disease. J Heart Valve Dis 13:894–903

    PubMed  Google Scholar 

  35. Fondard O, Detaint D, Iung B, Choqueux C, Adle-Biassette H, Jarraya M, Hvass U, Couetil JP, Henin D, Michel JB, Vahanian A, Jacob MP (2005) Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur Heart J 26:1333–1341

    Article  PubMed  CAS  Google Scholar 

  36. Kaden JJ, Dempfle CE, Grobholz R, Fischer CS, Vocke DC, Kilic R, Sarikoc A, Pinol R, Hagl S, Lang S, Brueckmann M, Borggrefe M (2005) Inflammatory regulation of extracellular matrix remodeling in calcific aortic valve stenosis. Cardiovasc Pathol 14:80–87

    Article  PubMed  CAS  Google Scholar 

  37. Hanada K, Vermeij M, Garinis GA, de Waard MC, Kunen MG, Myers L, Maas A, Duncker DJ, Meijers C, Dietz HC, Kanaar R, Essers J (2007) Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice. Circ Res 100:738–746

    Article  PubMed  CAS  Google Scholar 

  38. Kyndt F, Gueffet JP, Probst V, Jaafar P, Legendre A, Le Bouffant F, Toquet C, Roy E, McGregor L, Lynch SA, Newbury-Ecob R, Tran V, Young I, Trochu JN, Le Marec H, Schott JJ (2007) Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation 115:40–49

    Article  PubMed  CAS  Google Scholar 

  39. Caira FC, Stock SR, Gleason TG, McGee EC, Huang J, Bonow RO, Spelsberg TC, McCarthy PM, Rahimtoola SH, Rajamannan NM (2006) Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol 47:1707–1712

    Article  PubMed  CAS  Google Scholar 

  40. Johnson ML, Rajamannan N (2006) Diseases of Wnt signaling. Rev Endocr Metab Disord 7:41–49

    Article  PubMed  CAS  Google Scholar 

  41. Walker GA, Masters KS, Shah DN, Anseth KS, Leinwand LA (2004) Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ Res 95:253–260

    Article  PubMed  CAS  Google Scholar 

  42. Mohler ER 3rd, Chawla MK, Chang AW, Vyavahare N, Levy RJ, Graham L, Gannon FH (1999) Identification and characterization of calcifying valve cells from human and canine aortic valves. J Heart Valve Dis 8:254–260

    PubMed  Google Scholar 

  43. Clark-Greuel JN, Connolly JM, Sorichillo E, Narula NR, Rapoport HS, Mohler ER 3rd, Gorman JH 3rd, Gorman RC, Levy RJ (2007) Transforming growth factor-beta1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events. Ann Thorac Surg 83:946–953

    Article  PubMed  Google Scholar 

  44. Kaden JJ, Bickelhaupt S, Grobholz R, Vahl CF, Hagl S, Brueckmann M, Haase KK, Dempfle CE, Borggrefe M (2004) Expression of bone sialoprotein and bone morphogenetic protein-2 in calcific aortic stenosis. J Heart Valve Dis 13:560–566

    PubMed  Google Scholar 

  45. Choi M, Stottmann RW, Yang YP, Meyers EN, Klingensmith J (2007) The bone morphogenetic protein antagonist noggin regulates mammalian cardiac morphogenesis. Circ Res 100:220–228

    Article  PubMed  CAS  Google Scholar 

  46. Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, Fairchild-Huntress V, Dixon KL, Dunmore JH, Gimbrone MA Jr., Falb D, Huszar D (2000) A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet 24:171–174

    Article  PubMed  CAS  Google Scholar 

  47. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18:99–115

    Article  PubMed  CAS  Google Scholar 

  48. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274

    Article  PubMed  CAS  Google Scholar 

  49. Garg V (2006) Molecular genetics of aortic valve disease. Curr Opin Cardiol 21:180–184

    Article  PubMed  Google Scholar 

  50. Mohamed SA, Aherrahrou Z, Liptau H, Erasmi AW, Hagemann C, Wrobel S, Borzym K, Schunkert H, Sievers HH, Erdmann J (2006) Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun 345:1460–1465

    Article  PubMed  CAS  Google Scholar 

  51. Lange AW, Yutzey KE (2006) NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K. Dev Biol 292:407–417

    Article  PubMed  CAS  Google Scholar 

  52. Kaden JJ, Bickelhaupt S, Grobholz R, Haase KK, Sarikoc A, Kilic R, Brueckmann M, Lang S, Zahn I, Vahl C, Hagl S, Dempfle CE, Borggrefe M (2004) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulate aortic valve calcification. J Mol Cell Cardiol 36:57–66

    Article  PubMed  CAS  Google Scholar 

  53. Kaden JJ, Dempfle CE, Kilic R, Sarikoc A, Hagl S, Lang S, Brueckmann M, Borggrefe M (2005) Influence of receptor activator of nuclear factor kappa B on human aortic valve myofibroblasts. Exp Mol Pathol 78:36–40

    Article  PubMed  CAS  Google Scholar 

  54. Osman L, Chester AH, Sarathchandra P, Latif N, Meng W, Taylor PM, Yacoub MH (2007) A novel role of the sympatho-adrenergic system in regulating valve calcification. Circulation 116:I282–287

    Article  PubMed  Google Scholar 

  55. Golubnitschaja O, Yeghiazaryan K, Skowasch D, Schild H, Bauriedel G (2006) p21WAF1/CIP1 and 14-3-3 sigma gene expression in degenerated aortic valves: a link between cell cycle checkpoints and calcification. Amino Acids 31:309–316

    Article  PubMed  CAS  Google Scholar 

  56. Yeghiazaryan K, Skowasch D, Bauriedel G, Schild H, Golubnitschaja O (2007) Could activated tissue remodeling be considered as early marker for progressive valve degeneration? Comparative analysis of checkpoint and ECM remodeling gene expression in native degenerating aortic valves and after bioprosthetic replacement. Amino Acids 32:109–114

    Article  PubMed  CAS  Google Scholar 

  57. Zanettini R, Antonini A, Gatto G, Gentile R, Tesei S, Pezzoli G (2007) Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med 356:39–46

    Article  PubMed  CAS  Google Scholar 

  58. Schade R, Andersohn F, Suissa S, Haverkamp W, Garbe E (2007) Dopamine agonists and the risk of cardiac-valve regurgitation. N Engl J Med 356:29–38

    Article  PubMed  CAS  Google Scholar 

  59. Fitzgerald LW, Burn TC, Brown BS, Patterson JP, Corjay MH, Valentine PA, Sun JH, Link JR, Abbaszade I, Hollis JM, Largent BL, Hartig PR, Hollis GF, Meunier PC, Robichaud AJ, Robertson DW (2000) Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol 57:75–81

    PubMed  CAS  Google Scholar 

  60. Roth BL (2007) Drugs and valvular heart disease. N Engl J Med 356:6–9

    Article  PubMed  CAS  Google Scholar 

  61. Shukunami C, Oshima Y, Hiraki Y (2005) Chondromodulin-I and tenomodulin: a new class of tissue-specific angiogenesis inhibitors found in hypovascular connective tissues. Biochem Biophys Res Commun 333:299–307

    Article  PubMed  CAS  Google Scholar 

  62. Rajamannan NM, Nealis TB, Subramaniam M, Pandya S, Stock SR, Ignatiev CI, Sebo TJ, Rosengart TK, Edwards WD, McCarthy PM, Bonow RO, Spelsberg TC (2005) Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation. Circulation 111:3296–3301

    Article  PubMed  CAS  Google Scholar 

  63. Chalajour F, Treede H, Gehling UM, Ebrahimnejad A, Boehm DH, Riemer RK, Ergun S, Reichenspurner H (2007) Identification and characterization of cells with high angiogenic potential and transitional phenotype in calcific aortic valve. Exp Cell Res 313:2326–2335

    Article  PubMed  CAS  Google Scholar 

  64. Chalajour F, Treede H, Ebrahimnejad A, Lauke H, Reichenspurner H, Ergun S (2004) Angiogenic activation of valvular endothelial cells in aortic valve stenosis. Exp Cell Res 298:455–464

    Article  PubMed  CAS  Google Scholar 

  65. Skowasch D, Schrempf S, Wernert N, Steinmetz M, Jabs A, Tuleta I, Welsch U, Preusse CJ, Likungu JA, Welz A, Lüderitz B, Bauriedel G (2005) Cells of primarily extra-valvular origin in degenerative aortic valves and bioprostheses. Eur Heart J 26:2576–2580

    Article  PubMed  Google Scholar 

  66. Yoshioka M, Yuasa S, Matsumura K, Kimura K, Shiomi T, Kimura N, Shukunami C, Okada Y, Mukai M, Shin H, Yozu R, Sata M, Ogawa S, Hiraki Y, Fukuda K (2006) Chondromodulin-I maintains cardiac valvular function by preventing angiogenesis. Nat Med 12:1151–1159

    Article  PubMed  CAS  Google Scholar 

  67. Hiraki Y (1991) [Molecular cloning of a novel cartilage-specific functional matrix, chondromodulin-I, and its role in endochondral bone formation]. Seikagaku 63:1449–1454

    PubMed  CAS  Google Scholar 

  68. Hiraki Y, Shukunami C (2005) Angiogenesis inhibitors localized in hypovascular mesenchymal tissues: chondromodulin-I and tenomodulin. Connect Tissue Res 46:3–11

    Article  PubMed  CAS  Google Scholar 

  69. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107

    Article  PubMed  CAS  Google Scholar 

  70. Zijlstra A, Aimes RT, Zhu D, Regazzoni K, Kupriyanova T, Seandel M, Deryugina EI, Quigley JP (2004) Collagenolysis-dependent angiogenesis mediated by matrix metalloproteinase-13 (collagenase-3). J Biol Chem 279:27633–27645

    Article  PubMed  CAS  Google Scholar 

  71. Lester W, Rosenthal A, Granton B, Gotlieb AI (1988) Porcine mitral valve interstitial cells in culture. Lab Invest 59:710–719

    PubMed  CAS  Google Scholar 

  72. Oshima Y, Shukunami C, Honda J, Nishida K, Tashiro F, Miyazaki J, Hiraki Y, Tano Y (2003) Expression and localization of tenomodulin, a transmembrane type chondromodulin-I-related angiogenesis inhibitor, in mouse eyes. Invest Ophthalmol Vis Sci 44:1814–1823

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Fukuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakuno, D., Kimura, N., Yoshioka, M. et al. Molecular mechanisms underlying the onset of degenerative aortic valve disease. J Mol Med 87, 17–24 (2009). https://doi.org/10.1007/s00109-008-0400-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0400-9

Keywords

Navigation