Skip to main content

Advertisement

Log in

Immune responses and therapeutic options in psoriasis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Psoriasis is a chronic inflammatory disease of the skin that affects about 2–3% of the population and greatly impairs the quality of life of affected individuals. Psoriatic skin is characterized by excessive proliferation and aberrant differentiation of keratinocytes, as well as redness caused by increased dilation of the dermal blood vessels and infiltration of immune cells. Although the pathogenesis of psoriasis has not yet been completely elucidated, it is generally believed to arise from a complex interplay between hyperproliferating keratinocytes and infiltrating, activated immune cells. So far, the exact triggers that elicit this disease are still enigmatic, yet, it is clear that genetic predisposition significantly contributes to the development of psoriasis. In this review, we summarize current knowledge of important cellular and molecular mechanisms driving the initiation and amplification stages of psoriasis development, with a particular focus on cytokines and emerging evidence illustrating keratinocyte-intrinsic defects as key drivers of inflammation. We also discuss mouse models that have contributed to a better understanding of psoriasis pathogenesis and the preclinical development of novel therapeutics, including monoclonal antibodies against specific cytokines or cytokine receptors that have revolutionized the treatment of psoriasis. Future perspectives that may have the potential to push basic research and open up new avenues for therapeutic intervention are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pasparakis M, Haase I, Nestle FO (2014) Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 14:289–301. https://doi.org/10.1038/nri3646

    Article  CAS  PubMed  Google Scholar 

  2. Eyerich S, Eyerich K, Traidl-Hoffmann C, Biedermann T (2018) Cutaneous barriers and skin immunity: differentiating a connected network. Trends Immunol 39:315–327. https://doi.org/10.1016/j.it.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  3. Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H (2017) Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol 26:989–998. https://doi.org/10.1111/exd.13314

    Article  CAS  PubMed  Google Scholar 

  4. Deckers J, Hammad H, Hoste E (2018) Langerhans cells: sensing the environment in health and disease. Front Immunol 9:93. https://doi.org/10.3389/fimmu.2018.00093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. West HC, Bennett CL (2017) Redefining the role of langerhans cells as immune regulators within the skin. Front Immunol 8:1941. https://doi.org/10.3389/fimmu.2017.01941

    Article  CAS  PubMed  Google Scholar 

  6. Heath WR, Carbone FR (2013) The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 14:978–985. https://doi.org/10.1038/ni.2680

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe R, Gehad A, Yang C, Scott LL, Teague JE, Schlapbach C, Elco CP, Huang V, Matos TR, Kupper TS, Clark RA (2015) Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med 7:279ra239. https://doi.org/10.1126/scitranslmed.3010302

    Article  CAS  Google Scholar 

  8. Mueller SN, Zaid A, Carbone FR (2014) Tissue-resident T cells: dynamic players in skin immunity. Front Immunol 5:332. https://doi.org/10.3389/fimmu.2014.00332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raychaudhuri SK, Maverakis E, Raychaudhuri SP (2014) Diagnosis and classification of psoriasis. Autoimmun Rev 13:490–495. https://doi.org/10.1016/j.autrev.2014.01.008

    Article  PubMed  Google Scholar 

  10. Lowes MA, Suarez-Farinas M, Krueger JG (2014) Immunology of psoriasis. Annu Rev Immunol 32:227–255. https://doi.org/10.1146/annurev-immunol-032713-120225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu SC, Lan CE (2017) Psoriasis and cardiovascular comorbidities: focusing on severe vascular events, cardiovascular risk factors and implications for treatment. Int J Mol Sci 18:2211. https://doi.org/10.3390/ijms18102211

    Article  CAS  PubMed Central  Google Scholar 

  12. Mease PJ, Gladman DD, Papp KA, Khraishi MM, Thaci D, Behrens F, Northington R, Fuiman J, Bananis E, Boggs R, Alvarez D (2013) Prevalence of rheumatologist-diagnosed psoriatic arthritis in patients with psoriasis in European/North American dermatology clinics. J Am Acad Dermatol 69:729–735. https://doi.org/10.1016/j.jaad.2013.07.023

    Article  PubMed  Google Scholar 

  13. Egeberg A, Mallbris L, Warren RB, Bachelez H, Gislason GH, Hansen PR, Skov L (2016) Association between psoriasis and inflammatory bowel disease: a Danish nationwide cohort study. Br J Dermatol 175:487–492. https://doi.org/10.1111/bjd.14528

    Article  CAS  PubMed  Google Scholar 

  14. Zohar A, Cohen AD, Bitterman H, Feldhamer I, Greenberg-Dotan S, Lavi I, Comanesther D, Batat E, Zisman D (2016) Gastrointestinal comorbidities in patients with psoriatic arthritis. Clin Rheumatol 35:2679–2684. https://doi.org/10.1007/s10067-016-3374-y

    Article  PubMed  Google Scholar 

  15. Harden JL, Krueger JG, Bowcock AM (2015) The immunogenetics of psoriasis: a comprehensive review. J Autoimmun 64:66–73. https://doi.org/10.1016/j.jaut.2015.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Capon F (2017) The genetic basis of psoriasis. Int J Mol Sci 18:2526. https://doi.org/10.3390/ijms18122526

    Article  CAS  PubMed Central  Google Scholar 

  17. Elder JT (2006) PSORS1: linking genetics and immunology. J Invest Dermatol 126:1205–1206. https://doi.org/10.1038/sj.jid.5700357

    Article  CAS  PubMed  Google Scholar 

  18. Arakawa A, Siewert K, Stohr J, Besgen P, Kim SM, Ruhl G, Nickel J, Vollmer S, Thomas P, Krebs S, Pinkert S, Spannagl M, Held K, Kammerbauer C, Besch R, Dornmair K, Prinz JC (2015) Melanocyte antigen triggers autoimmunity in human psoriasis. J Exp Med 212:2203–2212. https://doi.org/10.1084/jem.20151093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mabuchi T, Hirayama N (2016) Binding affinity and interaction of LL-37 with HLA-C*06:02 in psoriasis. J Invest Dermatol 136:1901–1903. https://doi.org/10.1016/j.jid.2016.04.033

    Article  CAS  PubMed  Google Scholar 

  20. Jordan CT, Cao L, Roberson ED, Pierson KC, Yang CF, Joyce CE, Ryan C, Duan S, Helms CA, Liu Y, Chen Y, McBride AA, Hwu WL, Wu JY, Chen YT, Menter A, Goldbach-Mansky R, Lowes MA, Bowcock AM (2012) PSORS2 is due to mutations in CARD14. Am J Hum Genet 90:784–795. https://doi.org/10.1016/j.ajhg.2012.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Afonina IS, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, Beyaert R (2016) The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep 17:914–927. https://doi.org/10.15252/embr.201642109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jordan CT, Cao L, Roberson ED, Duan S, Helms CA, Nair RP, Duffin KC, Stuart PE, Goldgar D, Hayashi G, Olfson EH, Feng BJ, Pullinger CR, Kane JP, Wise CA, Goldbach-Mansky R, Lowes MA, Peddle L, Chandran V, Liao W, Rahman P, Krueger GG, Gladman D, Elder JT, Menter A, Bowcock AM (2012) Rare and common variants in CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis. Am J Hum Genet 90:796–808. https://doi.org/10.1016/j.ajhg.2012.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Cid R, Riveira-Munoz E, Zeeuwen PL, Robarge J, Liao W, Dannhauser EN, Giardina E, Stuart PE, Nair R, Helms C, Escaramis G, Ballana E, Martin-Ezquerra G, den Heijer M, Kamsteeg M, Joosten I, Eichler EE, Lazaro C, Pujol RM, Armengol L, Abecasis G, Elder JT, Novelli G, Armour JA, Kwok PY, Bowcock A, Schalkwijk J, Estivill X (2009) Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat Genet 41:211–215. https://doi.org/10.1038/ng.313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hollox EJ, Huffmeier U, Zeeuwen PL, Palla R, Lascorz J, Rodijk-Olthuis D, van de Kerkhof PC, Traupe H, de Jongh G, den Heijer M, Reis A, Armour JA, Schalkwijk J (2008) Psoriasis is associated with increased beta-defensin genomic copy number. Nat Genet 40:23–25. https://doi.org/10.1038/ng.2007.48

    Article  CAS  PubMed  Google Scholar 

  25. Sagi L, Trau H (2011) The Koebner phenomenon. Clin Dermatol 29:231–236. https://doi.org/10.1016/j.clindermatol.2010.09.014

    Article  PubMed  Google Scholar 

  26. Malakou LS, Gargalionis AN, Piperi C, Papadavid E, Papavassiliou AG, Basdra EK (2018) Molecular mechanisms of mechanotransduction in psoriasis. Ann Transl Med 6:245. https://doi.org/10.21037/atm.2018.04.09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parisi R, Symmons DP, Griffiths CE, Ashcroft DM; on behalf of the Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) project team, Identification, Management of P, Associated ComorbidiTy project t (2013) Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol 133:377–385. https://doi.org/10.1038/jid.2012.339

    Article  CAS  PubMed  Google Scholar 

  28. Rousset L, Halioua B (2018) Stress and psoriasis. Int J Dermatol 57:1165–1172. https://doi.org/10.1111/ijd.14032

    Article  PubMed  Google Scholar 

  29. Valdimarsson H, Thorleifsdottir RH, Sigurdardottir SL, Gudjonsson JE, Johnston A (2009) Psoriasis—as an autoimmune disease caused by molecular mimicry. Trends Immunol 30:494–501. https://doi.org/10.1016/j.it.2009.07.008

    Article  CAS  PubMed  Google Scholar 

  30. Chang HW, Yan D, Singh R, Liu J, Lu XY, Ucmak D, Lee K, Afifi L, Fadrosh D, Leech J, Vasquez KS, Lowe MM, Rosenblum MD, Scharschmidt TC, Lynch SV, Liao W (2018) Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome 6:154. https://doi.org/10.1186/s40168-018-0533-1

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stehlikova Z, Kostovcikova K, Kverka M, Rossmann P, Dvorak J, Novosadova I, Kostovcik M, Coufal S, Srutkova D, Prochazkova P, Hudcovic T, Kozakova H, Stepankova R, Rob F, Juzlova K, Hercogova J, Tlaskalova-Hogenova H, Zakostelska ZJ (2019) Crucial role of microbiota in experimental psoriasis revealed by a gnotobiotic mouse model. Front Microbiol 10:236. https://doi.org/10.3389/fmicb.2019.00236

    Article  PubMed  PubMed Central  Google Scholar 

  32. Myers B, Brownstone N, Reddy V, Chan S, Thibodeaux Q, Truong A, Bhutani T, Chang HW, Liao W (2019) The gut microbiome in psoriasis and psoriatic arthritis. Best Pract Res Cl Rh 33:101494. https://doi.org/10.1016/j.berh.2020.101494

    Article  Google Scholar 

  33. Zakostelska Z, Malkova J, Klimesova K, Rossmann P, Hornova M, Novosadova I, Stehlikova Z, Kostovcik M, Hudcovic T, Stepankova R, Juzlova K, Hercogova J, Tlaskalova-Hogenova H, Kverka M (2016) Intestinal microbiota promotes psoriasis-like skin inflammation by enhancing Th17 response. PLoS ONE 11:e0159539. https://doi.org/10.1371/journal.pone.0159539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zanvit P, Konkel JE, Jiao X, Kasagi S, Zhang DF, Wu RQ, Chia C, Ajami NJ, Smith DP, Petrosino JF, Abbatiello B, Nakatsukasa H, Chen QM, Belkaid Y, Chen ZJ, Chen WJ (2015) Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat Commun 6:8424. https://doi.org/10.1038/ncomms9424

    Article  CAS  PubMed  Google Scholar 

  35. Hawkes JE, Yan BY, Chan TC, Krueger JG (2018) Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J Immunol 201:1605–1613. https://doi.org/10.4049/jimmunol.1800013

    Article  CAS  PubMed  Google Scholar 

  36. Hong K, Chu A, Ludviksson BR, Berg EL, Ehrhardt RO (1999) IL-12, independently of IFN-gamma, plays a crucial role in the pathogenesis of a murine psoriasis-like skin disorder. J Immunol 162:7480–7491

    CAS  PubMed  Google Scholar 

  37. Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, Dhodapkar M, Krueger JG (2004) Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med 199:125–130. https://doi.org/10.1084/jem.20030451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, Lucian L, Geissler R, Brodie S, Kimball AB, Gorman DM, Smith K, Malefyt RD, Kastelein RA, McClanahan TK, Bowman EP (2006) IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 203:2577–2587. https://doi.org/10.1084/jem.20060244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van der Fits L, Mourits S, Voerman JSA, Kant M, Boon L, Laman JD, Cornelissen F, Mus AM, Florencia E, Prens EP, Lubberts E (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182:5836–5845. https://doi.org/10.4049/jimmunol.0802999

    Article  CAS  PubMed  Google Scholar 

  40. Piskin G, Sylva-Steenland RMR, Bos JD, Teunissen MBM (2006) In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. J Immunol 176:1908–1915. https://doi.org/10.4049/jimmunol.176.3.1908

    Article  CAS  PubMed  Google Scholar 

  41. Suarez-Farinas M, Li K, Fuentes-Duculan J, Hayden K, Brodmerkel C, Krueger JG (2012) Expanding the psoriasis disease profile: interrogation of the skin and serum of patients with moderate-to-severe psoriasis. J Invest Dermatol 132:2552–2564. https://doi.org/10.1038/jid.2012.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL, Blauvelt A (2011) IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol 186:1495–1502. https://doi.org/10.4049/jimmunol.1001001

    Article  CAS  PubMed  Google Scholar 

  43. Chiricozzi A, Romanelli P, Volpe E, Borsellino G, Romanelli M (2018) Scanning the immunopathogenesis of psoriasis. Int J Mol Sci 19:179. https://doi.org/10.3390/ijms19010179

    Article  CAS  PubMed Central  Google Scholar 

  44. Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M, Yalavarthi S, Villanueva EC, Shah P, Kaplan MJ, Bruce AT (2011) Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Invest Dermatol 131:S106–S106

    Google Scholar 

  45. Amatya N, Garg AV, Gaffen SL (2017) IL-17 signaling: the yin and the yang. Trends Immunol 38:310–322. https://doi.org/10.1016/j.it.2017.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chiricozzi A, Nograles KE, Johnson-Huang LM, Fuentes-Duculan J, Cardinale I, Bonifacio KM, Gulati N, Mitsui H, Guttman-Yassky E, Suarez-Farinas M, Krueger JG (2014) IL-17 induces an expanded range of downstream genes in reconstituted human epidermis model. PLoS ONE 9:e90284. https://doi.org/10.1371/journal.pone.0090284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johansen C, Mose M, Ommen P, Bertelsen T, Vinter H, Hailfinger S, Lorscheid S, Schulze-Osthoff K, Iversen L (2015) I kappa B zeta is a key driver in the development of psoriasis. Proc Natl Acad Sci 112:E5825–E5833. https://doi.org/10.1073/pnas.1509971112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Muller A, Hennig A, Lorscheid S, Grondona P, Schulze-Osthoff K, Hailfinger S, Kramer D (2018) I kappa B zeta is a key transcriptional regulator of IL-36-driven psoriasis-related gene expression in keratinocytes. Proc Natl Acad Sci 115:10088–10093. https://doi.org/10.1073/pnas.1801377115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lorscheid S, Muller A, Loffler J, Resch C, Bucher P, Kurschus FC, Waisman A, Schakel K, Hailfinger S, Schulze-Osthoff K, Kramer D (2019) Keratinocyte-derived I kappa B zeta drives psoriasis and associated systemic inflammation. JCI Insight 4:e130835. https://doi.org/10.1172/jci.insight.130835

    Article  PubMed Central  Google Scholar 

  50. Brembilla NC, Senra L, Boehncke WH (2018) The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front Immunol 9:1682. https://doi.org/10.3389/fimmu.2018.01682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ramirez-Carrozzi V, Sambandam A, Luis E, Lin ZG, Jeet S, Lesch J, Hackney J, Kim J, Zhou MJ, Lai J, Modrusan Z, Sai T, Lee W, Xu M, Caplazi P, Diehl L, de Voss J, Balazs M, Gonzalez L, Singh H, Ouyang W, Pappu R (2011) IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat Immunol 12:1159-U1146. https://doi.org/10.1038/ni.2156

    Article  CAS  PubMed  Google Scholar 

  52. Martin DA, Towne JE, Kricorian G, Klekotka P, Gudjonsson JE, Krueger JG, Russell CB (2013) The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J Invest Dermatol 133:17–26. https://doi.org/10.1038/jid.2012.194

    Article  CAS  PubMed  Google Scholar 

  53. Nakajima K, Kanda T, Takaishi M, Shiga T, Miyoshi K, Nakajima H, Kamijima R, Tarutani M, Benson JM, Elloso MM, Gutshall LL, Naso MF, Iwakura Y, DiGiovanni J, Sano S (2011) Distinct roles of IL-23 and IL-17 in the development of psoriasis-like lesions in a mouse model. J Immunol 186:4481–4489. https://doi.org/10.4049/jimmunol.1000148

    Article  CAS  PubMed  Google Scholar 

  54. Towne JE, Bigler J, Zhang Y, Kerkof K, Timour M, Rand H, Klekotka P, Martin DA, Salinger D, Russell CB (2013) Three IL-17 ligands contribute to psoriasis: Blockade of IL-17RA signaling with brodalumab. J Invest Dermatol 133:S45–S45

    Google Scholar 

  55. Ettehadi P, Greaves MW, Wallach D, Aderka D, Camp RDR (1994) Elevated tumor-necrosis-factor-alpha (Tnf-Alpha) biological-activity in psoriatic skin-lesions. Clin Exp Immunol 96:146–151. https://doi.org/10.1111/j.1365-2249.1994.tb06244.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Banno T, Gazel A, Blumenberg M (2004) Effects of tumor necrosis factor-alpha (TNF alpha) in epidermal keratinocytes revealed using global transcriptional profiling. J Biol Chem 279:32633–32642. https://doi.org/10.1074/jbc.M400642200

    Article  CAS  PubMed  Google Scholar 

  57. Grine L, Dejager L, Libert C, Vandenbroucke RE (2015) An inflammatory triangle in psoriasis: TNF, type I IFNs and IL-17. Cytokine Growth Factor Rev 26:25–33. https://doi.org/10.1016/j.cytogfr.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  58. Borghi A, Verstrepen L, Beyaert R (2016) TRAF2 multitasking in TNF receptor-induced signaling to NF-kappa B, MAP kinases and cell death. Biochem Pharmacol 116:1–10. https://doi.org/10.1016/j.bcp.2016.03.009

    Article  CAS  PubMed  Google Scholar 

  59. Zaba LC, Cardinale I, Gilleaudeau P, Sulhvan-Whalen M, Suarez-Farinas M, Fuentes-Duculan J, Novitskaya I, Khatcherian A, Bluth MJ, Lowes MA, Krueger JG (2007) Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med 204:3183–3194. https://doi.org/10.1084/jem.20071094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zaba LC, Suarez-Farinas M, Fuentes-Duculan J, Nograles KE, Guttman-Yassky E, Cardinale I, Lowes MA, Krueger JG (2009) Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J Allergy Clin Immun 124:1022–1030. https://doi.org/10.1016/j.jaci.2009.08.046

    Article  CAS  PubMed  Google Scholar 

  61. Chiricozzi A, Guttman-Yassky E, Suarez-Farinas M, Nograles KE, Tian S, Cardinale I, Chimenti S, Krueger JG (2011) Integrative responses to IL-17 and TNF-alpha in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol 131:677–687. https://doi.org/10.1038/jid.2010.340

    Article  CAS  PubMed  Google Scholar 

  62. Li H, Yao Q, Mariscal AG, Wu XD, Hulse J, Pedersen E, Helin K, Waisman A, Vinkel C, Thomsen SF, Avgustinova A, Benitah SA, Lovato P, Norsgaard H, Mortensen MS, Veng L, Rozell B, Brakebusch C (2018) Epigenetic control of IL-23 expression in keratinocytes is important for chronic skin inflammation. Nat Commun 9:1420. https://doi.org/10.1038/s41467-018-03704-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Milora KA, Fu HF, Dubaz O, Jensen LE (2015) Unprocessed interleukin-36 alpha regulates psoriasis-like skin inflammation in cooperation with interleukin-1. J Invest Dermatol 135:2992–3000. https://doi.org/10.1038/jid.2015.289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marrakchi S, Guigue P, Renshaw BR, Puel A, Pei XY, Fraitag S, Zribi J, Bal E, Cluzeau C, Chrabieh M, Towne JE, Douangpanya J, Pons C, Mansour S, Serre V, Makni H, Mahfoudh N, Fakhfakh F, Bodemer C, Feingold J, Hadj-Rabia S, Favre M, Genin E, Sahbatou M, Munnich A, Casanova JL, Sims JE, Turki H, Bachelez H, Smahi A (2011) Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. New Engl J Med 365:620–628. https://doi.org/10.1056/NEJMoa1013068

    Article  CAS  PubMed  Google Scholar 

  65. Onoufriadis A, Simpson MA, Pink AE, Di Meglio P, Smith CH, Pullabhatla V, Knight J, Spain SL, Nestle FO, Burden AD, Capon F, Trembath RC, Barker JN (2011) Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am J Hum Genet 89:432–437. https://doi.org/10.1016/j.ajhg.2011.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boutet MA, Bart G, Penhoat M, Amiaud J, Brulin B, Charrier C, Morel F, Lecron JC, Rolli-Derkinderen M, Bourreille A, Vigne S, Gabay C, Palmer G, Le Goff B, Blanchard F (2016) Distinct expression of interleukin (IL)-36alpha, beta and gamma, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn’s disease. Clin Exp Immunol 184:159–173. https://doi.org/10.1111/cei.12761

    Article  CAS  PubMed  Google Scholar 

  67. Mercurio L, Morelli M, Scarponi C, Eisenmesser EZ, Doti N, Pagnanelli G, Gubinelli E, Mazzanti C, Cavani A, Ruvo M, Dinarello CA, Albanesi C, Madonna S (2018) IL-38 has an anti-inflammatory action in psoriasis and its expression correlates with disease severity and therapeutic response to anti-IL-17A treatment. Cell Death Dis 9:1104. https://doi.org/10.1038/s41419-018-1143-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Han Y, Mora J, Huard A, da Silva P, Wiechmann S, Putyrski M, Schuster C, Elwakeel E, Lang G, Scholz A, Scholz T, Schmid T, de Bruin N, Billuart P, Sala C, Burkhardt H, Parnham MJ, Ernst A, Brune B, Weigert A (2019) IL-38 ameliorates skin inflammation and limits IL-17 production from gammadelta T Cells. Cell Rep 27(835–846):e835. https://doi.org/10.1016/j.celrep.2019.03.082

    Article  CAS  Google Scholar 

  69. Hernandez-Santana YE, Leon G, St Leger D, Fallon PG, Walsh PT (2020) Keratinocyte interleukin-36 receptor expression orchestrates psoriasiform inflammation in mice. Life Sci Alliance 3:e201900586. https://doi.org/10.26508/lsa.201900586

    Article  PubMed  PubMed Central  Google Scholar 

  70. Towne JE, Sims JE (2012) IL-36 in psoriasis. Curr Opin Pharmacol 12:486–490. https://doi.org/10.1016/j.coph.2012.02.009

    Article  CAS  PubMed  Google Scholar 

  71. Carrier Y, Ma HL, Ramon HE, Napierata L, Small C, O’Toole M, Young DA, Fouser LA, Nickerson-Nutter C, Collins M, Dunussi-Joannopoulos K, Medley QG (2011) Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. J Invest Dermatol 131:2428–2437. https://doi.org/10.1038/jid.2011.234

    Article  CAS  PubMed  Google Scholar 

  72. Goldstein JD, Bassoy EY, Caruso A, Palomo J, Rodriguez E, Lemeille S, Gabay C (2020) IL-36 signaling in keratinocytes controls early IL-23 production in psoriasis-like dermatitis. Life Sci Alliance 3:e202000688. https://doi.org/10.26508/lsa.202000688

    Article  PubMed  PubMed Central  Google Scholar 

  73. Foster AM, Baliwag J, Chen CS, Guzman AM, Stoll SW, Gudjonsson JE, Ward NL, Johnston A (2014) IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J Immunol 192:6053–6061. https://doi.org/10.4049/jimmunol.1301481

    Article  CAS  PubMed  Google Scholar 

  74. Mutamba S, Allison A, Mahida Y, Barrow P, Foster N (2012) Expression of IL-1Rrp2 by human myelomonocytic cells is unique to DCs and facilitates DC maturation by IL-1F8 and IL-1F9. Eur J Immunol 42:607–617. https://doi.org/10.1002/eji.201142035

    Article  CAS  PubMed  Google Scholar 

  75. Bridgewood C, Fearnley GW, Berekmeri A, Laws P, Macleod T, Ponnambalam S, Stacey M, Graham A, Wittmann M (2018) IL-36 gamma Is a strong inducer of IL-23 in psoriatic cells and activates angiogenesis. Front Immunol 9:200. https://doi.org/10.3389/fimmu.2018.00200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Boniface K, Guignouard E, Pedretti N, Garcia M, Delwail A, Bernard FX, Nau F, Guillet G, Dagregorio G, Yssel H, Lecron JC, Morel F (2007) A role for T cell-derived interleukin 22 in psoriatic skin inflammation. Clin Exp Immunol 150:407–415. https://doi.org/10.1111/j.1365-2249.2007.03511.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sa SM, Valdez PA, Wu JF, Jung K, Zhong F, Hall L, Kasman I, Winer J, Modrusan Z, Danilenko DM, Ouyang WJ (2007) The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol 178:2229–2240. https://doi.org/10.4049/jimmunol.178.4.2229

    Article  CAS  PubMed  Google Scholar 

  78. Wolk K, Witte E, Wallace E, Docke WD, Kunz S, Asadullah K, Volk HD, Sterry W, Sabat R (2006) IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 36:1309–1323. https://doi.org/10.1002/eji.200535503

    Article  CAS  PubMed  Google Scholar 

  79. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, Ouyang W (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–651. https://doi.org/10.1038/nature05505

    Article  CAS  PubMed  Google Scholar 

  80. Van Belle AB, de Heusch M, Lemaire MM, Hendrickx E, Warnier G, Dunussi-Joannopoulos K, Fouser LA, Renauld JC, Dumoutier L (2012) IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. J Immunol 188:462–469. https://doi.org/10.4049/jimmunol.1102224

    Article  CAS  PubMed  Google Scholar 

  81. Antoniu SA (2012) Discontinued drugs 2011: pulmonary, allergy, gastrointestinal and arthritis. Expert Opin Investig Drugs 21:1607–1618. https://doi.org/10.1517/13543784.2012.712112

    Article  CAS  PubMed  Google Scholar 

  82. Amschler K, Meyersburg D, Kitze B, Schon MP, Mossner R (2016) Onset of psoriasis upon interferon beta treatment in a multiple sclerosis patient. Eur J Dermatol 26:211–212. https://doi.org/10.1684/ejd.2015.2602

    Article  CAS  PubMed  Google Scholar 

  83. Funk J, Langeland T, Schrumpf E, Hanssen LE (1991) Psoriasis induced by interferon-alpha. Br J Dermatol 125:463–465. https://doi.org/10.1111/j.1365-2133.1991.tb14774.x

    Article  CAS  PubMed  Google Scholar 

  84. La Mantia L, Capsoni F (2010) Psoriasis during interferon beta treatment for multiple sclerosis. Neurol Sci 31:337–339. https://doi.org/10.1007/s10072-009-0184-x

    Article  PubMed  Google Scholar 

  85. Pauluzzi P, Kokelj F, Perkan V, Pozzato G, Moretti M (1993) Psoriasis exacerbation induced by interferon-alpha. Report of two cases. Acta Derm Venereol 73:395. https://doi.org/10.2340/0001555573395

    Article  CAS  PubMed  Google Scholar 

  86. Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, Burg G, Liu YJ, Gilliet M (2005) Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med 202:135–143. https://doi.org/10.1084/jem.20050500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bissonnette R, Papp K, Maari C, Yao Y, Robbie G, White WI, Le C, White B (2010) A randomized, double-blind, placebo-controlled, phase I study of MEDI-545, an anti-interferon-alfa monoclonal antibody, in subjects with chronic psoriasis. J Am Acad Dermatol 62:427–436. https://doi.org/10.1016/j.jaad.2009.05.042

    Article  CAS  PubMed  Google Scholar 

  88. Abdallah MA, Abdel-Hamid MF, Kotb AM, Mabrouk EA (2009) Serum interferon-gamma is a psoriasis severity and prognostic marker. Cutis 84:163–168

    PubMed  Google Scholar 

  89. Johnson-Huang LM, Suarez-Farinas M, Pierson KC, Fuentes-Duculan J, Cueto I, Lentini T, Sullivan-Whalen M, Gilleaudeau P, Krueger JG, Haider AS, Lowes MA (2012) A single intradermal injection of IFN-gamma induces an inflammatory state in both non-lesional psoriatic and healthy skin. J Invest Dermatol 132:1177–1187. https://doi.org/10.1038/jid.2011.458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Harden JL, Johnson-Huang LM, Chamian MF, Lee E, Pearce T, Leonardi CL, Haider A, Lowes MA, Krueger JG (2015) Humanized anti-IFN-gamma (HuZAF) in the treatment of psoriasis. J Allergy Clin Immunol 135:553–556. https://doi.org/10.1016/j.jaci.2014.05.046

    Article  CAS  PubMed  Google Scholar 

  91. Teunissen MB, Koomen CW, de Waal MR, Wierenga EA, Bos JD (1998) Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol 111:645–649. https://doi.org/10.1046/j.1523-1747.1998.00347.x

    Article  CAS  PubMed  Google Scholar 

  92. Baliwag J, Barnes DH, Johnston A (2015) Cytokines in psoriasis. Cytokine 73:342–350. https://doi.org/10.1016/j.cyto.2014.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Long D, Chen Y, Wu H, Zhao M, Lu Q (2019) Clinical significance and immunobiology of IL-21 in autoimmunity. J Autoimmun 99:1–14. https://doi.org/10.1016/j.jaut.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  94. Mitsui A, Tada Y, Takahashi T, Shibata S, Kamata M, Miyagaki T, Fujita H, Sugaya M, Kadono T, Sato S, Asano Y (2016) Serum IL-33 levels are increased in patients with psoriasis. Clin Exp Dermatol 41:183–189. https://doi.org/10.1111/ced.12670

    Article  CAS  PubMed  Google Scholar 

  95. Ruiz-Romeu E, Ferran M, de Jesus-Gil C, Garcia P, Sagrista M, Casanova JM, Fernandez JM, Chiriac A, Hollo P, Celada A, Pujol RM, Santamaria-Babi LF (2018) Microbe-dependent induction of IL-9 by CLA(+) T cells in psoriasis and relationship with IL-17A. J Invest Dermatol 138:580–587. https://doi.org/10.1016/j.jid.2017.08.048

    Article  CAS  PubMed  Google Scholar 

  96. Wolk K, Witte K, Witte E, Raftery M, Kokolakis G, Philipp S, Schonrich G, Warszawska K, Kirsch S, Prosch S, Sterry W, Volk HD, Sabat R (2013) IL-29 is produced by T(H)17 cells and mediates the cutaneous antiviral competence in psoriasis. Sci Transl Med 5:204ra129. https://doi.org/10.1126/scitranslmed.3006245

    Article  CAS  PubMed  Google Scholar 

  97. Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, Homey B, Barrat FJ, Zal T, Gilliet M (2009) Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 206:1983–1994. https://doi.org/10.1084/jem.20090480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lande R, Chamilos G, Ganguly D, Demaria O, Frasca L, Durr S, Conrad C, Schroder J, Gilliet M (2015) Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA. Eur J Immunol 45:203–213. https://doi.org/10.1002/eji.201344277

    Article  CAS  PubMed  Google Scholar 

  99. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schroder JM, Liu YJ, Gilliet M (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449:564–569. https://doi.org/10.1038/nature06116

    Article  CAS  PubMed  Google Scholar 

  100. Lou F, Sun Y, Xu Z, Niu L, Wang Z, Deng S, Liu Z, Zhou H, Bai J, Yin Q, Cai X, Sun L, Wang H, Li Q, Wu Z, Chen X, Gu J, Shi YL, Tao W, Ginhoux F, Wang H (2020) Excessive polyamine generation in keratinocytes promotes self-RNA sensing by dendritic cells in psoriasis. Immunity 53:204–216. https://doi.org/10.1016/j.immuni.2020.06.004

    Article  CAS  PubMed  Google Scholar 

  101. Lowes MA, Chamian F, Abello MV, Fuentes-Duculan J, Lin SL, Nussbaum R, Novitskaya I, Carbonaro H, Cardinale I, Kikuchi T, Gilleaudeau P, Sullivan-Whalen M, Wittkowski KM, Papp K, Garovoy M, Dummer W, Steinman RM, Krueger JG (2005) Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc Natl Acad Sci 102:19057–19062. https://doi.org/10.1073/pnas.0509736102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Duan X, Liu X, Liu N, Huang Y, Jin Z, Zhang S, Ming Z, Chen H (2020) Inhibition of keratinocyte necroptosis mediated by RIPK1/RIPK3/MLKL provides a protective effect against psoriatic inflammation. Cell Death Dis 11:134. https://doi.org/10.1038/s41419-020-2328-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Devos M, Tanghe G, Gilbert B, Dierick E, Verheirstraeten M, Nemegeer J, de Reuver R, Lefebvre S, De Munck J, Rehwinkel J, Vandenabeele P, Declercq W, Maelfait J (2020) Sensing of endogenous nucleic acids by ZBP1 induces keratinocyte necroptosis and skin inflammation. J Exp Med 217:e20191913. https://doi.org/10.1084/jem.20191913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jiao H, Wachsmuth L, Kumari S, Schwarzer R, Lin J, Eren RO, Fisher A, Lane R, Young GR, Kassiotis G, Kaiser WJ, Pasparakis M (2020) Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580:391–395. https://doi.org/10.1038/s41586-020-2129-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen L, Deshpande M, Grisotto M, Smaldini P, Garcia R, He Z, Gulko PS, Lira SA, Furtado GC (2020) Skin expression of IL-23 drives the development of psoriasis and psoriatic arthritis in mice. Sci Rep 10:8259. https://doi.org/10.1038/s41598-020-65269-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Howes A, O’Sullivan PA, Breyer F, Ghose A, Cao L, Krappmann D, Bowcock AM, Ley SC (2016) Psoriasis mutations disrupt CARD14 autoinhibition promoting BCL10-MALT1-dependent NF-kappaB activation. Biochem J 473:1759–1768. https://doi.org/10.1042/BCJ20160270

    Article  CAS  PubMed  Google Scholar 

  107. Manils J, Webb LV, Howes A, Janzen J, Boeing S, Bowcock AM, Ley SC (2020) CARD14(E138A) signalling in keratinocytes induces TNF-dependent skin and systemic inflammation. Elife 9:e56720. https://doi.org/10.7554/eLife.56720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Van Nuffel E, Staal J, Baudelet G, Haegman M, Driege Y, Hochepied T, Afonina IS, Beyaert R (2020) MALT1 targeting suppresses CARD14-induced psoriatic dermatitis in mice. EMBO Rep 21:e49237. https://doi.org/10.15252/embr.201949237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cheung KL, Jarrett R, Subramaniam S, Salimi M, Gutowska-Owsiak D, Chen YL, Hardman C, Xue L, Cerundolo V, Ogg G (2016) Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J Exp Med 213:2399–2412. https://doi.org/10.1084/jem.20160258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C, Chamilos G, Feldmeyer L, Marinari B, Chon S, Vence L, Riccieri V, Guillaume P, Navarini AA, Romero P, Costanzo A, Piccolella E, Gilliet M, Frasca L (2014) The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun 5:5621. https://doi.org/10.1038/ncomms6621

    Article  CAS  PubMed  Google Scholar 

  111. Harden JL, Hamm D, Gulati N, Lowes MA, Krueger JG (2015) Deep sequencing of the T-cell receptor repertoire demonstrates polyclonal T-cell infiltrates in psoriasis. F1000Res 4:460. https://doi.org/10.12688/f1000research.6756.1

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, Abello MV, Novitskaya I, Pierson KC, Gonzalez J, Krueger JG, Lowes MA (2009) Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol 129:79–88. https://doi.org/10.1038/jid.2008.194

    Article  CAS  PubMed  Google Scholar 

  113. Kagami S, Rizzo HL, Lee JJ, Koguchi Y, Blauvelt A (2010) Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol 130:1373–1383. https://doi.org/10.1038/jid.2009.399

    Article  CAS  PubMed  Google Scholar 

  114. Res PC, Piskin G, de Boer OJ, van der Loos CM, Teeling P, Bos JD, Teunissen MB (2010) Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PLoS ONE 5:e14108. https://doi.org/10.1371/journal.pone.0014108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cai Y, Shen X, Ding C, Qi C, Li K, Li X, Jala VR, Zhang HG, Wang T, Zheng J, Yan J (2011) Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 35:596–610. https://doi.org/10.1016/j.immuni.2011.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Soare A, Weber S, Maul L, Rauber S, Gheorghiu AM, Luber M, Houssni I, Kleyer A, von Pickardt G, Gado M, Simon D, Rech J, Schett G, Distler JHW, Ramming A (2018) Cutting edge: homeostasis of innate lymphoid cells is imbalanced in psoriatic arthritis. J Immunol 200:1249–1254. https://doi.org/10.4049/jimmunol.1700596

    Article  CAS  PubMed  Google Scholar 

  117. Teunissen MBM, Munneke JM, Bernink JH, Spuls PI, Res PCM, Te Velde A, Cheuk S, Brouwer MWD, Menting SP, Eidsmo L, Spits H, Hazenberg MD, Mjosberg J (2014) Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol 134:2351–2360. https://doi.org/10.1038/jid.2014.146

    Article  CAS  PubMed  Google Scholar 

  118. Villanova F, Flutter B, Tosi I, Grys K, Sreeneebus H, Perera GK, Chapman A, Smith CH, Di Meglio P, Nestle FO (2014) Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol 134:984–991. https://doi.org/10.1038/jid.2013.477

    Article  CAS  PubMed  Google Scholar 

  119. Zeng B, Shi S, Ashworth G, Dong C, Liu J, Xing F (2019) ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis 10:315. https://doi.org/10.1038/s41419-019-1540-2

    Article  PubMed  PubMed Central  Google Scholar 

  120. Keren A, Shemer A, Ginzburg A, Ullmann Y, Schrum AG, Paus R, Gilhar A (2018) Innate lymphoid cells 3 induce psoriasis in xenotransplanted healthy human skin. J Allergy Clin Immunol 142:305–308. https://doi.org/10.1016/j.jaci.2018.02.015

    Article  PubMed  Google Scholar 

  121. Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO (2004) Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J Exp Med 199:731–736. https://doi.org/10.1084/jem.20031482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cheuk S, Wiken M, Blomqvist L, Nylen S, Talme T, Stahle M, Eidsmo L (2014) Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J Immunol 192:3111–3120. https://doi.org/10.4049/jimmunol.1302313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Matos TR, O’Malley JT, Lowry EL, Hamm D, Kirsch IR, Robins HS, Kupper TS, Krueger JG, Clark RA (2017) Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing alphabeta T cell clones. J Clin Invest 127:4031–4041. https://doi.org/10.1172/JCI93396

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gallais Serezal I, Hoffer E, Ignatov B, Martini E, Zitti B, Ehrstrom M, Eidsmo L (2019) A skewed pool of resident T cells triggers psoriasis-associated tissue responses in never-lesional skin from patients with psoriasis. J Allergy Clin Immunol 143:1444–1454. https://doi.org/10.1016/j.jaci.2018.08.048

    Article  CAS  PubMed  Google Scholar 

  125. Moos S, Mohebiany AN, Waisman A, Kurschus FC (2019) Imiquimod-induced psoriasis in mice depends on the IL-17 signaling of keratinocytes. J Invest Dermatol 139:1110–1117. https://doi.org/10.1016/j.jid.2019.01.006

    Article  CAS  PubMed  Google Scholar 

  126. Li N, Yamasaki K, Saito R, Fukushi-Takahashi S, Shimada-Omori R, Asano M, Aiba S (2014) Alarmin function of cathelicidin antimicrobial peptide LL37 through IL-36gamma induction in human epidermal keratinocytes. J Immunol 193:5140–5148. https://doi.org/10.4049/jimmunol.1302574

    Article  CAS  PubMed  Google Scholar 

  127. Lai Y, Li D, Li C, Muehleisen B, Radek KA, Park HJ, Jiang Z, Li Z, Lei H, Quan Y, Zhang T, Wu Y, Kotol P, Morizane S, Hata TR, Iwatsuki K, Tang C, Gallo RL (2012) The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity 37:74–84. https://doi.org/10.1016/j.immuni.2012.04.010

    Article  CAS  PubMed  Google Scholar 

  128. Witte E, Kokolakis G, Witte K, Philipp S, Doecke WD, Babel N, Wittig BM, Warszawska K, Kurek A, Erdmann-Keding M, Kunz S, Asadullah K, Kadin ME, Volk HD, Sterry W, Wolk K, Sabat R (2014) IL-19 is a component of the pathogenetic IL-23/IL-17 cascade in psoriasis. J Invest Dermatol 134:2757–2767. https://doi.org/10.1038/jid.2014.308

    Article  CAS  PubMed  Google Scholar 

  129. Wolk K, Haugen HS, Xu W, Witte E, Waggie K, Anderson M, Vom Baur E, Witte K, Warszawska K, Philipp S, Johnson-Leger C, Volk HD, Sterry W, Sabat R (2009) IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not. J Mol Med (Berl) 87:523–536. https://doi.org/10.1007/s00109-009-0457-0

    Article  CAS  Google Scholar 

  130. Schon MP, Broekaert SM, Erpenbeck L (2017) Sexy again: the renaissance of neutrophils in psoriasis. Exp Dermatol 26:305–311. https://doi.org/10.1111/exd.13067

    Article  PubMed  Google Scholar 

  131. Gudjonsson JE, Johnston A, Dyson M, Valdimarsson H, Elder JT (2007) Mouse models of psoriasis. J Invest Dermatol 127:1292–1308. https://doi.org/10.1038/sj.jid.5700807

    Article  CAS  PubMed  Google Scholar 

  132. Gerber PA, Buhren BA, Schrumpf H, Homey B, Zlotnik A, Hevezi P (2014) The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes. Biol Chem 395:577–591. https://doi.org/10.1515/hsz-2013-0279

    Article  CAS  PubMed  Google Scholar 

  133. Sutoh Y, Mohamed RH, Kasahara M (2018) Origin and evolution of dendritic epidermal T cells. Front Immunol 9:1059. https://doi.org/10.3389/fimmu.2018.01059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wagner EF, Schonthaler HB, Guinea-Viniegra J, Tschachler E (2010) Psoriasis: what we have learned from mouse models. Nat Rev Rheumatol 6:704–714. https://doi.org/10.1038/nrrheum.2010.157

    Article  CAS  PubMed  Google Scholar 

  135. Suarez-Farinas M, Arbeit R, Jiang W, Ortenzio FS, Sullivan T, Krueger JG (2013) Suppression of molecular inflammatory pathways by Toll-like receptor 7, 8, and 9 antagonists in a model of IL-23-induced skin inflammation. PLoS ONE 8:e84634. https://doi.org/10.1371/journal.pone.0084634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Swindell WR, Johnston A, Carbajal S, Han G, Wohn C, Lu J, Xing X, Nair RP, Voorhees JJ, Elder JT, Wang XJ, Sano S, Prens EP, DiGiovanni J, Pittelkow MR, Ward NL, Gudjonsson JE (2011) Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis. PLoS ONE 6:e18266. https://doi.org/10.1371/journal.pone.0018266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Danilenko DM (2008) Review paper: preclinical models of psoriasis. Vet Pathol 45:563–575. https://doi.org/10.1354/vp.45-4-563

    Article  CAS  PubMed  Google Scholar 

  138. Chuang SY, Lin CH, Sung CT, Fang JY (2018) Murine models of psoriasis and their usefulness for drug discovery. Expert Opin Drug Discov 13:551–562. https://doi.org/10.1080/17460441.2018.1463214

    Article  CAS  PubMed  Google Scholar 

  139. Brown WR, Hardy MH (1988) A hypothesis on the cause of chronic epidermal hyperproliferation in asebia mice. Clin Exp Dermatol 13:74–77. https://doi.org/10.1111/j.1365-2230.1988.tb00661.x

    Article  CAS  PubMed  Google Scholar 

  140. HogenEsch H, Gijbels MJ, Offerman E, van Hooft J, van Bekkum DW, Zurcher C (1993) A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice. Am J Pathol 143:972–982

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Sundberg JP, France M, Boggess D, Sundberg BA, Jenson AB, Beamer WG, Shultz LD (1997) Development and progression of psoriasiform dermatitis and systemic lesions in the flaky skin (fsn) mouse mutant. Pathobiology 65:271–286. https://doi.org/10.1159/000164138

    Article  CAS  PubMed  Google Scholar 

  142. Croxford AL, Karbach S, Kurschus FC, Wortge S, Nikolaev A, Yogev N, Klebow S, Schuler R, Reissig S, Piotrowski C, Brylla E, Bechmann I, Scheller J, Rose-John S, Thomas Wunderlich F, Munzel T, von Stebut E, Waisman A (2014) IL-6 regulates neutrophil microabscess formation in IL-17A-driven psoriasiform lesions. J Invest Dermatol 134:728–735. https://doi.org/10.1038/jid.2013.404

    Article  CAS  PubMed  Google Scholar 

  143. Johnston A, Fritz Y, Dawes SM, Diaconu D, Al-Attar PM, Guzman AM, Chen CS, Fu W, Gudjonsson JE, McCormick TS, Ward NL (2013) Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J Immunol 190:2252–2262. https://doi.org/10.4049/jimmunol.1201505

    Article  CAS  PubMed  Google Scholar 

  144. Sano S, Chan KS, Carbajal S, Clifford J, Peavey M, Kiguchi K, Itami S, Nickoloff BJ, DiGiovanni J (2005) Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat Med 11:43–49. https://doi.org/10.1038/nm1162

    Article  CAS  PubMed  Google Scholar 

  145. Mellett M, Meier B, Mohanan D, Schairer R, Cheng P, Satoh TK, Kiefer B, Ospelt C, Nobbe S, Thome M, Contassot E, French LE (2018) CARD14 gain-of-function mutation alone is sufficient to drive IL-23/IL-17-mediated psoriasiform skin inflammation in vivo. J Invest Dermatol 138:2010–2023. https://doi.org/10.1016/j.jid.2018.03.1525

    Article  CAS  PubMed  Google Scholar 

  146. Wang M, Zhang S, Zheng G, Huang J, Songyang Z, Zhao X, Lin X (2018) Gain-of-function mutation of card14 leads to spontaneous psoriasis-like skin inflammation through enhanced keratinocyte response to IL-17A. Immunity 49(66–79):e65. https://doi.org/10.1016/j.immuni.2018.05.012

    Article  CAS  Google Scholar 

  147. Zenz R, Eferl R, Kenner L, Florin L, Hummerich L, Mehic D, Scheuch H, Angel P, Tschachler E, Wagner EF (2005) Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437:369–375. https://doi.org/10.1038/nature03963

    Article  CAS  PubMed  Google Scholar 

  148. Wohn C, Ober-Blobaum JL, Haak S, Pantelyushin S, Cheong C, Zahner SP, Onderwater S, Kant M, Weighardt H, Holzmann B, Reizis B, Becher B, Prens EP, Clausen BE (2013) Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc Natl Acad Sci 110:10723–10728. https://doi.org/10.1073/pnas.1307569110

    Article  PubMed  PubMed Central  Google Scholar 

  149. Walter A, Schafer M, Cecconi V, Matter C, Urosevic-Maiwald M, Belloni B, Schonewolf N, Dummer R, Bloch W, Werner S, Beer HD, Knuth A, van den Broek M (2013) Aldara activates TLR7-independent immune defence. Nat Commun 4:1560. https://doi.org/10.1038/ncomms2566

    Article  CAS  PubMed  Google Scholar 

  150. Grine L, Steeland S, Van Ryckeghem S, Ballegeer M, Lienenklaus S, Weiss S, Sanders NN, Vandenbroucke RE, Libert C (2016) Topical imiquimod yields systemic effects due to unintended oral uptake. Sci Rep 6:20134. https://doi.org/10.1038/srep20134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hedrick MN, Lonsdorf AS, Shirakawa AK, Richard Lee CC, Liao F, Singh SP, Zhang HH, Grinberg A, Love PE, Hwang ST, Farber JM (2009) CCR6 is required for IL-23-induced psoriasis-like inflammation in mice. J Clin Invest 119:2317–2329. https://doi.org/10.1172/jci37378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sarra M, Caruso R, Cupi ML, Monteleone I, Stolfi C, Campione E, Diluvio L, Mazzotta A, Botti E, Chimenti S, Costanzo A, MacDonald TT, Pallone F, Monteleone G (2011) IL-21 promotes skin recruitment of CD4(+) cells and drives IFN-gamma-dependent epidermal hyperplasia. J Immunol 186:5435–5442. https://doi.org/10.4049/jimmunol.1003326

    Article  CAS  PubMed  Google Scholar 

  153. Wu L, Chen X, Zhao J, Martin B, Zepp JA, Ko JS, Gu C, Cai G, Ouyang W, Sen G, Stark GR, Su B, Vines CM, Tournier C, Hamilton TA, Vidimos A, Gastman B, Liu C, Li X (2015) A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4-ERK5 axis. J Exp Med 212:1571–1587. https://doi.org/10.1084/jem.20150204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Krueger GG, Chambers DA, Shelby J (1981) Involved and uninvolved skin from psoriatic subjects: are they equally diseased? Assessment by skin transplanted to congenitally athymic (nude) mice. J Clin Invest 68:1548–1557. https://doi.org/10.1172/jci110409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nickoloff BJ, Kunkel SL, Burdick M, Strieter RM (1995) Severe combined immunodeficiency mouse and human psoriatic skin chimeras. Validation of a new animal model. Am J Pathol 146:580–588

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Desmet E, Ramadhas A, Lambert J, Van Gele M (2017) In vitro psoriasis models with focus on reconstructed skin models as promising tools in psoriasis research. Exp Biol Med (Maywood) 242:1158–1169. https://doi.org/10.1177/1535370217710637

    Article  CAS  Google Scholar 

  157. Shin JU, Abaci HE, Herron L, Guo Z, Sallee B, Pappalardo A, Jackow J, Wang EHC, Doucet Y, Christiano AM (2020) Recapitulating T cell infiltration in 3D psoriatic skin models for patient-specific drug testing. Sci Rep 10:4123. https://doi.org/10.1038/s41598-020-60275-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Golbari NM, Porter ML, Kimball AB (2018) Current guidelines for psoriasis treatment: a work in progress. Cutis 101:10–12

    PubMed  Google Scholar 

  159. Kaushik SB, Lebwohl MG (2019) Review of safety and efficacy of approved systemic psoriasis therapies. Int J Dermatol 58:649–658. https://doi.org/10.1111/ijd.14246

    Article  PubMed  Google Scholar 

  160. Ronholt K, Iversen L (2017) Old and new biological therapies for psoriasis. Int J Mol Sci 18:2297. https://doi.org/10.3390/ijms18112297

    Article  CAS  PubMed Central  Google Scholar 

  161. Gordon KB, Strober B, Lebwohl M, Augustin M, Blauvelt A, Poulin Y, Papp KA, Sofen H, Puig L, Foley P, Ohtsuki M, Flack M, Geng Z, Gu Y, Valdes JM, Thompson EHZ, Bachelez H (2018) Efficacy and safety of risankizumab in moderate-to-severe plaque psoriasis (UltIMMa-1 and UltIMMa-2): results from two double-blind, randomised, placebo-controlled and ustekinumab-controlled phase 3 trials. Lancet 392:650–661. https://doi.org/10.1016/S0140-6736(18)31713-6

    Article  CAS  PubMed  Google Scholar 

  162. Saunte DM, Mrowietz U, Puig L, Zachariae C (2017) Candida infections in patients with psoriasis and psoriatic arthritis treated with interleukin-17 inhibitors and their practical management. Br J Dermatol 177:47–62. https://doi.org/10.1111/bjd.15015

    Article  CAS  PubMed  Google Scholar 

  163. Li H, Zuo J, Tang W (2018) Phosphodiesterase-4 Inhibitors for the treatment of inflammatory diseases. Front Pharmacol 9:1048. https://doi.org/10.3389/fphar.2018.01048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wcislo-Dziadecka D, Zbiciak-Nylec M, Brzezinska-Wcislo L, Bebenek K, Kazmierczak A (2017) Newer treatments of psoriasis regarding IL-23 inhibitors, phosphodiesterase 4 inhibitors, and Janus kinase inhibitors. Dermatol Ther. https://doi.org/10.1111/dth.12555

    Article  PubMed  Google Scholar 

  165. Liu Y, Jarjour W, Olsen N, Zheng SG (2020) Traitor or warrior-Treg cells sneaking into the lesions of psoriatic arthritis. Clin Immunol 215:108425. https://doi.org/10.1016/j.clim.2020.108425

    Article  CAS  PubMed  Google Scholar 

  166. Karczewski J, Dobrowolska A, Rychlewska-Hanczewska A, Adamski Z (2016) New insights into the role of T cells in pathogenesis of psoriasis and psoriatic arthritis. Autoimmunity 49:435–450. https://doi.org/10.3109/08916934.2016.1166214

    Article  CAS  PubMed  Google Scholar 

  167. Sugiyama H, Gyulai R, Toichi E, Garaczi E, Shimada S, Stevens SR, McCormick TS, Cooper KD (2005) Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 174:164–173. https://doi.org/10.4049/jimmunol.174.1.164

    Article  CAS  PubMed  Google Scholar 

  168. Uttarkar S, Brembilla NC, Boehncke WH (2019) Regulatory cells in the skin: pathophysiologic role and potential targets for anti-inflammatory therapies. J Allergy Clin Immunol 143:1302–1310. https://doi.org/10.1016/j.jaci.2018.12.1011

    Article  CAS  PubMed  Google Scholar 

  169. Yang L, Li B, Dang E, Jin L, Fan X, Wang G (2016) Impaired function of regulatory T cells in patients with psoriasis is mediated by phosphorylation of STAT3. J Dermatol Sci 81:85–92. https://doi.org/10.1016/j.jdermsci.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  170. Kannan AK, Su Z, Gauvin DM, Paulsboe SE, Duggan R, Lasko LM, Honore P, Kort ME, McGaraughty SP, Scott VE, Gauld SB (2019) IL-23 induces regulatory T cell plasticity with implications for inflammatory skin diseases. Sci Rep 9:17675. https://doi.org/10.1038/s41598-019-53240-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hayashi M, Yanaba K, Umezawa Y, Yoshihara Y, Kikuchi S, Ishiuji Y, Saeki H, Nakagawa H (2016) IL-10-producing regulatory B cells are decreased in patients with psoriasis. J Dermatol Sci 81:93–100. https://doi.org/10.1016/j.jdermsci.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  172. Mavropoulos A, Varna A, Zafiriou E, Liaskos C, Alexiou I, Roussaki-Schulze A, Vlychou M, Katsiari C, Bogdanos DP, Sakkas LI (2017) IL-10 producing Bregs are impaired in psoriatic arthritis and psoriasis and inversely correlate with IL-17- and IFNgamma-producing T cells. Clin Immunol 184:33–41. https://doi.org/10.1016/j.clim.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  173. Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, Gudjonsson JE, Li Y, Tejasvi T, Feng BJ, Ruether A, Schreiber S, Weichenthal M, Gladman D, Rahman P, Schrodi SJ, Prahalad S, Guthery SL, Fischer J, Liao W, Kwok PY, Menter A, Lathrop GM, Wise CA, Begovich AB, Voorhees JJ, Elder JT, Krueger GG, Bowcock AM, Abecasis GR, for the Collaborative Association Study of Psoriasis (2009) Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 41:199–204. https://doi.org/10.1038/ng.311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tejasvi T, Stuart PE, Chandran V, Voorhees JJ, Gladman DD, Rahman P, Elder JT, Nair RP (2012) TNFAIP3 gene polymorphisms are associated with response to TNF blockade in psoriasis. J Invest Dermatol 132:593–600. https://doi.org/10.1038/jid.2011.376

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ lab related to the topic of this paper is supported by the VIB and the Research Foundation—Flanders (FWO; G090914N and G035517N). I.S.A. is supported by a postdoctoral fellowship and research grants (1503418N and 1503815N) of the FWO. E.V.N. was supported by a predoctoral FWO fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi Beyaert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonina, I.S., Van Nuffel, E. & Beyaert, R. Immune responses and therapeutic options in psoriasis. Cell. Mol. Life Sci. 78, 2709–2727 (2021). https://doi.org/10.1007/s00018-020-03726-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03726-1

Keywords

Navigation