Skip to main content
Log in

Mitochondrial DNA mutations in human neoplasia

  • Review Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Many models of tumour formation have been put forth so far. In general they involve mutations in at least three elements within the cell: oncogenes, tumour suppressors and regulators of telomere replication. Recently numerous mutations in mitochondria have been found in many tumours, whereas they were absent in normal tissues from the same individual. The presence of mutations, of course, does not prove that they play a causative role in development of neoplastic lesions and progression; however, the key role played by mitochondria in both apoptosis and generation of DNA-damaging reactive oxygen species might indicate that the observed mutations contribute to tumour development. Recent experiments with nude mice have proven that mtDNA mutations are indeed responsible for tumour growth and exacerbated ROS production. This review describes mtDNA mutations in main types of human neoplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abu-Amero KK, Alzahrani AS, Zou M, Shi Y, 2005. High frequency of somatic mitochondrial DNA mutations in human thyroid carcinomas and complex I respiratory defect in thyroid cancer cell lines. Oncogene 24: 1455–1460.

    Article  CAS  PubMed  Google Scholar 

  • Alazzouzi H, Farriol M, Espin E, Armengol M, Pena M, Zeh K, et al. 2003. Molecular patterns of nuclear and mitochondrial microsatellite alterations in breast tumors. Oncol Rep 10: 1561–1567.

    CAS  PubMed  Google Scholar 

  • Alonso A, Martin P, Albarran C, Aquilera B, Garcia O, Guzman A, et al. 1997. Detection of somatic mutations in the mitochondrial DNA control region of colorectal and gastric tumors by heteroduplex and single-strand conformation analysis. Electrophoresis 18: 682–685.

    Article  CAS  PubMed  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290: 457–465.

    Article  CAS  PubMed  Google Scholar 

  • Augenlicht LH, Heerdt BG, 2001. Mitochondria: integrators in tumorigenesis? Nature Genetics 28: 104–105.

    Article  CAS  PubMed  Google Scholar 

  • Bartnik E, Lorenc A, Mroczek K, 2001. Human mitochondria in health, disease, ageing and cancer. J Appl Genet 42: 65–71.

    CAS  PubMed  Google Scholar 

  • Benda J, 1994. Pathology of cervical carcinoma and its prognostic implications. Semin Oncol 21: 3–11.

    CAS  PubMed  Google Scholar 

  • Berkan M, 2003. Nowotwory nabłonkowe skóry [Epithelial skin neoplasms]. In: Kordek R, Jassem J, Krzakowski M, Jeziorski A, eds., Onkologia. Podrêcznik dla studentów i lekarzy [Oncology: Handbook for students and physicians]. Medical Press, Gdańsk.

    Google Scholar 

  • Bianchi MS, Bianchi NO, Bailliet G, 1995. Mitochondrial DNA mutations in normal and tumor tissues from breast cancer patients. Cytogenet Cell Genet 71: 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi NO, Bianchi MS, Richard SM, 2001. Mitochondrial genome instability in human cancer. Rev Mutat Res 488: 9–23.

    CAS  Google Scholar 

  • Brener A, Piekarski J, 2003. Rak jelita grubego [Colon cancer]. In: Kordek R, Jassem J, Krzakowski M, Jeziorski A, eds., Onkologia. Podręcznik dla studentów i lekarzy [Oncology: Handbook for students and physicians]. Medical Press, Gdańsk.

    Google Scholar 

  • Burgart LJ, Zheng J, Shu Q, Strickler JG, Shibata D, 1995. Somatic mitochondrial mutation in gastric cancer. Am J Pathol 147: 1105–1111.

    CAS  PubMed  Google Scholar 

  • Capuano F, Guerrieri F, Papa S, 1997. Oxidative phosphorylation enzymes in normal and neoplastic cell growth. J Bioenerg 29: 379–384.

    Article  CAS  Google Scholar 

  • Castle PE, Wacholder S, Lorincz AT, Scott DR, Sherman ME, Glass AG, et al. 2002. A prospective study of high-grade cervical neoplasia risk among human papillomavirus-infected women. J Natl Cancer Inst 94: 1406–1414.

    PubMed  Google Scholar 

  • Chen JZ, Kadlubar FF, 2004. Mitochondrial mutagenesis and oxidative stress in human prostate cancer. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 22: 1–12.

    CAS  PubMed  Google Scholar 

  • Chester KA, Robson L, Begent RH, Pringle H, Primrose L, Talbot IC, et al. 1990. In situ and slot hybridization analysis of RNA in colorectal tumours and normal colon shows distinct distributions of mitochondrial sequences. J Pathol 162: 309–315.

    Article  CAS  PubMed  Google Scholar 

  • Clevers H, 2004. At the crossroads of inflammation and cancer. Cell 118: 671–674.

    Article  CAS  PubMed  Google Scholar 

  • Debniak T, Gorski B, Huzarski T, Byrski T, Cybulski C, Mackiewicz A, et al. 2005. A common variant of CDKN2A (p 16) predisposes to breast cancer. J Med Genet 42: 763–765.

    Article  CAS  PubMed  Google Scholar 

  • Deichmann M, Kahle B, Benner A, Thome M, Helmke B, Naher H, 2004. Somatic mitochondrial mutations in melanoma resection specimens. Int J Oncol 24: 137–141.

    CAS  PubMed  Google Scholar 

  • Desagher S, Martinou JC, 2000. Mitochondria as the central control point of apoptosis. TRENDS in Cell Biology 10: 396–377.

    Article  Google Scholar 

  • Durham SE, Krishnan KJ, Betts J, Birch-Machin MA, 2003. Mitochondrial DNA damage in non-melanoma skin cancer. Br J Cancer 88: 90–95.

    Article  CAS  PubMed  Google Scholar 

  • Fearon ER, Vogelstein B, 1990. A genetic model for colorectal tumorigenesis. Cell 61: 759–767.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Silva P, Enriquez JA, Montoya J, 2003. Replication and transcription of mammalian mitochondrial DNA. Exp Physiol 88: 41–56.

    Article  CAS  PubMed  Google Scholar 

  • Fine G, Chan K, 1985. Alimentary tract. In: Damjanov L, Linder J, eds., Anderson’s Pathology. Vol. 2. C.V. Mosby, Saint Louis 2: 1055–1095.

    Google Scholar 

  • Gleason DF, 1966. Classification of prostate carcinomas. Cancer. Chemother Rep 50: 125–128.

    CAS  Google Scholar 

  • Gleason DF, Mellinger GT, 1974. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 111: 58–64.

    CAS  PubMed  Google Scholar 

  • Gorski B, Cybulski C, Huzarski T, Byrski T, Gronwald J, Jakubowska A, et al. 2005. Breast cancer predisposing alleles in Poland. Breast Cancer Res Treat 92: 19–24.

    Article  CAS  PubMed  Google Scholar 

  • Habano W, Nakamura S, Sugai T, 1998. Microsatellite instability in the mitochondrial DNA of colorectal carcinomas: evidence for mismatch repair systems in mitochondrial genome. Oncogene 17: 1931–1937.

    Article  CAS  PubMed  Google Scholar 

  • Habano W, Sugai T, Yoshida T, Nakamura S, 1999. Mitochondrial gene mutation, but not large-scale deletion, is a feature of colorectal carcinomas with mitochondrial microsatellite instability. Int J Cancer 83: 625–629.

    Article  CAS  PubMed  Google Scholar 

  • Hood DA, Adhihetty PJ, Colavecchia M, Gordon JW, Irrcher I, Joseph AM, et al. 2003. Mitochondrial biogenesis and the role of the protein import pathway. Med Sci Sport & Exercise 35: 86–94.

    Article  CAS  Google Scholar 

  • Huzarski T, Lener M, Domagala W, Gronwald J, Byrski T, Kurzawski G, et al. 2005. The 3020insC allele of NOD2 predisposes to early-onset breast cancer. Breast Cancer Res Treat 89: 91–93.

    Article  PubMed  Google Scholar 

  • Isaacs C, Cavalli LR, Cohen Y, Pennanen M, Shankar LK, Freedman M, et al. 2004. Detection of LOH and mitochondrial DNA alterations in ductal lavage and nipple aspirate fluids from hngh-risk patients. Breast Cancer Res Treat 84: 99–105.

    Article  CAS  PubMed  Google Scholar 

  • Jackson MJ, Papa S, Bolanos J, Bruckdorfer R, Carlsen H, Elliott RM, et al. 2002. Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Mol Aspects Med 23: 209–285.

    Article  CAS  PubMed  Google Scholar 

  • Jeronimo C, Nomoto S, Caballero OL, Usadel H, Henrique R, Varzim G, et al. 2001. Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene 20: 5195–5198.

    Article  CAS  PubMed  Google Scholar 

  • Jeziorski A, 2003. Rak piersi [Breaswt cancer]. In: Kordek R, Jassem J, Krzakowski M, Jeziorski A, eds., Onkologia. Podręcznik dla studentów i lekarzy [Oncology: Handbook for students and physicians]. Medical Press, Gdańsk.

    Google Scholar 

  • Kirkinezos IG, Moraes CT, 2001. Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 12: 449–457.

    Article  CAS  PubMed  Google Scholar 

  • Kozakiewicz B, 2003. Nowotwory złośliwe narządu rodnego [Malignancies of female reproductive organs]. Nowa Medycyna — Onkologia VI 3.

  • Krishnan KJ, Harbottle A, Birch-Machin MA, 2004. The use of a 3895 bp mitochondrial DNA deletion as a marker for sunlight exposure in human skin. J Invest Dermatol 123: 1020–1024.

    Article  CAS  PubMed  Google Scholar 

  • Krus S, Skrzypek-Fakhoury E, 1996. Patomorfologia kliniczna [Clinical pathomorphology]. PZWL, Warszawa.

    Google Scholar 

  • Kubiak R, Bieńkiewicz A, 2003. Rak szyjki macicy [Cervical cancer]. In: Kordek R, Jassem J, Krzakowski M, Jeziorski A, eds., Onkologia. Podręcznik dla studentów i lekarzy [Oncology: Handbook for students and physicians]. Medical Press, Gdańsk.

    Google Scholar 

  • Lee HC, Yin PH, Lin JC, Wu CC, Chen CY, Wu CW, et al. 2005. Mitochondrial genome instability and mtDNA depletion in human cancers. Ann N Y Acad Sci 1042: 109–122.

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Baracca A, Carelli V, D’Aurelio M, Sgarbi G, Solaini G, 2004. Bioenergetics of mitochondrial diseases associated with mtDNA mutations. Biochim Biophys Acta 1658: 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Li HX, Zhong S, Li CH, 2003. Study on the mitochondrion DNA mutation in tumor tissues of gynecologic oncology patients. Zhonghua Fu Chan Ke Za Zhi 38: 290–293.

    PubMed  Google Scholar 

  • Li TT, Zhao LN, Liu ZG, Han Y, Fan DM, 2005. Regulation of apoptosis by the papillomavirus E6 oncogene. World J Gastroenterol 11: 931–937.

    CAS  PubMed  Google Scholar 

  • Lievre A, Chapusot C, Bouvier AM, Zinzindohoue F, Piard F, Roignot P, et al. 2005. Clinical value of mitochondrial mutations in colorectal cancer. J Clin Oncol 23: 3517–3525.

    Article  CAS  PubMed  Google Scholar 

  • Liu VW, Shi HH, Cheung AN, Chiu PM, Leung TW, Nagley P, et al. 2001. High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas. Cancer Res 61: 5998–6001.

    CAS  PubMed  Google Scholar 

  • Liu Y, Fiskum G, Schubert D, 2002. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80: 780–787.

    Article  CAS  PubMed  Google Scholar 

  • Longworth MS, Laimins LA, 2004. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68: 362–372.

    Article  CAS  PubMed  Google Scholar 

  • Lorenc A, Bryk J, Golik P, Kupryjańczyk J, Ostrowski J, Pronicki M, et al. 2003. Homoplasmic MELAS A3243G mtDNA mutation in colon cancer sample. Mitochondrion 3: 119–124.

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Walker T, MacManus JP, Seligy VL, 1992. Differentiation of HT-29 human colonic adenocarcinoma cells correlates with increased expression of mitochondrial RNA: effects of trehalose on cell growth and maturation. Cancer Res 52: 3718–3725.

    CAS  PubMed  Google Scholar 

  • Lubinski J, Phelan CM, Ghadirian P, Lynch HT, Garber J, Weber B, et al. 2004. Cancer variation associated with the position of the mutation in the BRCA2 gene. Fam Cancer 3: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Mathupala SP, Rempel A, Pedersen PL, 1997. Aberrant glycolytic metabolism of cancer cells: A remarkable coordination of genetic, transcriptional, posttranslational, and mutational events that lead to a criticsal role for type II heksokinase. J Bioenerg Biomemb 29: 339–343.

    Article  CAS  Google Scholar 

  • Mattiazzi M, D’Aurelio M, Gajewski CD, Martushova K, Kiaei M, Beal MF, et al. 2002. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 277: 29626–29633.

    Article  CAS  PubMed  Google Scholar 

  • Mattiazzi M, Vijayvergiya C, Gajewski CD, DeVivo DC, Lenaz G, Wiedmann M, 2004. The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Hum Mol Genet 13: 869–879.

    Article  CAS  PubMed  Google Scholar 

  • Maximo V, Soares P, Lima J, Cameselle-Teijeiro J, Sobrinho-Simoes M, 2002. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: A study with emphasis on hürthle cell tumors. Am J Pathol 160: 1857–1865.

    CAS  PubMed  Google Scholar 

  • Maximo V, Soares P, Seruca R, Rocha AS, Castro P, Sobrinho-Simoes M, 2001. Microsatellite instability, mitochondrial DNA large deletions, and mitochondrial DNA mutations in gastric carcinoma. Genes Chromosomes Cancer 32: 136–143.

    Article  CAS  PubMed  Google Scholar 

  • Modica-Napolitano JS, Singh K, 2002. Mitochondria as targets for detection and treatment of cancer. Expert Rev Mol Med 2002: 1–19.

    Google Scholar 

  • Morson B, 1974. President’s address. The polyp-cancer sequence in the large bowel. Proc R Soc Med 67: 451–457.

    CAS  PubMed  Google Scholar 

  • Nejc D, 2003. Czerniak [Melanoma]. In: Kordek R, Jassem J, Krzakowski M, Jeziorski A, eds., Onkologia. Podręcznik dla studentów i lekarzy [Oncology: Handbook for students and physicians]. Medical Press, Gdańsk.

    Google Scholar 

  • Nomoto S, Yamashita K, Koshikawa K, Nakao A, Sidransky D, 2002. Mitochondrial D-loop mutations as clonal markers in multicentric hepatocellular carcinoma and plasma. Clin Cancer Res 8: 481–487.

    CAS  PubMed  Google Scholar 

  • Okochi O, Hibi K, Uemura T, Inoue S, Takeda S, Kaneko T, Nakao A, 2002. Detection of mitochondrial DNA alterations in the serum of hepatocellular carcinoma patients. Clin Cancer Res 8: 2875–2878.

    CAS  PubMed  Google Scholar 

  • Parrella P, Seripa D, Matera MG, Rabitti C, Rinaldi M, Mazzarelli P, et al. 2003. Mutations of the D310 mitochondrial mononucleotide repeat in primary tumors and cytological specimens. Cancer Lett 190: 73–77.

    Article  CAS  PubMed  Google Scholar 

  • Parrella P, Xiao Y, Fliss M, Sanchez-Cespedes M, Mazzarelli P, Rinaldi M, et al. 2001. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res 61: 7623–7626.

    CAS  PubMed  Google Scholar 

  • Pejovic T, Ladner D, Intengan M, Zheng K, Fairchild T, Dillon D, et al. 2004. Somatic D-loop mitochondrial DNA mutations are frequent in uterine serous carcinoma. Eur J Cancer 40: 2519–2524.

    Article  CAS  PubMed  Google Scholar 

  • Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, et al. 2005. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 102: 719–724.

    Article  CAS  PubMed  Google Scholar 

  • Piekarski J, Brener A, 2003. Pierwotne nowotwory wątroby [Primary liver neoplasms]. In: Kordek R, Jassem J, Krzakowski M, Jeziorski A, eds., Onkologia. Podręcznik dla studentów i lekarzy [Oncology: Handbook for students and physicians]. Medical Press, Gdańsk.

    Google Scholar 

  • Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, et al. 1998. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20: 291–293.

    Article  CAS  PubMed  Google Scholar 

  • Pomara G, Cappello F, 2003. RE: heat shock proteins: their role in urological tumors — Letters to the Editor. J Urol 170: 927–929.

    Article  CAS  PubMed  Google Scholar 

  • Pomorski L, Kordek R, Kubiak R, 2003. Nowotwory tarczycy [Thyroid neoplasms]. In: Kordek R, Jassem J, Krzakowski M, Jeziorski A, eds., Onkologia. Podręcznik dla studentów i lekarzy [Oncology: Handbook for students and physicians]. Medical Press, Gdańsk.

    Google Scholar 

  • Rogounovitch T, Saenko V, Yamashita S, 2004. Mitochondrial DNA and human thyroid diseases. Endocr J 51: 265–277.

    Article  CAS  PubMed  Google Scholar 

  • Rosson D, Keshgegian AA, 2004. Frequent mutations in the mitochondrial control region DNA in breast tissue. Cancer Lett 215: 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Savre-Train I, Piatyszek MA, Shay JW, 1992. Transcription of deleted mitochondrial DNA in human colon adenocarcinoma cells. Hum Mol Genet 1: 203–204.

    Article  CAS  PubMed  Google Scholar 

  • Sharp MG, Adams SM, Walker RA, Brammar WJ, Varley JM, 1992. Differential expression of the mitochondrial gene cytochrome oxidase II in benign and malignant breast tissue. J Pathol 168: 163–168.

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Zhao M, Dong B, Tang W, Xiao B, Liu JZ, Lu YY, 2003. Frequent 4 977 bp deletion of mitochondrial DNA in tumor cell lines, solid tumors and precancerous lesions of human stomach. Zhonghua Yi Xue Za Zhi 83: 1484–1489.

    CAS  PubMed  Google Scholar 

  • Shi HH, Vincent L, Hextan N, Yang XY, 2002. Mutations in the D-loop region of mitochondrial DNA in ovarian tumors. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 24: 170–173.

    CAS  PubMed  Google Scholar 

  • Shidara Y, Yamagata K, Kanamori T, Nakano K, Kwong JQ, Manfredi G, et al. 2005. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 65: 1655–1663.

    Article  CAS  PubMed  Google Scholar 

  • Sidorik EP, Beregovskaia NN, 1983. Iron-sulfur centers and free radicals of the electron transfer chains of mitochondria in chemical and hormonal carcinogenesis. Ukr Biokhim Zh 55: 544–547.

    CAS  PubMed  Google Scholar 

  • Stempczyńska J, Potemski P, 2003 Nowotowory jajnika [Ovary neoplasms]. In: Kordek R, Jassem J, Krzakowski M, Jeziorski A, eds., Onkologia. Podrêcznik dla studentów i lekarzy [Oncology: Handbook for students and physicians]. Medical Press, Gdańsk.

    Google Scholar 

  • Takeuchi H, Fujimoto A, Hoon DS, 2004. Detection of mitochondrial DNA alterations in plasma of malignant melanoma patients. Ann N Y Acad Sci 1022: 50–54.

    Article  CAS  PubMed  Google Scholar 

  • Tamori A, Nishiguchi S, Nishikawa M, Kubo S, Koh N, Hirohashi K, et al. 2004. Correlation between clinical characteristics and mitochondrial D-loop DNA mutations in hepatocellular carcinoma. J Gastroenterol 39: 1063–1068.

    Article  CAS  PubMed  Google Scholar 

  • Tamura G, Nishizuka S, Maesawa C, Suzuki Y, Iwaya T, Sakata K, et al. 1999. Mutations in mitochondrial control region DNA in gastric tumours of Japanese patients. Eur J Cancer 35: 316–319.

    Article  CAS  PubMed  Google Scholar 

  • Tan DJ, Bai RK, Wong LJC, 2002. Comprehensive scanning of somatic mitochondrial DNA mutations in breast bancer. Cancer Res 62: 972–976.

    CAS  PubMed  Google Scholar 

  • Tenderenda M, 2003 Nowotwory żołądka [Stomach neoplasms]. In: Kordek R, Jassem J, Krzakowski M, Jeziorski A, eds., Onkologia. Podrêcznik dla studentów i lekarzy [Oncology: Handbook for students and physicians]. Medical Press, Gdańsk.

    Google Scholar 

  • Vives-Bauza C, Gonzalo R, Manfredi G, Garcia-Arumi E, Andreu AL, 2006. Enhanced ROS production and antioxidant defenses in cybrids harbouring mutations in mtDNA. Neurosci Lett 391: 136–141.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW, 1993. The multistep nature of cancer. Trends Genet 9: 138–141.

    Article  CAS  PubMed  Google Scholar 

  • Vonka V, Kanka J, Hirsch I, 1984. Prospective study on the relationship between cervical neoplasia and herpes simplex type-2 virus. II: herpes simplex type-2 antibody presence in sera taken at enrollment. Int J Cancer 33: 61–66.

    Article  CAS  PubMed  Google Scholar 

  • Warburg O, 1956. On the Origin of Cancer Cells. Science 123: 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Wong LJC, Tan DJ, Bai RK, Yeh KT, Chang J, 2004. Molecular alterations in mitochondrial DNA of hepatocellular carcinomas: is there a correlation with clinicopathological profile? J Med Genet 41: e65.

    Article  PubMed  Google Scholar 

  • Yamamoto A, Horai S, Yuasa Y, 1989. Increased level of mitochondrial gene expression in polyps of familial polyposis coli patients. Biochem Biophys Res Commun 159: 1100–1106.

    Article  CAS  PubMed  Google Scholar 

  • Yeh JJ, Lunetta KL, van Orsouw NJ, Moore FD, Jr. Mutter GL, Vijg J, et al. 2000. Somatic mitochondrial DNA (mtDNA) mutations in papillary thyroid carcinomas and differential mtDNA sequence variants in cases with thyroid tumours. Oncogene 19: 2060–2066.

    Article  CAS  PubMed  Google Scholar 

  • Zhao YB, Yang HY, Zhang XW, Chen GY, 2005. Mutation in D-loop region of mitochondrial DNA in gastric cancer and its significance. World J Gastroenterol 11: 3304–3306.

    CAS  PubMed  Google Scholar 

  • Zhu W, Qin W, Bradley P, Wessel A, Puckett CL, Sauter ER, 2005. Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid. Carcinog 26: 145–152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Bartnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czarnecka, A.M., Golik, P. & Bartnik, E. Mitochondrial DNA mutations in human neoplasia. J Appl Genet 47, 67–78 (2006). https://doi.org/10.1007/BF03194602

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03194602

Key words

Navigation