Skip to main content
Log in

Expression ofRap 1 suppresses genomic instability ofH-ras transformed mouse fibroblasts

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Among the multiple genetic changes that occur during cancer progression are the activation of proto-oncogenes and the inactivation or loss of genes encoding tumor suppressors. The potential roles for these genes in the perturbation of genome stability continues to be of major interest. We have previously shown that conditional expression of H-ras in NIH3T3 cells increases genetic instability in these cells, rendering them more permissive to gene amplification and to the generation of chromosome aberrations which can be induced within a single cell cycle. In the present study we show that genetic instability induced by H-ras expression can be suppressed by co-expressions ofRap 1, aRas-related tumor suppressor gene. An NIH3T3 cell line transformed with activated human H-ras was transfected withRap 1. Expression of theRap 1 gene reverted the transformed cells to a flat morphology. The reverted cells reestablished contact inhibition of growth and lost the capacity to form colonies in soft agar. These cells were subsequently studied for the role ofRap 1 on the suppression of genomic instability induced by oncogenic H-ras. Cells transformed with H-ras manifest an increase in methotrexate resistance as measured by an increase inDhfr gene amplification. Cells which concommitantly expressRap 1 showed reduced levels of methotrexate resistance as well as reduction of gene amplification capacity. Furthermore fluorescent-in-situ hybridization (FISH) with a pancentromeric mouse probe showed that elevated levels of chromosome aberrations in cells expressing H-ras were also suppressed after co-expression ofRap 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  1. Foulds, L. (1958). The natural history of cancer.J. Chronic. Dis. 8:2–37.

    Article  PubMed  CAS  Google Scholar 

  2. Fearon, E.R., and Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis.Cell 61:759–767.

    Article  PubMed  CAS  Google Scholar 

  3. Thacker, J. (1985). The molecular nature of mutations in cultured cells: A review.Mutation Res. 150:431–442.

    PubMed  CAS  Google Scholar 

  4. Wolman, S.R. (1983). Karyotypic progression in human tumors.Cancer Metastasis Rev. 2:257–293.

    Article  PubMed  CAS  Google Scholar 

  5. Digweed, M. (1993). Human genetic instability syndromes: Single gene defects with increased risk of cancer.Toxicology Letters 67:259–281.

    Article  PubMed  CAS  Google Scholar 

  6. Bronner, C.E., Baker, S.M., Morrison, P.T., Warren, G., Smith, L.G., Lescoe, M.K., Kane, M., Earabina, C., Lipford, J., Lindblom, A., Tannergard, R., Bolag, R.J., Godwin, A.R., Ward, D.C., Nordenskjold, M., Fishel, R., Kolodner, R., and Liskay, R.M. (1994). Mutations in the DNA mismatch repair gene homolog hMLH1 is associated with hereditary non-polyposis colon cancer.Nature 368:258–261.

    Article  PubMed  CAS  Google Scholar 

  7. Fishel, R., Lescoe, M.K., Rao, M.R.S., Copeland, M.G., Jenkins, N.G., Garber, J., Kane, M., and Kolodner, R. (1993). The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer.Cell 75:1027–1036.

    Article  PubMed  CAS  Google Scholar 

  8. Peltomaki, P., Lothe, R.A., Aaltonen, L.A., Pylkkanen, L., Nystrom-Lathi, M., Seruca, R., David, I., Holm, R., Ryberg, D., Haugen, A., Brogger, A., Borresen, A.L., and de la Chapelle, A. (1993). Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome.Cancer Res. 53:5853–5855.

    PubMed  CAS  Google Scholar 

  9. Han, H-J., Yanagisawa, A., Kato, Y., Park, J.-G., and Nakamura, Y. (1993). Genetic instability in pancreatic cancer and poorly differentiated type of gastric cancer.Cancer Res. 53:5087–5089.

    PubMed  CAS  Google Scholar 

  10. Mironov, N.M., Aguelon, M.A.-M., Potapova, G.I., Omori, Y., Gorbunov, O.V., Klimenkov, A.A., and Yamasaki, H. (1994). Alterations of (CA)n DNA repeats and tumor supporessor genes in human gastric cancer.Cancer Res. 54:41–44.

    PubMed  CAS  Google Scholar 

  11. Risinger, J.I., Berchuck, A., Kohler, M.F., Watson, P., Lynch, H.T., and Boyd, J. (1993). Genetic instability of microsatellites in endometrial carcinoma.Cancer Res. 53:5100–5103.

    PubMed  CAS  Google Scholar 

  12. Gonzalez-Zulueta, M., Ruppert, J.M., Tokino, K., Tsai, Y.C., Spruck, C.H. III, Miyao, N., Nichols, P.W., Heermann, G.G., Horn, T., Steven, K., Summerhayes, I.C., Sidransky, D., and Jones, P.A. (1993). Microsatellite instability in bladder cancer.Cancer Res. 53:5620–5623.

    PubMed  CAS  Google Scholar 

  13. Livingstone, L.R., White, A., Sprouse, J., Livanose, E., Jacks, T., and Tlsty, T.D. (1992). Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53.Cell 70:923–935.

    Article  PubMed  CAS  Google Scholar 

  14. Yin, Y., Tainsky, M.A., Bischoff, F.Z., Strong, L.C., and Wahl, G.M. (1992). Wild type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles.Cell 70:937–948.

    Article  PubMed  CAS  Google Scholar 

  15. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S., and Vande Woude, G.F. (1996). Abnormal centrosome amplification in the absence of p53.Science 271:1744–1747.

    Article  PubMed  CAS  Google Scholar 

  16. Wani, M.A., Xu, X., and Stambrook, P.J. (1994). Increased methotrexate resistance and dhfr gene amplification as a consequence of induced Ha-ras expression in NIH 3T3 cells.Cancer Res. 54:2504–2508.

    PubMed  CAS  Google Scholar 

  17. Denko, N.C., Giaccia, A.J., Stringer, J.R., and Stambrook, P.J. (1994). The human Ha-ras oncogene induces genomic instability within one cell cycle.Proc. Natl. Acad. Sci. U.S.A.,91:5124–5128.

    Article  PubMed  CAS  Google Scholar 

  18. Denko, N., Stringer, J., Wani, M., and Stambrook, P.J. (1995). Mitotic and post mitotic consequences of genomic instability induced by oncogenic Ha-Ras.Somatic Cell and Molecular Genetics 21:241–253.

    Article  PubMed  CAS  Google Scholar 

  19. Barbacid, M. (1986). Oncogenes and human cancer: Cause or consequences.Carcinogenesis 7:1037–1042.

    Article  PubMed  CAS  Google Scholar 

  20. Barbacid, M. (1987). ras genes.Annu. Rev. Biochem. 56:779–827.

    Article  PubMed  CAS  Google Scholar 

  21. Forrester, K.C., Almoguera, C., Itan, K., Grïzzle, W.E., and Perucho, M. (1987). Detection of high incidence of K-ras oncogenes during human colon tumorigenesis.Nature 327:298–303.

    Article  PubMed  CAS  Google Scholar 

  22. Corominas, M., Kamino, H., Leon, J., and Pellicer, A. (1989). Oncogene activation in human benign tumors of the skin (keratoacanthomas): isHRAS involved in differention as well as proliferation?Proc. Natl. Acad. Sci. U.S.A. 86:6372–6376.

    Article  PubMed  CAS  Google Scholar 

  23. Ahuja, H.G., Foti, A., Bar-Eli, M., and Cline, M.J. (1990). The pattern of mutational involvement of RAS genes in human hematologic malignancies determined by DNA amplification and direct sequencing.Blood 76:1684–1690.

    Google Scholar 

  24. Land, H., Parada, L.F., and Weinberg, R.A. (1983). Cellular oncogenes and multistep carcinogenesis.Science 222:771–778.

    Article  PubMed  CAS  Google Scholar 

  25. Parada, L.F., Land, H., Weinberg, R.A., Wolf, D., and Rotter, V. (1984). Cooperation between gene encoding p53 tumor antigen and ras in cellular transformation.Nature 312:649–651.

    Article  PubMed  CAS  Google Scholar 

  26. Thompson, T.C., Southgate, J., Kitchener, G., and Land, H. (1989). Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ.Cell 56:917–930.

    Article  PubMed  CAS  Google Scholar 

  27. Tlsty, T.D., White, A., and Sanchez, J. (1992). Suppression of gene amplification in human cell hybrids.Science 255:1425–1427.

    Article  PubMed  CAS  Google Scholar 

  28. Noda, M. (1993). Structures and functions of the Krev-1 transformation suppressor gene and its relatives.Biochem. Biophys. Acta. 1155:97–109.

    PubMed  CAS  Google Scholar 

  29. Sakoda, T., Kaibuchi, K., Kishi, K., Kishida, S., Doi, K., Hoshino, M., Hattori, S., and Takai, Y. (1992).smg/rap 1/krev 1 p21 s inhibit the signal pathway to the c-fos promoter/enhancer from c-ki-ras p21 but not c-raf-1 kinase in NIH3T3 cells.Oncogene 7:1705–1711.

    PubMed  CAS  Google Scholar 

  30. Su, Z., Austin, V.N., Zimmer, S.G., and Fischer, P.B. (1993). Defining the critical gene expression changes associated with expression and suppression of the tumorigenic and metastatic phenotype in Ha-ras transformed cloned rat embryo fibroblasts cells.Oncogene 8:1211–1219.

    PubMed  CAS  Google Scholar 

  31. Sambrook, J., Fritsch, E.F., and Maniatis, T. (eds.). Molecular Cloning: A laboratory manual, New York: Cold Spring Harbor Laboratory press, 1989.

    Google Scholar 

  32. Feinberg, A.P., and Vogelstein, B. (1983). A technique for radiolabelling DNA restriction endonuclease fragment to high specific activity.Anal. Biochem. 132:6–13.

    Article  PubMed  CAS  Google Scholar 

  33. Tlsty, T.D. (1990). Normal diploid human and rodent cells lack a detectable frequency of gene amplification.Proc. Natl. Acad. Sci. U.S.A. 87:3132–3136.

    Article  PubMed  CAS  Google Scholar 

  34. Schimke, R.T. (1984). Gene amplification in cultured animal cells.Cell 37:705–713.

    Article  PubMed  CAS  Google Scholar 

  35. Hamkalo, B.A., Farnham, P.J., Johnston, R., and Schimke, R.T. (1985). Ultrastructural features of minute chromosomes in a methotrexate resistant mouse 3T3 cell line.Proc. Natl. Acad. Sci. U.S.A. 82:1126–1130.

    Article  PubMed  CAS  Google Scholar 

  36. Marx, J. (1993). Forging a path to the nucleus.Science 260:1588–1590.

    Article  PubMed  CAS  Google Scholar 

  37. Feig, L.A. (1993). The many roads that lead to ras.Science 260:767–768.

    Article  PubMed  CAS  Google Scholar 

  38. Wright, J.A., Smith, H.S., Watt, F.M., Hancock, M.C., Hudson, D.L., and Stark, G.R. (1990). DNA amplification is rare in normal human cells.Proc. Natl. Acad. Sci. U.S.A. 87:1791–1795.

    Article  PubMed  CAS  Google Scholar 

  39. Lu, K., and Campisi, J. (1992). RAS proteins are essential and selective for the action of insulin like growth factor 1 late in G1 phase of cell cycle in BALB/c murine fibroblasts.Proc. Natl. Acad. Sci. U.S.A. 89:3889–3893.

    Article  PubMed  CAS  Google Scholar 

  40. Howe, P.H., Dobrowolski, S.F., Reddy, K.B., and Satcey, D.W. (1993). Release from G1 growth arrest by transforming growth factor beta 1 requires cellular ras activity.J. Biol. Chem. 268:21448–21452.

    PubMed  CAS  Google Scholar 

  41. Woessner, R.D., Chung, T.D.Y., Hofmann, G.A., Mattern, M.R., Mirabelli, C.K., Drake, F.H., and Johnson, R.K. (1990). Differences between normal and ras transformed NIH-3T3 cells in expression of the 170 kD and 180 kD forms of topoisomerase II.Cancer Res. 50:2901–2908.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wani, M.A., Denko, N.C. & Stambrook, P.J. Expression ofRap 1 suppresses genomic instability ofH-ras transformed mouse fibroblasts. Somat Cell Mol Genet 23, 123–133 (1997). https://doi.org/10.1007/BF02679971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02679971

Keywords

Navigation