Skip to main content
Log in

NO synthase and xanthine oxidase activities of rabbit brain synaptosomes: Peroxynitrite formation as a causative factor of neurotoxicity

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study we demonstrated that synaptosomes isolated from rabbit brain cortex contain NO synthase and xanthine oxidase that can be activated by ultraviolet B radiation and Ca2+ accumulation to produce nitric oxide and superoxide which react together to form peroxynitrite. Irradiation of synaptosomes with ultraviolet B (up to 100 mJ/cm2), or increase the intrasynaptosomal calcium concentration using various doses (up to 100 μM) of the calcium ionophore A 23187, a gradual increase in both nitric oxide and peroxynitrite release that was inhibited by N-monomethyl-L-arginine (100 μM) was observed. The rate of nitric oxide release and cyclic GMP production by NO synthase and soluble guanylate cyclase, both located in the soluble fraction of synaptosomes (synaptosol), were increased approximately eight fold after treatment of synaptosomes with Ultraviolet B radiation (100 mJ/cm2). In reconstitution experiments, when purified NO synthase isolated from synaptosol was added to xanthine oxidase, in the presence of the appropriate cofactors and substrates, a ten fold increase in peroxynitrite production at various doses (up to 20 mJ/cm2) of UVB radiation was observed. Ultraviolet B irradiated synaptosomes promptly increased malondialdehyde production with subsequent decrease of synaptosomal plasma membrane fluidity estimated by fluorescence anisotropy of 1-4-(trimethyl-amino-phenyl)-6-phenyl-hexa-1,3,5-triene. Desferrioxamine (100 μM) tested in Ultraviolet B-irradiated synaptosomes showed a decrease (approximately 80%) in malondialdehyde production with subsequent restoration of the membrane fluidity to that of non-irradiated (control) synaptosomes. Ca2+-stimulated ATPase activity was decreased after Ultraviolet B (100 mJ/cm2) radiation of synaptosomes indicating that the subsequent increase of intrasynaptosomal calcium promoted peroxynitrite production by a calmodulin-dependent increase of NO synthase and xanthine oxidase activities. Furthermore, it was shown that UVB-irradiated synaptosomes were subjected to higher oxidative stress by exogenous peroxynitrite (100 μM) compared to non-irradiated (control) synaptosomes. In summary, the present results indicate that activation of NO synthase and xanthine oxidase of brain cells lead to the formation of peroxynitrite providing important clues in the role of peroxynitrite as a causative factor in neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schuman, E. M., and Madison, D. V., 1994, Nitric oxide and synaptic function. Annu. Rev. Neurosci. 17:153–183.

    Article  PubMed  CAS  Google Scholar 

  2. Schmidt, H. H. W., and Walter, U., 1994. NO at work. Cell 78: 919–925.

    Article  PubMed  CAS  Google Scholar 

  3. Knowles, R. G., Palasios, M., Palmer, R. M. J., Moncada, S. 1989. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for the stimulation of the soluble guanylate cyclase. Proc. Natl. Acad. Sci. USA 89:5159–5162.

    Article  Google Scholar 

  4. Simmons, M. L., Murphy, S. 1992. Induction of nitric oxide synthase in glial cells. J. Neurochem. 59:897–905.

    Article  PubMed  CAS  Google Scholar 

  5. Anggard, E., 1994. Nitric oxide: mediator, murderer, and medicine. Lancet 343:1199–1206.

    Article  PubMed  CAS  Google Scholar 

  6. Choi, D. W., 1993. Nitric oxide: Foe or friend to the injured brain. Proc. Natl. Acad. Sci. U.S.A. 90:9741–9743.

    Article  PubMed  CAS  Google Scholar 

  7. Beckman, J. S., and Crow, J. P., 1993. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem. Soc. Trans. 21:330–334.

    PubMed  CAS  Google Scholar 

  8. Deliconstantinos, G., Villiotou, V., and Stavrides, J. C., 1995. Modulation of particulate nitric oxide synthase activity and peroxynitrite synthesis in cholesterol enriched endothelial cell membranes. Biochem. Pharmacol. 49:1589–1600.

    Article  PubMed  CAS  Google Scholar 

  9. Radi, R., Tan, S., Prodanov, E., Evans, R. A., and Parks, D. A., 1992. Inhibition of xanthine oxidase by uric acid and its influence on superoxide radical production. Biochim. Biophys. Acta 1122: 178–182.

    PubMed  CAS  Google Scholar 

  10. Deliconstantinos, G., Villiotou, V., and Stavrides, J. C., 1995. Release by ultraviolet B (UV B) radiation of nitric oxide (NO) from human keratinocytes: a potential role for nitric oxide in erythema production. Br. J. Pharmacol. 114:1257–1265.

    PubMed  CAS  Google Scholar 

  11. Papaphilis, A., and Deliconstantinos, G., 1980. Modulation of serotonergic receptors by exogenous cholesterol in the dog brain synaptosomal plasma membranes. Biochem. Pharmacol. 29:3325–3327.

    Article  PubMed  CAS  Google Scholar 

  12. Deliconstantinos, G., Villiotou, V., and Fassitsas, C. H., 1992. Ultraviolet radiated human endothelial cells elaborate nitric oxide that may evoke vasodilatory response. J. Cardiovasc. Pharmacol. 20:S63-S65.

    Article  PubMed  Google Scholar 

  13. Bredt, D. S., and Snyder, S. H., 1990. Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A. 87:682–685.

    Article  PubMed  CAS  Google Scholar 

  14. Bradford, M. M., 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  15. Beckman, J. S., Parks, D. A., Pearson, J. D., Marshall, P. A., and Freeman, B. A., 1989. A sensitive fluorometric assay for measuring xanthine dehydrogenase and oxidase in tissues. Free Rad. Biol. Med. 6:607–615.

    Article  PubMed  CAS  Google Scholar 

  16. Fiske, C. H., and Subbarow, Y., 1925. Colorimetric determination of inorganic phosphorous. J. Biol. Chem. 66:375–400.

    CAS  Google Scholar 

  17. Kopeikina-Tsiboukidou, L., and Deliconstantinos, G., 1989. Calmodulin selectively modulates the guanylate cyclase activity by repressing the lipid phase separation temperature in the inner half of the bilayer of rat brain synaptosomal plasma membranes. Neurochem. Res. 14:119–127.

    Article  PubMed  CAS  Google Scholar 

  18. Deliconstantinos, G., and Krueger, G. R. F., 1993. Reactive oxygen species and cell membrane fluidity in human herpes virus-6 (HHV-6) infected cells. J. Viral Dis. 1:22–27.

    Google Scholar 

  19. Villiotou, V., and Deliconstantinos, G., 1995. Nitric oxide, peroxynitrite and nitrosocompounds formation by ultraviolet A (UV A) irradiated human squamous cell carcinoma: Potential role of nitric oxide in cancer prognosis. Anticancer Res. 15:931–942.

    PubMed  CAS  Google Scholar 

  20. Deliconstantinos, G., Kopeikina-Tsiboukidou, L., and Villiotou, V., 1987. Evaluation of membrane fluidity effects and enzyme activities alterations in adriamycin neurotoxicity. Biochem. Pharmacol. 36:1153–1161.

    Article  PubMed  CAS  Google Scholar 

  21. Shinitzky, M., and Barenholz, Y., 1978. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 515:367–394.

    PubMed  CAS  Google Scholar 

  22. Deliconstantinos, G., 1988. Structure activity relationship of cholesterol and steroid hormones with respect to their effects on the Ca2+-stimulated ATPase and lipid fluidity of synaptosomal plasma membranes from dog and rabbit brain. Comp. Biochem. Physiol. 89B:585–594.

    CAS  Google Scholar 

  23. Stamler, J. S., Singel, D. J., and Loscalzo, J., 1992. Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902.

    Article  PubMed  CAS  Google Scholar 

  24. Denicola, A., Souza, J. M., Gatti, R. M., Augusto, O., Radi, R. 1995. Desferrioxamine inhibition of the hydroxyl-like reactivity of peroxynitrite: role of the hydroxamic groups. Free Rad. Biol. Med. 19:11–19.

    Article  PubMed  CAS  Google Scholar 

  25. Deliconstantinos, G., Villiotou, V., and Stavrides, J. C., 1995. Scavenging effects of hemoglobin and related heme containing compounds on nitric oxide, reactive oxidants, and carcinogenic volatile nitrosocompounds of cigarette smoke. A new method for protection against the dangerous cigarette constituents. Anticancer Res. 14:2717–2726.

    Google Scholar 

  26. Van Dor Zee, J., Krootjes, B. B. H., Chignell, C. F., Dubbelman, T. M. A. R., and Van Steveninck, J., 1993. Hydroxyl radical generation by a light-dependent Fenton reaction. Free Rad. Biol. Med. 14:105–113.

    Article  PubMed  Google Scholar 

  27. Umhauer, S. A., Isbell, D. T., Butterfield, D. A., 1992. Spin labeling of membrane proteins in mammalian brain synaptic plasma membranes: Partial characterization. Analyt. Letts. 25:1201–1215.

    CAS  Google Scholar 

  28. Butterfield, D. A., Hensley, K., Hall, N., Umhauer, S., Carney, J., 1993. Interaction of tacrine and velnacrine with neocortical synaptosomal membranes. Relevance to Alzheimer’s disease. Neurochem. Res. 18:989–994.

    Article  PubMed  CAS  Google Scholar 

  29. Halliwell, B., 1978. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. FEBS Lett. 96:238–242.

    Article  PubMed  CAS  Google Scholar 

  30. Rengasamy, A., Johns, R. A. 1993. Inhibition of nitric oxide synthase by a superoxide generating system. J. Pharmacol. Exper. Ther. 267:1024–1027.

    CAS  Google Scholar 

  31. Hebbel, R. P., Leung, A., Mohandas, N. 1990. Oxidation-induced changes in microrheological properties of the red cell membrane. Blood 76:1015–1020.

    PubMed  CAS  Google Scholar 

  32. Deliconstantinos, G., Villiotou, V., Stavrides, J. C., Salemes, N., and Gogas, J., 1995. Nitric oxide and peroxynitrite production by human erythrocytes: A causative factor of toxic anemia in breast cancer patients. Anticancer Res. 15:1435–1446.

    PubMed  CAS  Google Scholar 

  33. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A., 1991. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288:484–487.

    Google Scholar 

  34. Kramer, J. H., Mak, I. T., and Weglicki, W. B., 1984. Differential sensitivity of canine cardial sarcolemmal and microsomal enzymes to inhibition by free radical-induced lipid peroxidation. Circ. Res. 55:120–124.

    PubMed  CAS  Google Scholar 

  35. Rohn, T. T., Hinds, T. R., Vincenzi, F. F. 1993. Ion transport ATPase as targets for free radical damage: Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes. Biochem. Pharmacol. 46:525–534.

    Article  PubMed  CAS  Google Scholar 

  36. McCord, J. M., 1985. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312:159–163.

    Article  PubMed  CAS  Google Scholar 

  37. Van der Uliet, A., Smith, D., O’Neil, C. A., Kaur, H., Darley-Usmar, V., Cross, C. E., and Halliwell, B., 1994. Interaction of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem. J. 303:295–301.

    Google Scholar 

  38. Deliconstantinos, G., Villiotou, V., and Stavrides, J. C., 1994. Pathophysiology of nitric oxide in cancer. Cancer Mol. Biol. 1: 77–86.

    CAS  Google Scholar 

  39. Vemura, Y., Kowall, N. W., and Beal, M. F., 1990. Selective sparing of NADPH-diaphorase-somatostatin-neuropeptide Y neurons in ischemic gerbil striatum. Ann. Neurol. 27:620–625.

    Article  Google Scholar 

  40. Choi, D. W., 1990. Cerebral hypoxia: some new approaches and unanswered questions. J. Neurosci. 10:2493–2501.

    PubMed  CAS  Google Scholar 

  41. Dawson, T. M., Dawson, V. L., and Snyder, S. H., 1992. A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann. Neurol. 32:297–311.

    Article  PubMed  CAS  Google Scholar 

  42. Bredt, D. S., and Snyder, S. H., 1989. Nitric oxide mediates glutamate-linked enhanced of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. U.S.A. 86:9030–9033.

    Article  PubMed  CAS  Google Scholar 

  43. Moncada, S., and Higgs, A., 1993. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329:2002–2012.

    Article  PubMed  CAS  Google Scholar 

  44. Natarajan, V., 1995. Oxidants and signal transduction in vascular endothelium. J. Lab. Clin. Med. 125:26–37.

    PubMed  CAS  Google Scholar 

  45. Deliconstantinos, G., Villiotou, V., and Stavrides, J. K., 1995. Metenkephalin receptor- mediated increase in membrane fluidity modulates nitric oxide (NO) and cGMP production in rat brain synaptosomes. Neurochem. Res. 20:217–224.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deliconstantinos, G., Villiotou, V. NO synthase and xanthine oxidase activities of rabbit brain synaptosomes: Peroxynitrite formation as a causative factor of neurotoxicity. Neurochem Res 21, 51–61 (1996). https://doi.org/10.1007/BF02527672

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02527672

Key Words

Navigation