Skip to main content
Log in

Free radical theory of aging: The “free radical” diseases

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The free radical theory of aging postulates that free radical reactions are responsible for the progressive accumulation of changes with time associated with or responsible for the ever-increasing likelihood of disease and death that accompanies advancing age.

Modulation of the normal distribution of deleterious free radical reaction-induced changes throughout the body by genetic and environmental differences between individuals results in patterns of change, in some sufficiently different from the normal aging pattern to be recognized as disease. These “free radical” diseases can be classified into three groups in which a given disorder is mainly due to: 1) genetics, 2) a combination of genetic and environmental factors, and 3) largely to environmental influences.

The growing number of “free radical” diseases includes the two major causes of death, cancer and atherosclerosis. To illustrate the role of free radicals in disease a discussion is presented, of cancer, atherosclerosis, essential hypertension, senile dementia of the Alzheimer’s type, amyloidosis, and the immune deficiency of age.

Dietary intervention in the “free radical” diseases can reasonably be expected to decrease the period of senescence and to increase by 5 or more years the span of healthy productive life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Harman, D.: A theory based on free radical and radiation chemistry. J. Gerontol., 11: 298–300, 1956.

    PubMed  CAS  Google Scholar 

  2. Harman, D.: The aging process. Proc. Natl. Acad. Sci. USA, 78: 7124–7128, 1981.

    PubMed  CAS  Google Scholar 

  3. Harman, D.: The biological clock: the mitochondria? J. Amer. Geriatrics Soc., 20: 145–147, 1972.

    CAS  Google Scholar 

  4. Nohl, H. and Hegner, D.: Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem., 82: 863–867, 1978.

    Article  Google Scholar 

  5. Chance, B., Sies, H., and Boveris, A.: Hydroperoxide metabolism in mammalian organs. Physiol. Rev., 59: 527–605, 1979.

    PubMed  CAS  Google Scholar 

  6. Porter, N.H.: Prostaglandin endoperoxides, in Free Radicals in Biology, Vol. 4, edited by Pryor, W.A., New York, Academic Press, 1980, pp. 261–294.

    Google Scholar 

  7. Cytochrome P-450, edited by Sato, R. and Omura, T., New York, Academic Press, 1978.

    Google Scholar 

  8. Rossi, F., Bellavite, P., Berfon, G., Dri, P., and Zabucchi, G.: The respiratory burst of phagocytic cells: facts and problems, in Advances in Experimental Medicine and Biology, Vol. 141, Biochemistry and Function of Phagocytes, edited by Rossi, F. and Patriarca, P., New York, Plenum Press, 1982, pp. 283–320.

    Google Scholar 

  9. Scott, G.: Atmospheric Oxidation and Antioxidants. New York, Elsevier Publ. Co., 1965.

    Google Scholar 

  10. Mead, J.F.: Free radical mechanisms of lipid damage and consequences for cellular membranes, in Free Radicals in Biology, Vol. 1, edited by Pryor, W.A., New York, Academic Press, 1976, pp. 51–68.

    Google Scholar 

  11. Altman, K.I., Gerber, G.B., and Okada, S.: Radiation Biochemistry, Vols. 1 and 2, New York, Academic Press, 1970.

    Google Scholar 

  12. LaBella, F.S. and Paul, G.: Structure of collagen from human tendon as influenced by age and sex. J. Geront., 20: 54–59, 1965.

    PubMed  CAS  Google Scholar 

  13. LaBella, F.S., Vivian, S., and Thornhill, D.P.: Amino acid composition of human aortic elastin as influenced by age. J. Gerontol., 21: 550–555, 1966.

    PubMed  CAS  Google Scholar 

  14. Harman, D.: Chromatin template capacity: effect of oxygen. The Gerontologist, 7, No. 3, Part 2: 29, 1967 (abstr.).

    Google Scholar 

  15. Tas, S., Tam, C.F., and Walford, R.L.: Disulfide bonds and the structure of the chromatin complex in relation to aging. Mech. Ageing Dev., 12: 65–80, 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Matsumura, G., Herp, A., and Pigmon, W.: Depolymerization of hyaluronic acid by autoxidants and radiations. Radiation Res., 28: 735–752, 1966.

    PubMed  CAS  Google Scholar 

  17. Hartroft, W.S. and Porta, E.S.: Ceroid. Amer. J. Med. Sc., 268: 324–344, 1965.

    Google Scholar 

  18. Norkin, S.A.: Lipid nature of ceroid in experimental nutritional cirrhosis. Arch. Path., 82: 259–266, 1966.

    PubMed  CAS  Google Scholar 

  19. Robinson, J.D.: Structural changes in microsomal suspension. III. Formation of lipid peroxides. Arch. Biochem. Biophys., 112: 170–179, 1965.

    Article  PubMed  CAS  Google Scholar 

  20. Witting, L.: Vitamin E and lipid antioxidants in free-radical-initiated reactions, in Free Radicals in Biology, Vol. 4, edited by Pryor, W.A., New York, Academic Press, 1980, pp. 295–317.

    Google Scholar 

  21. Hegner, D.: Age-dependence of molecular and functional changes in biological membrane properties. Mech. Ageing Dev., 14: 101–118, 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Casarett, G.W.: Similarities and contrasts between radiation and time pathology, in Advances in Gerontological Research, Vol. 1, edited by Strehler, B.L., New York, Academic Press, 1964, pp. 109–163.

    Google Scholar 

  23. Harman, D. and Piette, L.H.: Free radical theory of aging: free radical reactions in serum. J. Gerontol. 21: 560–565, 1966.

    PubMed  CAS  Google Scholar 

  24. Joenje, H., Arwert, F., Eriksson, A.W., deKoning, H., and Oostra, A.B.: Oxygen-dependence of chromosomal aberrations in Fanconi’s anemia. Nature, 290: 142–143, 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Emerit, I. and Cerutti, P.: Clastogenic activity from Bloom syndrome fibroblast cultures. Proc. Natl. Acad: Sci. LISA, 78: 1868–1872, 1981.

    CAS  Google Scholar 

  26. Harman, D.: Free radical theory of aging: beneficial effect of antioxidants on the life span of male NZB mice: role of free radical reactions in the deterioration of the immune system with age and in the pathogenesis of systemic lupus erythematosus. Age, 3: 64–73, 1980.

    CAS  Google Scholar 

  27. Pitot, H.C.: The natural history of neoplastic development: the relation of experimental models to human cancer. Cancer, 49: 1206–1211, 1981.

    Google Scholar 

  28. Kohn, R.R.: Cause of death in very old people. JAMA, 247: 2793–2797, 1982.

    Article  PubMed  CAS  Google Scholar 

  29. Menandes-Huber, K.B. and Huber, W.: Orgotein, the drug version of bovine Cu-Z superoxide dismutase. II. A summary account of clinical trials in man and animals, in Superoxide and Superoxide Dismutases, edited by Michaelson, A.M., McCord, J., and Fridovich, I., New York, Academic Press, 1977, pp. 537–549.

    Google Scholar 

  30. Feeney-Burns, L., Berman, E.R., and Rothman, H.: Lipofuscin of human retinal pigment epithelium. Amer. J. Ophthal., 90: 783–791, 1980.

    PubMed  CAS  Google Scholar 

  31. Katz, M.L., Parker, K.P., Handelman, G.J., Bramel, T.L., and Dratz, E.A.: Effects of antioxidant nutrient deficiency on the retina and retinal pigment epithelium of albino rats: a light and electron microscopic study. Exp. Eye Res., 34: 339–369, 1982.

    Article  PubMed  CAS  Google Scholar 

  32. Pearce, J.M.S.: Etiology and natural history of Parkinson’s disease. Brit. Med. J., 2: 1664–1666, 1978.

    Article  PubMed  CAS  Google Scholar 

  33. Mann, D.M.A. and Yates, P.O.: Lipoprotein pigments — their relationship to aging in the human nervous system. II. The melanin content of pigmented nerve cells. Brain, 97: 489–498, 1974.

    PubMed  CAS  Google Scholar 

  34. Mann, D. M.A. and Yates, P.O.: Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech. Ageing Dev., 21: 193–203, 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Ceroid-lipofuscinosis (Batten’s disease), edited by Armstrong, D., Koppang, N., and Rider, J.A., New York, Elsevier Biomedical Press, 1982.

    Google Scholar 

  36. Gandy, S.F., Buse, M.G., and Crouch, R.K.: Protective role of superoxide dismutase against diabetogenic drugs. J. Clin. Invest. 70: 650–658, 1982.

    PubMed  CAS  Google Scholar 

  37. Cohen, G.: The generation of hydroxyl radicals in biological systems: toxicological aspects. Phochem. Photobiol., 28: 669–675, 1978.

    CAS  Google Scholar 

  38. Lieber, C.S.: Metabolism and metabolic effects of alcohol. Medical Clinics No. America, 68: 3–31, 1984.

    CAS  Google Scholar 

  39. García-Buñel, L.: Lipid peroxidation in alcoholic myopathy and cardiomyopathy. Medical Hypothesis, 13: 217–231, 1984.

    Article  Google Scholar 

  40. Ryle, P.R.: Free radicals, lipid peroxidation, and ethanol hepatotoxicity. Lancet, 2: 461, 1984.

    Article  PubMed  CAS  Google Scholar 

  41. Videla, L.A. and Valenzuela, A.: Alcohol ingestion, liver glutathione and lipoperoxidation: metabolic interrelations and pathological implications. Life Sciences, 31: 2395–2407, 1982.

    Article  PubMed  CAS  Google Scholar 

  42. Shaw, S., Jayatilleke, E., Ross, W.A., Gordon, E.R., and Lieber, C.S.: Ethanol-induced lipid peroxidation: potentiation by long-term alcohol feeding and attenuation by methionine. J. Lab. Clin. Med., 98: 417–424, 1981.

    PubMed  CAS  Google Scholar 

  43. Wicken, D., Wilkins, M.H., Lunec, J., Ball, G., and Dormandy, T.L.: Free radical oxidation (peroxidation) products in plasma in normal and abnormal pregnancy. Ann. Clin. Biochem., 18: 158–162, 1981.

    Google Scholar 

  44. Smith, Jr., J.D. and Brown, E.D.: Effects of oral contraceptive agents on trace element metabolism — a review, in Trace Elements in Human Health and Disease, Vol. 2, Essential and Toxic Elements, edited by Prasad, A.S. and Oberleas, D., New York, Raven Press, 1976, pp. 315–345.

    Google Scholar 

  45. Laragh, J.H.: The pill, hypertension, and the toxemias of pregnancy. Am. J. Obstet. and Gynec., 109: 210–213, 1971.

    CAS  Google Scholar 

  46. Clemetson, C.A.B. and Andersen, L.: Ascorbic acid metabolism in preeclampsia. Obst. and Gynec., 24: 774–782, 1964.

    CAS  Google Scholar 

  47. DeAlvares, R.R., Gaiser, D.F., Seinkins, D.M., Smith, E.K, and Bratvold, G.E.: Serial studies of serum lipids in normal human pregnancy. Am. J. Obst. and Gynec., 77: 743–747, 1959.

    Google Scholar 

  48. Lahey, M.E., Gubler, C.J., Cartwright, G.E., and Wintrobe, M.M.: Studies on copper metabolism. VII. Blood copper in pregnancy and various pathologic states. J. Clin. Invest., 32: 329–339, 1953.

    PubMed  CAS  Google Scholar 

  49. Thompson, R.H.S. and Watson, D.: Serum copper levels in pregnancy and preeclampsia. J. Clin. Path., 2: 193–196, 1949.

    Google Scholar 

  50. Tellez-Nagel, I., Johnson, A.B., and Terry, R.D.: Ultrastructural and histochemical study of cerebral biopsies in Huntington’s chorea, in Advances in Neurol., Vol. 1, Huntington’s Chorea, 1872–1972, edited by Barbeau, A., Chase, T.N., and Paulson, G.W., New York, Raven Press, 1973, pp. 387–398.

    Google Scholar 

  51. Moshell, A.N., Tarone, R.E., Barrett, S.F., and Robbins, J.H.: Radiosensitivity in Huntington’s disease: implications for pathogenesis and presymptomatic diagnosis. Lancet, 1: 9–11, 1980.

    Article  PubMed  CAS  Google Scholar 

  52. Friedberg, E.C., Rudé, J.M., Cook, K.H., Ehmann, U.K., Mortelmans, K., Cleaver, J.E., and Slor, H.: Excision repair in mammalian cells and the current status of xeroderma pigmentosum, in DNA Repair Processes, edited by Nichols, W.W. and Murphy, D.G., Miami, Miami Symposium Specialists, 1977, pp. 21–36.

  53. Waldmann, T.A., Misiti, J., Nelson, D.L., and Kraemer, K.H.: Ataxia-telangiectasia: a multisystem hereditary disease with immunodeficiency, impaired organ maturation, x-ray hypersensitivity, and a high incidence of neoplasia. Ann. Intern. Med., 99: 367–379, 1983.

    PubMed  CAS  Google Scholar 

  54. Yunis, J.J.: The chromosomal basis of human neoplasia. Science, 221: 227–236, 1983.

    PubMed  CAS  Google Scholar 

  55. Hamlyn, P. and Sikora, K.: Oncogenes. Lancet, 1: 326–330, 1983.

    Article  Google Scholar 

  56. Krontiris, T.G.: The emerging genetics of human cancer. New Engl. J. Med., 309: 404–409, 1983.

    Article  PubMed  CAS  Google Scholar 

  57. Weiss, R.A. and Marshall, C.J.: Oncogenes. Lancet, 2: 1138–1141, 1984.

    Article  PubMed  CAS  Google Scholar 

  58. Kohn, H.I. and Fry, R.J.M.: Radiation carcinogenesis. New Engl. J. Med., 310:504–511, 1984.

    Article  PubMed  CAS  Google Scholar 

  59. Totter, J.R.: Spontaneous cancer and its possible relationship to oxygen metabolism. Proc. Natl. Acad. Sci. USA, 77: 1763–1767, 1980.

    PubMed  CAS  Google Scholar 

  60. Ames, B.N.: Dietary carcinogens and anticarcinogens. Science, 221: 1256–1264, 1983.

    PubMed  CAS  Google Scholar 

  61. Harman, D.: Free radical theory of aging: effect of the amount and degree of unsaturation of dietary fat on mortality rate. J. Gerontol., 26: 451–457, 1971.

    PubMed  CAS  Google Scholar 

  62. Harman, D.: Free radical theory of aging: effect of vitamin E on tumor incidence. The Gerontologist, 12:No. 3, Part 2, 33, 1972 (abstr.).

    Google Scholar 

  63. Lea, A.J.: Dietary factors associated with death-rates from certain neoplasms in man. Lancet, 2: 332–333, 1966.

    Article  PubMed  CAS  Google Scholar 

  64. Editorial: Obesity: the cancer connection. Lancet, 1: 1223–1224, 1982.

  65. Tannenbaum, A. and Silverstone, H.: Nutrition in relation to cancer. Adv. Cancer Res., 1: 453–501, 1953.

    Google Scholar 

  66. Gammal, E.B., Carroll, K.K., and Plunkett, E.R.: Effects of dietary fat on mammary carcinogenesis by 7, 12-dimethylbenz(α)anthracene in rats. Cancer Res., 27: 1737–1742, 1967.

    PubMed  CAS  Google Scholar 

  67. King, M.M., Bailey, D.M., Gibson, D.D., Pitha, J.V., and McCay, P.B.: Incidence and growth of mammary tumors induced by 7, 12-dimethyl(α)anthracene as related to the dietary content of fat and antioxidant. J. Natl. Cancer Inst., 63: 657–663, 1979.

    PubMed  CAS  Google Scholar 

  68. Wattenberg, L.W.: Inhibition of chemical carcinogenesis by antioxidants, in Carcinogenesis, Vol. 5, Modifiers of Chemical Carcinogenesis, edited by Slaga, T.J., New York, Raven Press, 1980, pp. 85–98.

    Google Scholar 

  69. Wattenberg, L.W.: Inhibition of carcinogenic and toxic effects of polycyclic hydrocarbons by phenolic antioxidants and ethoxyquin. J. Natl. Cancer Inst., 48: 1425–1430, 1972.

    PubMed  CAS  Google Scholar 

  70. Wattenberg, L.W.: Inhibition of chemical carcinogen-induced pulmonary neoplasia by butylated hydroxylanisole. J. Natl. Cancer Inst., 50: 1541–1544, 1973.

    PubMed  CAS  Google Scholar 

  71. Black, H.S. and Chan, J.T.: Suppression of ultraviolet light-induced tumor formation by dietary antioxidants. J. Invest. Dermatol., 65: 412–414, 1975.

    Article  PubMed  CAS  Google Scholar 

  72. Shamberger, R.J., Tytko, S.A., and Willis, C.E.: Antioxidants in cereals and in food preservatives and declining gastric cancer mortality. Cleveland Clinic Quart., 39: 119–124, 1972.

    CAS  Google Scholar 

  73. Shamberger, R.J., Tytko, S.A., and Willis, C.E.: Antioxidants and cancer. VI. Selenium and age-related human cancer mortality. Arch. Environ. Health, 31: 231–235, 1976.

    PubMed  CAS  Google Scholar 

  74. Schrauzer, G.N. and White, D.A.: Selenium in human nutrition: dietary intake and effects of supplementation. Bioinorg. Chem., 8: 303–318, 1978.

    Article  PubMed  CAS  Google Scholar 

  75. Harman, D.: Free radical theory of aging: consequences of mitochondrial aging. Age, 6: 86–94, 1983.

    CAS  Google Scholar 

  76. Kay, M.M.B. and Makinodan, T.: Immunobiology of aging: evaluation of current status. Clin. Immunol. Immunopathol., 6: 394–413, 1976.

    Article  PubMed  CAS  Google Scholar 

  77. McCarty, M.F.: A practical prescription for cancer prevention — synergistic use of chemopreventive agents. Medical Hypothesis, 14: 213–225, 1984.

    Article  CAS  Google Scholar 

  78. Haust, M.D.: The natural history of human atherosclerotic lesions, in Vascular Injury and Atherosclerosis, edited by Moore, S., New York, Mascel Dekker, 1981, pp. 1–23.

    Google Scholar 

  79. Lipoproteins, Atherosclerosis and Coronary Heart Disease, edited by Miller, N.E. and Lewis, B., New York, Elsevier/North Holland, 1981.

    Google Scholar 

  80. Gotto, Jr., A.M. and Doody, M.C.: The transport of plasma lipids: basic and clinical research and relationship to coronary heart disease. Cardiovascular Research Center Bulletin, Baylor College of Medicine, 21: 69–86, 1983.

    Google Scholar 

  81. Steinberg, D.: Lipoproteins and atherosclerosis: a look back and a look ahead. Arteriosclerosis, 3: 283–301, 1983.

    PubMed  CAS  Google Scholar 

  82. Goldstein, J.L., Kita, T., and Brown, M.S.: Defective lipoprotein receptors and atherosclerosis: lessons from an animal counter-part of familial hypercholesterolemia. New Engl. J. Med., 309: 288–296, 1983.

    Article  PubMed  CAS  Google Scholar 

  83. Dawber, T.R.: The Framingham Study: The Epidemiology of Atherosclerotic Disease. Cambridge, Harvard University Press, 1980.

    Google Scholar 

  84. Keys, A., and Aravanis, C., van Buchem, F.S.P., et al.: The diet and all-causes death rate in the seven countries study. Lancet, 1: 58–61, 1981.

    Google Scholar 

  85. Schonfeld, G.: Disorders of lipid transport — update 1983. Progress in Cardiovascular Diseases, 26: 89–108, 1983.

    Article  PubMed  CAS  Google Scholar 

  86. Duguid, J,B,: Pathogenesis of atherosclerosis. Lancet, 2: 925–927, 1949.

    Article  PubMed  CAS  Google Scholar 

  87. Okuma, M., Takayma, H., and Uchino, H.: Generation of prostacyclin-like substances and lipid peroxidation in vitamin E-deficient rats. Prostaglandins, 19: 527–536, 1980.

    PubMed  CAS  Google Scholar 

  88. Kuehl, Jr., F.A. and Egan, R.W.: Prostaglandins, arachidonic acid and inflammation. Science, 210: 978–984, 1980.

    PubMed  CAS  Google Scholar 

  89. Benditt, E.P. and Gown, A.M.: Atheroma: the artery wall and the environment, in International Review of Experimental Pathology, Vol. 21, edited by Richter, G.W. and Epstein, M.A., New York, Academic Press, 1980, pp. 56–118.

    Google Scholar 

  90. Harlan, J.M. and Harker, L.A.: Hemostasis, thrombosis, and thromboembolic disorders. Medical Clinics of North America, 65: 855–880, 1981.

    PubMed  CAS  Google Scholar 

  91. Mustard, J.F., Packham, M.A., and Kinlough-Rathbone, R.L.: Platelets, atherosclerosis, and clinical complications, in Vascular Injury and Atherosclerosis, edited by Moore, S., New York, Marcel Decker, 1981, pp. 79–110.

    Google Scholar 

  92. Mehta, J.: Platelets and prostaglandins in coronary artery disease. JAMA, 249: 2818–2823, 1983.

    Article  PubMed  CAS  Google Scholar 

  93. Moncada, S., Higgs, E.A., and Vane, J.R.: Human arterial and venous tissues generate prostacyclin (prostaglandin X), a potent inhibitor of platelet aggregation. Lancet, 1: 18–21, 1977.

    Article  PubMed  CAS  Google Scholar 

  94. Harman, D.: Atherosclerosis: hypothesis concerning the initiating steps in pathogenesis. J. Gerontol., 12: 199–202, 1957.

    PubMed  CAS  Google Scholar 

  95. Harman, D.: Atherosclerosis: effect of growth. Circulation Res., 10: 851–852, 1962.

    PubMed  CAS  Google Scholar 

  96. Harman, D.: Atherosclerosis: inhibiting effect of an antihistaminic drug, chlorpheniramine. Circulation Res., 11: 277–282, 1962.

    PubMed  CAS  Google Scholar 

  97. Joris, I. and Majno, G.: Inflammatory components of atherosclerosis, in Adv. in Inflammation Res., Vol. 1, edited by Weissmann, G., Samuelsson, B., and Pavoletti, R., New York, Raven Press, 1979, pp. 71–85.

    Google Scholar 

  98. Ross, R.: Atherosclerosis: a problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis, 1: 293–311, 1981.

    PubMed  CAS  Google Scholar 

  99. Mann, G.V.: Diet-heart: end of an era. New Engl. J. Med., 297: 644–650, 1977.

    Article  PubMed  CAS  Google Scholar 

  100. Texon, M.: Hemodynamic Basis of Atherosclerosis. New York, Hemisphere Publ. Corp., 1980.

    Google Scholar 

  101. Stehbens, W.E.: Fluid dynamic approaches to atherosclerosis, in Fluid Dynamics as a Localizing Factor for Atherosclerosis, edited by Schettler, G., Nerem, R.M., Schmid-Schoenbeim, H., Morl, H., and Diehm, C., New York, Springer-Verlag, 1983, pp. 3–7.

    Google Scholar 

  102. Minick, C.R.: Synergy of arterial injury and hypercholesterolemia in atherosclerosis, in Vascular Injury and Atherosclerosis, edited by Moore, S., New York, Marcel Dekker, 1981, pp. 149–173.

    Google Scholar 

  103. Stenfanovich, V. and Gore, I.: Cholesterol diet and permeability of rabbit aorta. Exper. Mol. Pathol., 14: 20–29, 1971.

    Article  Google Scholar 

  104. Patil, V.S. and Magar, N.G.: Effect of dietary fat intake and age on polyunsaturated fatty acids in human blood serum. Biochem. J., 76: 417–420, 1960.

    PubMed  CAS  Google Scholar 

  105. Böttcher, C.J.F., Boelsum-Van Houte, E., Ter Haar Romeny-Wachter, C.C., Woodford, F.P., and Van Gent, C.M.: Lipid and fatty acid composition of coronary and cerebral arteries at different stages of atherosclerosis. Lancet, 2: 1162–1166, 1960.

    Article  Google Scholar 

  106. Ingold, K.U.: Metal catalysis, in Lipids and Their Oxidation, edited by Schultz, H.W., Day, E.A., and Sinnhuber, R.O., Westport, Conn., Avi Publ. Co., 1962, pp. 93–121.

    Google Scholar 

  107. Martell, A.E.: Dioxygen complexes as intermediates in metal-catalyzed oxidation of organic substances, in Autoxidation in Food and Biological Systems, edited by Simic, M.G. and Karel, M., New York, Plenum Press, 1980, pp. 89–118.

    Google Scholar 

  108. Chan, P.C., Peller, O.G., and Kesner, L.: Copper(II)-catalyzed lipid peroxidation in liposomes and erythrocyte membranes. Lipids, 17: 331–337, 1982.

    PubMed  CAS  Google Scholar 

  109. Ludwig, P.W., Hunninghake, D.B., and Hoedal, J.R.: Increased leukocyte oxidative metabolism in hyperlipoproteinemia. Lancet, 2: 348–350, 1982.

    Article  PubMed  CAS  Google Scholar 

  110. Sacks, T., Moldow, C.F., Craddock, P.R., Bowers, T.K., and Jacob, H.S.: Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. J. Clin. Invest., 61: 1161–1167, 1978.

    PubMed  CAS  Google Scholar 

  111. Proctor, P.H. and McGinness, J.E.: Superoxide production by homocysteine. Age, 7(4): In press, 1984.

  112. McCord, J.M. and Fridovich, I.: The reduction of cytochrome c by milk xanthine oxidase in liposomes and erythrocyte membranes. Lipids, 17: 331–337, 1982.

    Google Scholar 

  113. Fridovich, I.: Oxygen radicals, hydrogen peroxide, and oxygen toxicity, in Free Radicals in Biology, Vol. 1, edited by Pryor, W.A., New York, Academic Press, 1976, pp. 239–277.

    Google Scholar 

  114. Morel, D.W., DiCorleto, P.E., and Chisolm, G.M.: Endothelial and smooth muscle cells alter low density lipoproteins in vitro by free radical oxidation, Arteriosclerosis, 4: 357–364, 1984.

    PubMed  CAS  Google Scholar 

  115. Roy, B.R., Davisson, E.O., and Crespi, H.L.: Experiments on the degradation of lipoproteins from serum. J. Physical Chem., 58: 841–846, 1954.

    Article  Google Scholar 

  116. Harman, D.: Atherosclerosis: oxidation of serum lipoproteins and its relationship to pathogenesis. Clin. Res., 8: 108, 1960 (abstr.).

    Google Scholar 

  117. Harman, D.: Atherosclerosis: possible role of phagocytosis. Circulation, 22: 681, 1960 (abstr.).

    Google Scholar 

  118. Fogelman, A.M., Schechter, I., Seager, J., Hokom, M., Child, J.S., and Edwards, P.A.: Malondialdehyde alteration of low density lipoproteins leads to cholesterol ester accumulation in human monocytes-macrophages. Proc. Natl. Acad. Sci. USA, 77: 2214–2218, 1980.

    PubMed  CAS  Google Scholar 

  119. Hessler, J.R., Morel, D.W., Lewis, L.J., and Chisolm, G.M.: Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis, 3: 215–222, 1983.

    PubMed  CAS  Google Scholar 

  120. Evensen, S.A., Galdal, K.S., and Nielsen, E.: LDL-induced cytotoxicity and its inhibition by antioxidant treatment in cultured human endothelial cells and fibroblasts. Atherosclerosis, 49: 23–30, 1983.

    Article  PubMed  CAS  Google Scholar 

  121. Editorial. Eskimo diets and diseases. Lancet, 1: 1139–1141, 1983.

  122. Gottmann, A.W.: A report of one hundred three autopsies on Alaskan natives. Arch. Pathol., 70: 117–124, 1960.

    PubMed  CAS  Google Scholar 

  123. Robinowitch, I.M.: Clinical and other observations on Canadian Eskimos in the Eastern Arctic. Can. Med. Assoc. J., 34: 487–501, 1936.

    Google Scholar 

  124. Bang, H.O., Dyerberg, J., and Sinclair, H.M.: The composition of the Eskimo food in northwestern Greenland. Amer. J. Clin. Nutr., 33: 2657–2661, 1980.

    PubMed  CAS  Google Scholar 

  125. Bang, H.O., Dyerberg, J., and Nielsen, A.B.: Plasma lipid and lipoprotein pattern in Greenlandic West-Coast Eskimos. Lancet, 1: 1143–1146, 1971.

    Article  PubMed  CAS  Google Scholar 

  126. Feldman, S.A., Ho, K-J., Lewis, L.A., and Taylor, C.B.: Lipid and cholesterol metabolism in Alaskan Arctic Eskimos. Arch. Pathol., 94: 42–58, 1972.

    PubMed  CAS  Google Scholar 

  127. Fischer, S. and Weber, P.C.: Prostaglandin I3 is formed in vivo in man after dietary eicosapentaenoic acid. Nature, 307: 165–168, 1984.

    Article  PubMed  CAS  Google Scholar 

  128. Singer, P., Jaeger, W., Wirth, M., Voigt, S., Naumann, E., Zimontkowski, S., Hajdu, I., and Goedicke, W.: Lipid and blood pressure-lowering effect of mackerel diet in man. Atherosclerosis, 49: 99–108, 1983.

    Article  PubMed  CAS  Google Scholar 

  129. Scott, E.M., Griffith, I.V., Haskins, D.D., and Whaley, R.D.: Serum cholesterol levels and blood pressure of Alaskan Eskimo men. Lancet, 2: 667–668, 1958.

    Article  PubMed  CAS  Google Scholar 

  130. Burt, R.C.: The incidence of acid-fast pigment (ceroid) in aortic atherosclerosis. Am. J. Clin. Path., 22: 135–139, 1952.

    PubMed  CAS  Google Scholar 

  131. Fritz, K.E.: A Study of Ceroid in the Human Aorta. Thesis, Union University, Albany Medical College, Albany, New York, 1961.

    Google Scholar 

  132. Schornagel, H.E.: The occurrence of iron and ceroid in coronary arteries. J. Path. and Bact., 72: 267–272, 1956.

    Article  CAS  Google Scholar 

  133. Autar, M.A., Ohlson, M.A., and Hodges, R.E.: Changes in retail market food supplies in the United States in the last seventy years in relation to the incidence of coronary heart disease, with special reference to dietary carbohydrates and essential fatty acids. Am. J. Clin. Nutrition, 14: 169–178, 1964.

    Google Scholar 

  134. Swell, L., Field, Jr., H., and Treadwell, C.R.: Relation of age and race to serum cholesterol ester fatty acid composition. Proc. Soc. Exper. Biol. and Med., 105: 129–131, 1960.

    CAS  Google Scholar 

  135. Harman, D.: Role of serum copper in coronary atherosclerosis. Circulation, 28: Part 2, 658, 1963 (abstr.).

    Google Scholar 

  136. Harman, D.: Atherosclerosis: possible role of drinking water copper. Clin. Res. 13: 91, 1966 (abstr.).

    Google Scholar 

  137. Schroeder, H.A.: Relation between mortality from cardiovascular disease and treated water supplies. JAMA, 172: 1902–1908, 1960.

    PubMed  CAS  Google Scholar 

  138. Morris, J.N., Crawford, M.P., and Ready, J.A.: Hardness of local water supplies and mortality from cardiovascular disease. Lancet, 1: 860–862, 1961.

    Article  PubMed  CAS  Google Scholar 

  139. Restrepo, C., and McGill, Jr., H.C.: Early lesions of aortic atherosclerosis in Call, Columbia. Arch. Path., 67: 618–623, 1959.

    CAS  Google Scholar 

  140. McGill, Jr., H.C., Geer, J.C., Robertson, W.B., and Strong, J.P.: Fate of the fatty streak. Circulation, 26: 662, 1962 (abstr.).

    Google Scholar 

  141. Hartroft, W.S.: Pathogenesis and significance of hemoceroid and hyaloceroid, two types of ceroid-like pigment found in human atheromatous lesions. J. Gerontol., 8: 158–166, 1963.

    Google Scholar 

  142. Harman, D.: Atherosclerosis: possible role of serum copper in the conversion of fatty streaks to fibrous plaques. Circulation, 34,Suppl. 3: 13, 1966 (abstr.).

    Google Scholar 

  143. Lawry, F.Y., Mann, G.V., Peterson, A., Wysocki, A.P., O’Connell, R., and Stare, F.J.: Cholesterol and beta lipoproteins in the serums of Americans: well persons and those with coronary heart disease. Am. J. Med., 22: 605–623, 1957.

    Article  PubMed  CAS  Google Scholar 

  144. Fairhurst, B.J. and Waterhouse, C.: Effect of previous dietary intake on the fatty acid composition of the plasma cholesterol esters. Amer. J. Clin. Nutrition, 13: 92–97, 1963.

    CAS  Google Scholar 

  145. Peng, S.K., Tham, P., Taylor, C.B., and Mikkelson, B.: Cytotoxicity of oxidation derivatives of cholesterol on cultured aortic smooth muscle cells and their effect on cholesterol biosynthesis. Amer. J. Clin. Nutr., 32: 1033–1042, 1979.

    PubMed  CAS  Google Scholar 

  146. Ross, R. and Harker, L.: Hyperlipidemia and atherosclerosis. Science, 193: 1094–1100, 1976.

    PubMed  CAS  Google Scholar 

  147. Ross, R. and Voget, A.: The platelet-derived growth factor. Cell, 4: 203–210, 1978.

    Article  Google Scholar 

  148. Schamberger, R.J.: Selenium in health and disease, in Proceedings Symposium Selenium-Tellurium in the Environment. Pittsburg Industrial Health Foundation, Inc., 1976, pp. 253–267.

  149. Shamberger, R.J.: Selenium and health, in Trace Elements in Health, edited by Rose, J., Boston, Butterworths, 1983, pp. 167–181.

    Google Scholar 

  150. Frost, D.V.: The two faces of selenium: can selnophobia be cured?, in CRC Critical Review in Toxicology, Cleveland, Chemical Rubber Co. Press, 1972, pp. 467–514.

    Google Scholar 

  151. Salonen, J.T., Alfthan, G., Huttunen, J.K., Pikkarainen, J., and Puska, P.: Association between cardiovascular death and myocardial infarction and serum selenium in a matched-pair longitudinal study. Lancet, 1: 175–179, 1982.

    Article  Google Scholar 

  152. Ramirez, J. and Flowers, N.C.: Leukocyte ascorbic acid and its relationship to coronary artery disease in man. Amer. J. Clin. Nutr., 33: 2079–2087, 1980.

    PubMed  CAS  Google Scholar 

  153. Harker, L.A., Ross, R., Slichter, S.J., and Scott, C.R.: Homocystine-induced atherosclerosis: the role of endothelial cell injury and platelet response in its genesis. J. Clin. Invest., 58: 731–741, 1976.

    PubMed  CAS  Google Scholar 

  154. Kang, S.S., Wong, P.W., and Hegyvary, C.: Protein-bound homocystine in patients with coronary artery disease. Clin. Res., 29: 751, 1981 (abstr.).

    Google Scholar 

  155. Freedman, D., Popio, K., Kredick, N., and Heiss, G.: Plasma homocysteine and coronary artery disease. Amer. J. Epidemiol., 116: 566, 1982 (abstr.).

    Google Scholar 

  156. Oster, K.A.: Plasmalogen diseases: a new concept of the etiology of the atherosclerotic process. Amer. J. Clin. Res., 2: 30–35, 1971.

    Google Scholar 

  157. Clifford, A.J., Ho, C.Y., and Swenerton, H.: Homogenized bovine milk xanthine oxidase: a critique of the hypothesis relating plasmalogen depletion and cardiovascular disease. Amer. J. Clin. Nutrition, 38: 327–332, 1983.

    CAS  Google Scholar 

  158. Linder, A., Charra, B., Sherrard, D.J., and Scribner, B.H.: Accelerated atherosclerosis in prolonged maintenance hemodialysis. New Engl. J. Med., 290: 697–701, 1974.

    Article  Google Scholar 

  159. Craddock, P.R., Hammerschmidt, D.E., Moldow, C.F., Yamada, O., and Jacob, H.S.: Granulocyte aggregation as a manifestation of membrane interactions with complement: possible role in leukocyte margination, microvascular occlusion, and endothelial damage. Seminars in Hematol., 16: 140–147, 1979.

    CAS  Google Scholar 

  160. Jacob, H.S., Craddock, P.R., Hammerschmidt, D.E., and Moldow, C.F.: Complement-induced granulocyte aggregation: an unsuspected mechanism of disease. New Engl. J. Med., 302: 789–794, 1980.

    Article  PubMed  CAS  Google Scholar 

  161. Selwign, A.P.: The cardiovascular system and radiation. Lancet, 2: 152–154, 1983.

    Article  Google Scholar 

  162. McCready, R.A., Hyde, G.L., Bivins, B.A., Mattingly, S.S,, and Griffen, Jr., W.O.: Radiation-induced arterial injuries. Surgery, 93: 306–312, 1983.

    PubMed  CAS  Google Scholar 

  163. Harman, D.: Hard and soft water and the incidence of sudden death from ischemic heart disease: consideration of copper, magnesium and calcium, in Nutritional Imbalances in Infant and Adult Disease, edited by Seelig, M.S., New York, Spectrum Publications, 1977, pp. 1–7.

    Google Scholar 

  164. Glazier, F.W., Tampling, A.R., Strisower, B., deLalla, O.F., Gofman, J.W., Dawber, T.R., and Phillips, E.: Human serum lipoproteins. J. Gerontol., 9: 395–402, 1954.

    PubMed  CAS  Google Scholar 

  165. Bertelsen, S.: The role of ground substance, collagen, and elastic fibers in the genesis of atherosclerosis, in Atherosclerosis and its Origin, edited by Sandier, M. and Bourne, G.H., New York, Academic Press, 1963, pp. 119–165.

    Google Scholar 

  166. Shoshan, S.: Wound healing, in Intern. Rev. of Connective Tissue, Vol. 9, edited by Hall, D.A. and Jackson, D.S., New York, Academic Press, 1981, pp. 1–29.

    Google Scholar 

  167. Järvinen, M., Aho, A.J., Lehto, M., and Toivonen, H.: Age-dependent repair of muscle rupture. Acta Orthop. Scand., 54: 67–74, 1983.

    Article  Google Scholar 

  168. Chvapil, M. and Koopmann, Jr., C.F.: Age and other factors regulating wound healing, in The Otolaryngologic Clinics of North Amer., Vol. 15, edited by Koopmann, Jr., C.F., Philadelphia, W.B. Saunders Co., 1982, pp. 259–270.

    Google Scholar 

  169. Harman, D.: The free radical theory of aging: effect of age on serum copper levels. J. Gerontol., 20: 151–153, 1965.

    PubMed  CAS  Google Scholar 

  170. Harman, D.: The free radical theory of aging: the effect of age on serum mercaptan levels. J. Gerontol., 15: 38–40, 1960.

    PubMed  CAS  Google Scholar 

  171. Leto, S., Yiengst, M.J., and Barrows, Jr., C.H.: The effect of age and protein deprivation on the sulfhydryl content of serum albumin. J. Gerontol., 25: 4–8, 1970.

    PubMed  CAS  Google Scholar 

  172. Walton, J.: The role of limited cell replicative capacity in pathological age changes. A review. Mech. Ageing Dev., 19: 217–244, 1982.

    Article  PubMed  CAS  Google Scholar 

  173. Kohn, R.R.: Human aging and disease. J. Chronic Disease, 16: 5–21, 1963.

    Article  CAS  Google Scholar 

  174. Harman, D.: Atherogenesis in minipigs: effect of dietary fat unsaturation and of copper, in Atherosclerosis. Proceedings of the Second Intern. Symposium, edited by Jones, R.J., New York, Springer-Verlag, 1970, pp. 472–475.

    Google Scholar 

  175. Johnson, R.J.: Atherosclerosis: the possible role of peroxide. Ph.D. thesis, University of Nebraska College of Medicine, Omaha, Nebraska, 1966.

    Google Scholar 

  176. Enstrom, J.E. and Pauling, L.: Mortality among health-conscious elderly Californians. Proc. Natl. Acad. Sci. USA, 79: 6023–6027, 1982.

    PubMed  CAS  Google Scholar 

  177. Vogelsang, A. and Shute, E.: Effect of vitamin E in coronary heart disease. Nature, 157: 772, 1946.

    Google Scholar 

  178. Vogelsang, A.: Twenty-four years using alpha-tocopherol in degenerative cardiovascular disease. Angiology, 21: 275–279, 1970.

    PubMed  CAS  Google Scholar 

  179. Toone, W.M.: Effects of vitamin E: good and bad. New Engl. J. Med., 289: 979–980, 1973.

    Google Scholar 

  180. Gillilan, R.E., Mondell, B., and Warbasse, J.A.: Quantitative evaluation of vitamin E in the treatment of angina pectoris. Amer. Heart J., 93: 444–449, 1977.

    PubMed  CAS  Google Scholar 

  181. Olson, R.E.: Vitamin E and its relation to heart disease. Circulation, 48: 179–184, 1973.

    PubMed  CAS  Google Scholar 

  182. Ravin, I.S. and Katz, K.H.: Vitamin E in the treatment of angina pectoris. New Engl. J. Med., 240: 331–333, 1949.

    Article  PubMed  CAS  Google Scholar 

  183. Barboriak, J.J., El Ghatit, A.Z., Shetly, K.R., and Kalbfleisch, J.H.: Vitamin E supplements and plasma high-density lipoprotein cholesterol. Amer. J. Clin. Pathologists, 77: 371–372, 1982.

    CAS  Google Scholar 

  184. Hermann, Jr., W.J., Ward, K., and Faucett, J.: The effect of tocopherol on high-density lipoprotein cholesterol. Amer. Soc. Clin. Pathologists, 72: 848–852, 1979.

    Google Scholar 

  185. Howard, D.R., Rundell, C.A., and Batsakis, J.G.: Vitamin E does not modify HDL-cholesterol. Amer. J, Clin. Pathol., 77: 86–89, 1982.

    CAS  Google Scholar 

  186. Harman, D.: Vitamin E: effect on serum cholesterol and lipoproteins. Circulation, 22: 151–153, 1960.

    PubMed  CAS  Google Scholar 

  187. Blackburn, H.: Diet and mass hyperlipidemia: a public health view, in Nutrition in Health and Disease, Vol. 1, Nutrition, Lipids, and Coronary Heart Disease, edited by Levey, R.I., Rifkind, B.M., Dennis, B.H., and Ernst, N., New York, Raven Press, 1979, pp. 309–347.

    Google Scholar 

  188. Mahley, R.W.: Atherogenic hyperlipoproteinemia. Medical Clinics of North Amer., 66: 375–402, 1982.

    CAS  Google Scholar 

  189. Smith, E.B. and Slater, R.S.: Lipids and low-density lipoproteins in intima in relation to its morphological characteristics, in Ciba Foundation Symposium No. 12 (new series), Atherogenesis — Initiating Factors, edited by Porter, R. and Knight, J., New York, Elsevier, 1973, pp. 39–52.

    Google Scholar 

  190. Bailey, J.M. and Butler, J.: Anti-inflammatory drugs in experimental atherosclerosis. Part 1. Relative potencies for inhibiting plaque formation. Atherosclerosis, 17: 515–522, 1973.

    Article  PubMed  CAS  Google Scholar 

  191. Flower, R.J. and Blackwell, G.J.: Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation. Nature, 278: 456–459, 1979.

    Article  PubMed  CAS  Google Scholar 

  192. Weksler, B.B., Pett, S.B., Alonso, D., Richter, R.C., Stelzer, P., Subramanian, V., Tack-Goldman, K., and Gray, Jr., W.A.: Differential inhibition by aspirin of vascular and platelet prostaglandin synthesis in atherosclerotic patients. New Engl. J. Med., 308: 800–805, 1983.

    Article  PubMed  CAS  Google Scholar 

  193. Bertelé, V., Falanga, A., Tomasiak, M., Dejana, E., Cerletti, C., and de Gaetano, G.: Platelet thromboxane synthetase inhibitors with low doses of aspirin: possible resolution of the “aspirin dilemma”. Science. 220: 517–519, 1983.

    PubMed  Google Scholar 

  194. Tappel, A.L. and Dilllard, C.J.: In vivo lipid peroxidation: measurement via exhaled pentane and protection by vitamin E. Fed. Proc., 40: 174–178, 1981.

    PubMed  CAS  Google Scholar 

  195. Manger, W.M. and Page, I.H.: An overview of current concepts regarding the pathogenesis and pathophysiology of hypertension, in Arterial Hypertension, edited by Rosenthal, J., New York, Springer-Verlag, 1982, pp. 1–40.

    Google Scholar 

  196. Kaplan, N.M.: Clinical Hypertension, 2nd Edition, Baltimore, Williams and Wilkins, 1978, p. 7.

    Google Scholar 

  197. Pickering, G.: Hypertension: Causes, Consequences, and Management, 2nd Edition. London, Churchill Livingston, 1974.

    Google Scholar 

  198. Rojo-Ortega, J.M. and Hatt, P.Y.: Histopathology of cardiovascular lesions in hypertension, in Hypertension, edited by Genest, J., Koiw, E., and Kuchel, O., New York, McGraw-Hill, 1977, pp. 910–944.

    Google Scholar 

  199. Casarett, G.W.: Similarities and contrasts between radiation and time pathology, in Advances in Gerontological Research, Vol. 1, edited by Strehler, B.L., New York, Academic Press, 1964, pp. 109–163.

    Google Scholar 

  200. Solbers, L.A. and Strong, J.P.: Risk factors and atherosclerotic lesions: a review of autopsy studies. Arteriosclerosis, 3: 187–198, 1983.

    Google Scholar 

  201. Dawber, T.R., Kannel, W.B., Revotskie, N., and Kagan, A.: The epidemiology of coronary heart disease — the Framingham inquiry. Proc. Soc. Med., 55: 265–271, 1962.

    CAS  Google Scholar 

  202. Hassal, C.H. and Kirtland, S.J.: Dihomo-γ-linolenic acid reverses hypertension induced in rats by diets rich in saturated fat. Lipids, 19: 699–703, 1984.

    Google Scholar 

  203. Kineaid-Smith, P.: Pregnancy, preeclamptic toxemia, and hypertension, in Hypertension, edited by Genest, J., Koiw, E., and Kuchel, O., New York, McGraw-Hill, 1977, pp. 805–808.

    Google Scholar 

  204. Kay, D.W.K.: Epidemiological aspects of organic brain disease in the aged, in Aging and the Brain, edited by Gaitz, C.M., New York, Plenum Press, 1972, pp. 15–27.

    Google Scholar 

  205. Malamud, N.: Neuropathology of organic brain syndrome associated with aging, in Aging and the Brain, edited by Gaitz, C.M., New York, Plenum Press, 1972, pp. 63–87.

    Google Scholar 

  206. Harman, D., Eddy, D.E., and Seibold, J.: Free radical theory of aging: effect of dietary fat on central nervous system function. J. Amer. Geriatrics Soc., 24: 301–307, 1976.

    CAS  Google Scholar 

  207. Eddy, D.E. and Harman, D.: Free radical theory of aging: effect of age, sex and dietary precursors on rat brain docosahexanoic acid. J. Amer. Geriatrics Soc., 25: 220–229, 1977.

    CAS  Google Scholar 

  208. Brizzee, K.R., Ordy, J.M., and Kaack, B.: Early appearance and regional differences in intraneuronal and extraneuronal lipofuscin accumulation with age in the brain of a nonhuman primate (Macaca mulatta). J. Gerontol., 29: 366–381, 1974.

    PubMed  CAS  Google Scholar 

  209. Mann, D.M.A., Yates, P.O., and Stamp, J.E.: The relationship between lipofuscin pigment and ageing in the human nervous system. J. Neurol. Sci., 37: 83–93, 1978.

    Article  PubMed  CAS  Google Scholar 

  210. Friede, R.L.: The relation of the formation of lipofuscin to the distribution of oxidative enzymes in the human brain. Acta Neuropathol., 2: 113–125, 1962.

    Article  CAS  Google Scholar 

  211. Ferrendelli, J.A., Sedgwick, W.G., and Suntzeff, V.: Regional energy metabolism and lipofuscin accumulation in mouse brain during aging. J. Neuropathol. Exper. Neurol., 30: 638–649, 1971.

    Article  CAS  Google Scholar 

  212. Miquel, J., Oro, J., Bensch, K.G., and Johnson, Jr., J.E.: Lipofuscin: fine-structural and biochemical studies, in Free Radicals in Biology, Vol. 3, edited by Pryor, W.A., New York, Academic Press, 1977, pp. 133–182.

    Google Scholar 

  213. Eddy, D.E. and Harman, D.: Rat brain fatty acid composition: effect of dietary fat and age. J. Gerontol., 30: 647–654, 1975.

    PubMed  CAS  Google Scholar 

  214. Tinoco, J., Williams, M.A., Hincenbergs, I., and Lyman, R.L.: Evidence for nonessentiality of linolenic acid in the diet of the rat. J. Nutr., 101: 937–946, 1971.

    PubMed  CAS  Google Scholar 

  215. Walker, R.L.: Maternal diet and brain fatty acids in young rats. Lipids, 2: 497–500, 1967.

    CAS  PubMed  Google Scholar 

  216. Tamai, Y., Matsukawa, S., and Satake, M.: Lipid composition of nerve cell perikarya. Brain Res., 26: 149–157, 1971.

    Article  CAS  Google Scholar 

  217. Cotman, C., Blank, M.L., Moehl, A., and Synder, F.: Lipid composition of synaptic plasma membranes isolated from rat brain by zonal centrifugation. Biochem., 8: 4606–4612, 1969.

    Article  CAS  Google Scholar 

  218. Sun, G.Y. and Sun, A.Y.: Phospholipids and acyl groups of synaptosomal and myelin membranes isolated from the cerebral cortex of squirrel monkey (Saimiri sciureus). Biochem. Biophys. Acta., 28: 306–315, 1972.

    Google Scholar 

  219. Breckenridge, W.C., Gombos, G., and Morgan, I.G.: The docosahexanoic acid of the phospholipids of synaptic membranes, vesicles and mitochondria. Brain Res., 33: 581–583, 1971.

    Article  CAS  Google Scholar 

  220. Anderson, R.E. and Sperling, L.: Lipids of ocular tissues, VII. Positional distribution of the fatty acids in the phospholipids of bovine retinal rod outer segments. Arch. Biochem. Biophys., 144: 673–677, 1971.

    Article  PubMed  CAS  Google Scholar 

  221. Hubbard, B.M. and Anderson, J.M.: Sex-difference in age-related brain atrophy. Lancet, 1: 1447–1448, 1983.

    Article  PubMed  CAS  Google Scholar 

  222. Brizzee, K.R., Eddy, D.E., Harman, D., and Ordy, J.M.: Free radical theory of aging: effect of dietary lipids on lipofuscin accumulation in the hippocampus of rats. Age, 7: 9–15, 1984.

    CAS  Google Scholar 

  223. Tappel, A., Fletcher, B., and Deamer, D.: Effect of antioxidants and nutrients on lipid peroxidation fluorescent products and aging parameters in the mouse. J. Gerontol., 28: 415–424, 1973.

    PubMed  CAS  Google Scholar 

  224. Hayes, K.C.: Pathophysiology of vitamin E deficiency in monkeys. Amer. J. Clin. Nutr., 27: 1130–1134, 1974.

    PubMed  CAS  Google Scholar 

  225. Lal, H., Pogacar, S., Daly, P.R., and Puri, S.K.: Behavioral and neuropathological manifestations of nutritionally induced central nervous system “aging” in the rat, in Progress in Brain Research, Vol. 40, Neurobiological Aspects of Maturation and Aging, edited by Ford, D.H., New York, Elsevier Sci. Publ. Co., 1973, pp. 129–140.

    Google Scholar 

  226. Mann, D.M.A. and Yates, P.O.: Lipoprotein pigments — their relationship to aging in the human nervous system. I. The lipofuscin content of nerve cells. Brain, 97: 481–488, 1974.

    PubMed  CAS  Google Scholar 

  227. Brizzee, K.R. and Johnson, F.A.: Depth distribution of lipofuscin pigment in cerebral cortex of albino rat. Acta Neuropathol., 16: 205–219, 1970.

    Article  PubMed  CAS  Google Scholar 

  228. Brizzee, K.R., Cancilla, P.A., Sherwood, N., and Timaris, P.S.: The amount and distribution of pigments in neurons and glia of the cerebral cortex. J. Gerontol., 24: 127–135, 1969.

    PubMed  CAS  Google Scholar 

  229. Brizzee, K.R., Ordy, J.M., Hansche, J., and Kaack, B.: Quantitative assessment of changes in neuron and gila cell packing density and lipofuscin accumulation with age in the cerebral cortex of a nonhuman primate (Macaca mulatta), in Neurobiology of Aging, edited by Terry, R.D. and Gershon, S., New York, Raven Press, 1976, pp. 229–244.

    Google Scholar 

  230. Van Woert, M.H. and Ambani, L.M.: Biochemistry of neuromelanin. Adv. Neurol., 5: 215–233, 1974.

    PubMed  Google Scholar 

  231. Brizzee, K.R. and Ordy, J.M.: Age pigments, cell loss and hippocampal function. Mech. Ageing Dev., 9: 143–162, 1979.

    Article  PubMed  CAS  Google Scholar 

  232. Mann, D.M.A., Yates, P.O., and Marcymick, B.: Changes in nerve cells of the nucleus basalis of Meynert in Alzheimer’s disease and their relationship to ageing and to the accumulation of lipofuscin pigment. Mech. Ageing Dev., 25: 189–204, 1984.

    Article  PubMed  CAS  Google Scholar 

  233. Mann, D.M.A.: The locus coeruleus and its possible role in ageing and degenerative disease of the human central nervous system. Mech. Ageing Dev., 23: 73–94, 1983.

    Article  PubMed  CAS  Google Scholar 

  234. Mann, D.M.A. and Yates, P.O.: Serotonin nerve cells in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 46: 96–98, 1983.

    Article  PubMed  CAS  Google Scholar 

  235. Mann, D.M.A. and Yates, P.O.: Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech. Ageing Dev., 21: 193–203 1983.

    Article  PubMed  CAS  Google Scholar 

  236. Boller, F., Mizutani, T., Roessmann, U., and Gambetti, P.: Parkinson’s disease, dementia, and Alzheimer’s disease: clinicopathological correlations. Ann. Neurol., 7: 329–335, 1980.

    Article  PubMed  CAS  Google Scholar 

  237. Robbins, J.H., Otsuka, F., Tarone, R.E., Polinsky, R.J., Brumback, R.A., Moshell, A.N., Nee, L.E., Ganges, M.B., and Cayeux, S.J.: Radiosensitivity in Alzheimer’s disease and Parkinson’s disease. Lancet, 1: 468–469, 1983.

    Article  PubMed  CAS  Google Scholar 

  238. Cohen, A.S.: Amyloidosis. New Engl. J. Med., 277: 522–530, 574–583, 628–638, 1967.

    Article  PubMed  CAS  Google Scholar 

  239. Schwartz, P.: Amyloidosis. Springfield, Ill., Thomas, 1970.

    Google Scholar 

  240. Amyloidosis, edited by Wegelius, D. and Pasternack, A., New York, Academic Press, 1976.

    Google Scholar 

  241. Hind, C.R.K., Collins, P.M., Caspi, D., Baltz, M.L., and Pepys, M.B.: Specific chemical dissociation of fibrillar and non-fibrillar components of amyloid deposits. Lancet, 2: 376–378, 1984.

    Article  PubMed  CAS  Google Scholar 

  242. Brizzee, K.R., Harkin, J.C., Ordy, J.M., and Kaack, B.: Accumulation and distribution of lipofuscin, amyloid, and senile plaques in the aging nervous system, in Aging, Vol. 1, edited by Brody, H. Harman, D., and Ordy, J.M., New York, Raven Press, 1975, pp. 39–78.

    Google Scholar 

  243. Harman, D.: Free radical theory of aging: effect of free radical inhibitors on the mortality rate of male LAF1 mice. J. Gerontol., 23: 476–482, 1968.

    PubMed  CAS  Google Scholar 

  244. Harman, D., Eddy, D.E., and Noffsinger, J.: Free radical theory of aging: inhibition of amyloidosis in mice by antioxidants; possible mechanism. J. Amer. Geriatrics Soc., 24: 203–210, 1976.

    CAS  Google Scholar 

  245. Cathcart, E.S., Yonkosky, D., and Harman, D.: Santoquin therapy in casein-induced experimental amyloidosis. Proc. 14th Int. Congr. Rheumatol., San Francisco, Calif., 1977 (abstr.).

  246. Kay, M.M.B.: Aging and the decline of immune responsiveness, in Basic and Clinical Immunology, edited by Fudenberg, H.H., Stites, D.P., Caldwell, J.L., and Wells, J.V., Los Altos, Calif., Lange Med. Publ., 1976, pp. 267–278.

    Google Scholar 

  247. Harman, D., Heidrick, M.L., and Eddy, D.E.: Free radical theory of aging: effect of free radical reaction inhibitors on the immune response. J. Amer. Geriatrics Soc., 25: 400–407, 1977.

    CAS  Google Scholar 

  248. Fishman, P.H. and Brady, R.O.: Biosynthesis and function of gangliosides. Science, 194: 906–915, 1976.

    PubMed  CAS  Google Scholar 

  249. Oliver, J.M., Albertini, D.F., and Berlin, R.D.: Effects of glutathione-oxidizing agents on microtubule assembly and microtubule-de-pendent surface properties of human neutrophiles. J. Cell Biol., 71: 921–932, 1976.

    Article  PubMed  CAS  Google Scholar 

  250. Adelstein, S.J. and Vallee, B.L.: Copper metabolism in man. New Engl. J. Med., 265: 892–897, 941–946, 1961.

    Article  CAS  PubMed  Google Scholar 

  251. Harman, D.: Role of free radicals in aging and disease, in Aging, Vol. 28, Relations between Normal Aging and Disease, edited by Johnson, H.A., New York, Raven Press, 1984, pp. 45–84.

    Google Scholar 

  252. Comfort, A.: The Biology of Senescence, 3rd edition. New York, Elsevier, 1979, pp. 81–86.

    Google Scholar 

  253. Fries, J.F.: Aging, natural death, and the compression of morbidity. New Engl. J. Med., 303: 130–135, 1980.

    Article  PubMed  CAS  Google Scholar 

  254. Woodhall, B. and Joblon, S.: Prospects for further increases in average longevity. Geriatrics, 12: 586–591, 1957.

    PubMed  CAS  Google Scholar 

  255. Masoro, E.J., Yu, B.P., and Bertrand, H.A.: Action of food restriction in delaying the aging process. Proc. Natl. Acad. Sci. USA, 79: 4239–4241, 1982.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Harman, D. Free radical theory of aging: The “free radical” diseases. AGE 7, 111–131 (1984). https://doi.org/10.1007/BF02431866

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02431866

Keywords

Navigation