Skip to main content
Log in

Effect of μ-opioids morphine and buprenorphine on the development of adjuvant arthritis in rats

  • Original Research Papers
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and Design: On the basis that endogenous opioids play a role in the physiological response to inflammation, this study tests the antiarthritic effects of a μ-opioid agonist, morphine and the partial μ-agonist, buprenorphine.

Material: Male Lewis rats were used.

Treatment: Rats were innoculated subcutaneously with 0.05 ml of Freund's complete adjuvant (5 mg/ml) into the right hind paw to produce adjuvant arthritis. Morphine (either 10 to 60 mg/kg/day s.c. bolus or 60 mg/kg/day s.c. infusion) and buprenorphine (0.65±0.06 mg/kg/day, orally), respectively, were administered for 3 days during the primary inflammatory phase of adjuvant arthritis.

Methods: The progression of adjuvant arthritis was monitored every three days by body weight change and hind limb oedema (ipsilateral and contralateral). On day 21 the animals were sacrificed and histology and radiography of the contralateral limb were performed. In rats receiving Freund's adjuvant and no drug treatment, the incidence of arthritis was 89%. Effect was expressed as the pooled severity index (PSI) derived from the arithmetic average of the volume, histology and radiography scores in the contralateral hind limb.

Results: Buprenorphine had no effect on experimental arthritis (PSI control vs treated: 242±28 vs 253±28%). In contrast, morphine by subcutaneous injection twice daily (10 to 60 mg/kg/day) but not by subcutaneous infusion (60 mg/kg/day) was found to attenuate the progression of adjuvant arthritis in a dose-dependent manner. This indicates that the anti-arthritic effects of morphine are opioid receptor mediated (ED50, 58±9 mg/kg) and suggests that the local concentration reached effective levels only after subcutaneous injection. It is also possible that the high doses of morphine were anti-inflammatory through effects at the kappa receptor. However, these high doses of morphine produced death in one third of the rats, the calculated lethal dose (LD50, 63±2 mg/kg) being close to the effective dose.

Conclusion: Anti-arthritic effects of morphine are opioid receptor mediated but morphine use for this indication is restricted by its adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sewell KL, Trentham DE. Pathogenesis of Rheumatoid arthritis. Lancet 1993;341:283–90.

    CAS  PubMed  Google Scholar 

  2. Iadorola MJ, Douglass J, Civelly O. Differential activation of spinal cord dynorphin and enkephalin neurons during hyperalgesia evidence using cDNA hybridization. Brain Res 1988; 455:205–12.

    CAS  Google Scholar 

  3. Wei ET, Kiang JJ, Buchan P, Smith TW. Corticotropin-releasing factor inhibits neurogenic plasma extravasation in the rat paw. J Pharmacol Exp Ther 1986;238:873–84.

    Google Scholar 

  4. Stefano GB. Role of opioid neuropeptides in immunoregulation. Prog Neurobiol 1989;33:149–59.

    Article  CAS  PubMed  Google Scholar 

  5. Plotnikoff NP, Faith RE, Murgo AJ, et al. Enkephalins and Endorphins, Stress and Immune System. New York: Plenum Press, 1987.

    Google Scholar 

  6. Levine JD, Moskowitz MA, Basbaum AI. The contribution of neurogenic inflammation in experimental arthritis. J Immunol 1985;135:843s-7.

    CAS  PubMed  Google Scholar 

  7. Stiller RU, Grubb BD, Schiable HG. Neurophysiological evidence for increased kappa opioidergic control of spinal cord neurons in rats with unilateral inflammation. Eur J Neurosci 1993;5:1520–7.

    CAS  PubMed  Google Scholar 

  8. Walker JS, Howlett CR, Nayanar V. Anti-inflammatory effects of kappa-opioids in adjuvant arthritis. Life Sci 1995;57:371–8.

    Article  CAS  PubMed  Google Scholar 

  9. Wilson JL, Nayanar V, Walker JS The site of anti-arthritic action of the κ-opioid, U-50,488H, in adjuvant arthritis: importance of local administration. Br J Pharmacol 1996, 118, 1754–60.

    CAS  PubMed  Google Scholar 

  10. Carmody JJ. Opiate receptors: An introduction. Anaesth Intensive Care 1987;15:27–37.

    CAS  PubMed  Google Scholar 

  11. Borsodi A, Basbaum AI, Besson JM, editors. Towards a new pharmacotherapy of pain. What is the basis of opioid receptor subtypes and the interactions between them? Chichester: John Wiley, 1991:241–55.

    Google Scholar 

  12. Hollt V. Opioid peptide processing and receptor selectivity. Ann Rev Pharmacol Toxicol 1986;26:59–77.

    CAS  Google Scholar 

  13. Hazum E, Chang K, Cuatrecasas P. Specific nonopiate receptors for beta endorphin. Science 1979;205:1033–5.

    CAS  PubMed  Google Scholar 

  14. Bussier JL, Alder MW, Rogers TJ, Eisenstein TK. Cytokine reversal of morphine-induced suppression of the antibody response. J Pharmac Exp Ther 1993;264:591–7.

    Google Scholar 

  15. Earl JR, Claxson AW, Blake DR, Morris CJ. Proinflammatory effects of morphine in the rat adjuvant arthritis model. Int J Tiss React 1994;16:163–70.

    CAS  Google Scholar 

  16. Russell NSW, Jamieson A, Callen, Rance MJ. Peripheral opioid effects upon neurogenic plasma extravasation and inflammation. Br J Pharmacol 1985;84:788P.

  17. Liles JH, Flecknell PA. A comparison of the effects of buprenorphine, carprofen and flunixin following laparotomy in rats. J Vet Pharmacol Ther 1994;17,284–90.

    CAS  PubMed  Google Scholar 

  18. Deeb B, Frooman R. Effect of buprenophine on lameness and immune response in rats. Contemp Top 1992;31:13.

    Google Scholar 

  19. Steinetz B, Giannina T, Butler M. The role of sulphydryl groups in three models of inflammatory disease. J Pharm Exp Ther 1973;185:139–49.

    CAS  Google Scholar 

  20. Ackerman NR, Rooks WH, Shott L, Genant H, Maloney P, West E. Effects of naproxen on connective tissue changes in the adjuvant arthritic rat. Arthr Rheum 1979;22:1365–73.

    CAS  Google Scholar 

  21. Brewster D, Humphrey MJ, Mcleavy MA. The systemic availability of buprenorphine by various routes of administration. J Pharm Pharmacol 1981;33:500–506.

    CAS  PubMed  Google Scholar 

  22. Liles JH, Flecknell PA. The effects of buprenorphine, nalbuphine and butorphanol alone or following halothane anaesthesia on food and water consumption and locomotor movement in rats. Lab Anim 1992;26:180–9.

    CAS  PubMed  Google Scholar 

  23. Chay PCW, Duffy BJ, Walker JS. Pharmacokinetic- Pharmacodynamic Relationships of Morphine in Neonates. Clin Pharmacol Ther 1992;51:334–42.

    CAS  PubMed  Google Scholar 

  24. Zar JH, Kurtz B, editors. Biostatistical analysis. 2nd ed. Englewood Cliffs: Prentice-Hall; 1984.

    Google Scholar 

  25. Metzler CM, Elfring GL, McEwen AJ. A users manual for NONLIN and Associated programs. Biometrics 1974;30:562.

    Google Scholar 

  26. Litchfield J, Wilcoxan F. A simplified method evaluating dose-effect experiments. J Pharmacol Exp Ther 1949;96:99–113.

    CAS  Google Scholar 

  27. Walker JS, Kasmerski L. Diflunisal pharmacodynamics in experimental arthritis in rats. J Rheumatol 1988;15:1643–7.

    CAS  PubMed  Google Scholar 

  28. Walsh SL, Preston KL, Bigelow GE, Stitzer ML. Acute administration of buprenorphine in humans: Partial agonist and blockade effects. J Pharmacol Exp Ther 1995;274:361–72.

    CAS  PubMed  Google Scholar 

  29. Leander JD. Buprenorphine has potent kappa opioid receptor antagonist activity. Neuropharmacology 1987;26:1445–7.

    Article  CAS  PubMed  Google Scholar 

  30. Planas ME, Rodriguez L, Sanchez S, Pol O, Puig MM. Pharmacological evidence for the involvement of the endogenous opioid system in the response to local inflammation in the rat paw. Pain 1995;60:67–71.

    Article  CAS  PubMed  Google Scholar 

  31. Millan MJ, Colpaert FC. Opioid systems in the response to inflammatory pain. Neuroscience 1991;42:541–53.

    Article  CAS  PubMed  Google Scholar 

  32. Ferreira SH, Nakamura M. Prostaglandin hyperalgesia II. The peripheral analgesic activity of morphine, enkephalins and opioid antagonists. Prostaglandins 1979;18:191–200.

    CAS  PubMed  Google Scholar 

  33. Brown SL, Tokuda S, Saland LC, et al. Plotnikoff NP, Faith RE, Murgo AJ, Good R, editors. Enkephalins and Endorphins stress and the immune system. Opioid peptides effects on leukocyte migration. New York: Plenum Press, 1986:367–86.

    Google Scholar 

  34. Dahlstrom B, Bolme P, Feyching H, Noack G, Paalzow L. Morphine kinetics in children. Clin Pharmacol Ther 1979;26:354–65.

    CAS  PubMed  Google Scholar 

  35. Ko WWW, Dai S. Plasma, cardiac tissue and brain morphine concentrations in acute and chronic morphine-treated rats. Clin Exp Pharmacol Physiol 1989;16:117–20.

    CAS  PubMed  Google Scholar 

  36. Walker JS. NSAID: An update on their analgesic effects. Clin Exp Pharmacol Physiol 1995;22:27–31.

    Google Scholar 

  37. Jaffe JH, Martin WR, Goodman LS, Gilman A, editors. The pharmacological basis of therapeutics. Opioid analgesics and antagonists. New York: Macmillan, 1994:485–521.

    Google Scholar 

  38. Degli Uberti EC, Petraglia F, Bondanelli M, Guo AL, Valentini A, Salvadori S, et al. Involvement of μ-opioid receptors in the modulation of pituitary-adrenal axis in normal and stressed rats. J Endocr Invest 1995;18:1–7.

    CAS  PubMed  Google Scholar 

  39. Bryant HU, Holaday JW, Herz A, editors. Handbook of experimental pharmacology: Opioids II. Opioids in immunologic processes. Berlin: Springer Verlag, 1993: 361–92.

    Google Scholar 

  40. Buckingham JC, Cooper TA. Differences in hypothalamopituitary-adrenocortical activity in the rat after acute and prolonged treatment with morphine. Neuroendocrinology 1984;38:411–7.

    CAS  PubMed  Google Scholar 

  41. Sternberg EM, Young WS III, Bernardini R, Calogero AE, Chrousos GP, Gold PW, et al. A central nervous system defect in biosynthesis of corticotrophin-releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. Proc Natl Acad Sci USA 1989;86:4771.

    CAS  PubMed  Google Scholar 

  42. Chang KJ, Cualtrecasas P. Novel opiate binding sites selective benzomorphan drugs. Proc Natl Acad Sci USA 1981;78:4141.

    CAS  PubMed  Google Scholar 

  43. Suarez-Roca H, Maixner W. Morphine produces a multiphasic effect on the release of substance P from rat trigeminal nucleus slices by activating different opioid receptor subtypes. Brain Res 1992;579:195–203.

    CAS  PubMed  Google Scholar 

  44. Stein C, Hassan AHS, Przewlocki R, Gramsch C, Peter K, Herz A. Opioids from immunocytes interact with receptors on sensory nerves to inhibit nociception in inflammation. Proc Natl Acad Sci USA 1990;87:5935–9.

    CAS  PubMed  Google Scholar 

  45. Taub DD, Eisenstein TK, Geller EB, Adler MW, Rogers TJ. Immunomodulatory activity of μ and κ-selective opioid agonists. Proc Natl Acad Sci USA 1991;88:360–4.

    CAS  PubMed  Google Scholar 

  46. Heinjnen CJ, Karelaars A, Ballieux RE. Beta endorphin: cytokine and neuropeptide. Immunol Rev 1991;119:41–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

accepted by M. J. Parnham

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, J.S., Chandler, A.K., Wilson, J.L. et al. Effect of μ-opioids morphine and buprenorphine on the development of adjuvant arthritis in rats. Inflamm Res 45, 557–563 (1996). https://doi.org/10.1007/BF02342227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02342227

Key words

Navigation