Skip to main content
Log in

Aberrant function of the Ras signal transduction pathway in human breast cancer

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

Althoughras mutations are infrequent (approximately 5%) in breast cancers, there is considerable evidence that suggests that the pathways which Ras services may still be deregulated in breast cancer cells. The recent identification of many of the components of the Ras signal transduction pathway has defined a network of proto-oncogene proteins controlling diverse signaling events that regulate cell growth and differentiation. Consequently, mutations that perturb the function of any one component of this signal pathway may trigger the same oncogenic events as mutation ofras itself. Moreover, several Ras-related proteins have recently been demonstrated to possess the ability to trigger malignant transformation via signaling pathways shared with Ras proteins. Thus, it is possible that the aberrant function of Ras-related proteins may contribute to breast cancer development. Consequently, it is important not to dismiss the Ras pathway in the development of breast cancer merely because of the infrequent detection of mutations inras itself, but rather to consider the influence of aberrations upstream or downstream of Ras and of certain Ras-related proteins in the development of breast cancer. Finally, the critical importance of components upstream and downstream of Ras provides additional targets for rational drug design approaches to block the aberrant function of Ras signaling in human tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132, 1990

    Google Scholar 

  2. Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–126, 1990

    Google Scholar 

  3. Boguski MS, McCormick F: Proteins regulating Ras and its relatives. Nature 366:643–654, 1993

    Google Scholar 

  4. Bortner DM, Langer SJ, Ostrowski MC: Non-nuclear oncogenes and the regulation of gene expression in transformed cells. Crit Rev Oncogenesis 4:137–160, 1993

    Google Scholar 

  5. Downward J: Regulatory mechanisms forras proteins. BioEssays 14:177–184, 1992

    Google Scholar 

  6. Chang EH, Furth ME, Scolnick EM, Lowy DR: Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature 297:479–483, 1982

    Google Scholar 

  7. Barbacid M:ras genes. Annu Rev Biochem 56:779–827, 1987

    Google Scholar 

  8. Bos JL:ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689, 1989

    Google Scholar 

  9. Clark GJ, Der CJ: Oncogenic activation ofRas proteins.In: Dickey BF, Birnbaumer L (eds) GTPases in Biology, I. Springer Verlag, Berlin, 1994, pp 259–288

    Google Scholar 

  10. Sukumar S:ras oncogenes in chemical carcinogenesis.In: Vogt PK (ed) Oncogenes and Retroviruses, Selected Reviews (148th ed). Springer Verlag, Berlin, 1989, pp 93–114

    Google Scholar 

  11. Albini A, Graf J, Kitten GT, Kleinman HK, Martin GR, Veillette A, Lippman ME: 17β-estradiol regulates and v-Ha-ras transfection constitutively enhances MCF7 breast cancer cell interactions with basement membrane. Proc Natl Acad Sci USA 83: 8182–8186, 1986

    Google Scholar 

  12. Sukumar S, Carney WP, Barbacid M: Independent molecular pathways in initiation and loss of hormone responsiveness of breast carcinomas. Science 240: 524–526, 1988

    Google Scholar 

  13. Basolo F, Elliott J, Tait L, Chen XQ, Maloney T, Russo IH, Pauley R, Momiki S, Caamano J, Klein-Szanto AJP, Koszaika M, Russo J: Transformation of human breast epithelial cells by c-Ha-ras oncogene. Mol Carcinogen 4:25–35, 1991

    Google Scholar 

  14. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P: Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49:465–475, 1987

    Google Scholar 

  15. Hand PH, Vilasi V, Thor A, Ohuchi N, Schlom J: Quantitation of Harvey ras p21 enhanced expression in human breast and colon carcinomas. J Natl Cancer Inst 79:59–65, 1987

    Google Scholar 

  16. Spandidos DA: Oncogene activation in malignant transformation: a study of H-ras in human breast cancer. Anticancer Res 7:991–996, 1987

    Google Scholar 

  17. Clair T, Miller WR, Cho-Chung YS: Prognostic significance of the expression of aras protein with a molecular weight of 21,000 in human breast cancer. Cancer Res 47:5290–5293, 1987

    Google Scholar 

  18. Khosravi-Far R, Der CJ: The Ras signal transduction pathway. Cancer Metastasis Rev 13:67–89, 1994

    Google Scholar 

  19. Prendergast GC, Gibbs JB: Pathways of Ras function: connections to the actin cytoskeleton. Adv Cancer Res 62:19–63, 1993

    Google Scholar 

  20. Davis RJ: The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268:14553–14556, 1993

    Google Scholar 

  21. Bishop JM: The molecular genetics of cancer. Science 235:305–311, 1987

    Google Scholar 

  22. Bishop JM: Molecular themes in oncogenesis. Cell 64:235–248, 1991

    Google Scholar 

  23. Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S: Oncogenes and signal transduction. Cell 64:281–302, 1991

    Google Scholar 

  24. Cowley S, Paterson H, Kemp P, Marshall CJ: Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852, 1994

    Google Scholar 

  25. Xu G, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F: The catalytic domain of the neurofibromatosis type 1 gene product stimulatesras GTPase and complementsira mutants ofS. cerevisiae. Cell 63:835–841, 1990

    Google Scholar 

  26. Martin GA, Viskochil D, Bollag G, McCabe PC, Crosier WJ, Haubruck H, Conroy L, Clark R, O'Connell P, Cawthon RM, Innis MA, McCormick F: The GAP-related domain of the neurofibromatosis type 1 gene product interacts withras p21. Cell 63:843–849, 1990

    Google Scholar 

  27. Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, Collins F: TheNF1 locus encodes a protein functionally related to mammalian GAP and yeastIRA proteins. Cell 63:851–859, 1990

    Google Scholar 

  28. DeClue JE, Papageorge AG, Fletcher JA, Diehl SR, Ratner N, Vass WC, Lowy DR: Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69:265–273, 1992

    Google Scholar 

  29. Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J: Aberrant regulation ofras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356:713–715, 1992

    Google Scholar 

  30. Quilliam LA, Huff SY, Rabun KM, Wei W, Broek D, Der CJ: Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and SOS1 activation of Ras transforming activity. Proc Natl Acad Sci USA 91:8512–8515, 1994

    Google Scholar 

  31. Barlat I, Schweighoffer F, Chevallier-Multon MC, Duchesne M, Fath I, Landais D, Jacquet M, Tocque B: TheSaccharomyces cerevisiae gene product SDC25 C-domain functions as an oncoprotein in NIH3T3 cells. Oncogene 8:215–218, 1993

    Google Scholar 

  32. Cen H, Papageorge AG, Vass WC, Zhang K, Lowy DR: Regulated and constitutive activity by CDC25Mm (GRF), a ras-specific exchange factor. Mol Cell Biol 13:7718–7724, 1993

    Google Scholar 

  33. Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA: Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363:45–51, 1993

    Google Scholar 

  34. Toi M, Hamada Y, Nakamura T, Mukaida H, Suehiro S, Wada T, Toge T, Niimoto M, Hattori T: Immunocytochemical and biochemical analysis of epidermal growth factor receptor expression in human breast cancer tissues: relationship to estrogen receptor and lymphatic invasion. Int J Cancer 43:220–225, 1989

    Google Scholar 

  35. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, Press MF: Studies of the HER2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712, 1989

    Google Scholar 

  36. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER2/neu oncogene. Science 235:177–182, 1987

    Google Scholar 

  37. McCormick F: How receptors turn Ras on. Nature 363:15–16, 1993

    Google Scholar 

  38. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T: SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674, 1991

    Google Scholar 

  39. Mayer BJ, Baltimore D: Signalling through SH2 and SH3 domains. Trends Cell Biol 3:8–13, 1993

    Google Scholar 

  40. Pawson T: SH2 and SH3 domains. Curr Op Cell Biol 2:432–437, 1992

    Google Scholar 

  41. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ, Neel BG, Girge RB, Fajardo JE, Chou MM, Hanafusa H, Schaffhausen B, Cantley LC: SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778, 1993

    Google Scholar 

  42. Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, Schreiber SL: Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76:933–945, 1994

    Google Scholar 

  43. Pazin MJ, Williams LT: Triggering signaling cascades by receptor tyrosine kinases. Trends Biochem Sci 17:374–378, 1992

    Google Scholar 

  44. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T: Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 13:764–773, 1994

    Google Scholar 

  45. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N, Batzer A, Rabun KM, Der CJ, Schlessinger J, Gishizky ML: BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75:175–185, 1993

    Google Scholar 

  46. Arlinghaus RB: Multiple BCR-related gene products and their proposed involvement in ligand-induced signal transduction pathways. Mol Carcinogen 5:171–173, 1992

    Google Scholar 

  47. Hall A:ras and GAP — who's controlling whom? Cell 61:921–923, 1990

    Google Scholar 

  48. Haubruck H, McCormick F: Ras p21: effects and regulation. Biochim Biophys Acta 1072:215–229, 1991

    Google Scholar 

  49. Roberts TM: A signal chain of events. Nature 360: 534–535, 1992

    Google Scholar 

  50. Clark GJ, Quilliam LA, Hisaka MM, Der CJ: Differential antagonism of Ras biological activity by catalytic and Src homology domains of Ras GTPase activation protein. Proc Natl Acad Sci USA 90:4887–4891, 1993

    Google Scholar 

  51. Duchesne M, Schweighoffer F, Parker F, Clerc F, Frobert Y, Thang MN, Tocqué B: Identification of the SH3 domain of GAP as an essential sequence for Ras-GAP-mediated signaling. Science 259:525–528, 1993

    Google Scholar 

  52. Martin GA, Yatani A, Clark R, Conroy L, Polakis P, Brown AM, McCormick F: GAP domains responsible for ras p21-dependent inhibition of muscarinic atrial K+ channel currents. Science 255:192–194, 1992

    Google Scholar 

  53. Johnson MR, DeClue JE, Felzmann S, Vass WC, Xu G, White R, Lowy DR: Neurofibromin can inhibit Ras-dependent growth by a mechanism independent of its GTPase-accelerating function. Mol Cell Biol 14: 641–645, 1994

    Google Scholar 

  54. NNFF International NF1 Genetic Consortium, Vol. 2, No.3

  55. Friedman E, Gejman PV, Martin GA, McCormick F: Nonsense mutations in the C-terminal SH2 region of the GTPase activating protein (GAP) gene in human tumors. Nature Genetics 5:242–247, 1993

    Google Scholar 

  56. Moodie SA, Willumsen BM, Weber MJ, Wolfman A: Complexes of Ras-GTP with Raf-1 and mitogen-activated protein kinase. Science 260:1658–1661, 1993

    Google Scholar 

  57. Van Aelst L, Barr M, Marcus S, Polverino A, Wigler M: Complex formation between RAS and RAF and other protein kinases. Proc Natl Acad Sci USA 90: 6213–6217, 1993

    Google Scholar 

  58. Vojtek AB, Hollenberg SM, Cooper JA: Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 205–214, 1993

  59. Zhang X, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J: Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364:308–313, 1993

    Google Scholar 

  60. Warne PH, Viciana PR, Downward J: Direct interaction of Ras and the amino-terminal region of Raf-1in vitro. Nature 364:352–355, 1993

    Google Scholar 

  61. Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF: Activation of Raf as a result of recruitment to the plasma membrane. Science 264:1463–1467, 1994

    Google Scholar 

  62. Leevers SJ, Paterson HF, Marshall CJ: Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369:411–414, 1994

    Google Scholar 

  63. Leevers SJ, Marshall CJ: MAP kinase regulation — the oncogene connection. Trends Cell Biol 2:283–286, 1992

    Google Scholar 

  64. Crews CM, Erikson RL: Extracellular signals and reversible protein phosphorylation: what to mek of it all. Cell 74:215–217, 1993

    Google Scholar 

  65. Blenis J: Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci USA 90:5889–5892, 1993

    Google Scholar 

  66. Johnson GL, Vaillancourt RR: Sequential protein kinase reactions controlling cell growth and differentiation. Current Opin Cell Biol 6:230–238, 1994

    Google Scholar 

  67. Stanton VP Jr, Cooper GM: Activation of human raf transforming genes by deletion of normal aminoterminal coding sequences. Mol Cell Biol 7:1171–1179, 1987

    Google Scholar 

  68. Fabian JR, Daar IO, Morrison DK: Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol Cell Biol 13:7170–7179, 1993

    Google Scholar 

  69. Brunner D, Oellers N, Szabad J, Biggs WH III, Zipursky SL, Hafen E: A gain-of-function mutation inDrosophila MAP kinase activates multiple receptor tyrosine kinase signaling pathways. Cell 76:875–888, 1994

    Google Scholar 

  70. Bokoch GM, Der CJ: Emerging concepts in theRas superfamily of GTP-binding proteins. FASEB J 7: 750–759, 1993

    Google Scholar 

  71. Goud B, McCaffrey M: Small GTP-binding proteins and their role in transport. Cell Biol 3:626–633, 1991

    Google Scholar 

  72. Hall A: Ras-related GTPases and the cytoskeleton. Mol Biol Cell 3:475–479, 1992

    Google Scholar 

  73. Bischoff FR, Ponstingl H: Mitotic regulator protein RCC1 is complexed with a nuclearras-related polypeptide. Proc Natl Acad Sci USA 88:10830–10834, 1991

    Google Scholar 

  74. Moore MS, Biobel G: The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365:661–663, 1993

    Google Scholar 

  75. Ren M, Drivas G, D'Eustachio P, Rush MG: Ran/TC4: a small nuclear GTP-binding protein that regulates DNA synthesis. J Cell Biol 120:313–323, 1993

    Google Scholar 

  76. Graham SM, Cox AD, Drivas G, Rush MR, D'Eustachio P, Der CJ: Aberrant function of the Ras-related TC21/R-Ras2 protein triggers malignant transformation. Mol Cell Biol 14:4108–4115, 1994

    Google Scholar 

  77. Cox AD, Brtva TR, Lowe DG, Der CJ: R-Ras induces malignant, but not morphologic, transformation of NIH 3T3 cells. Oncogene 9:3281–3288, 1994

    Google Scholar 

  78. Drivas GT, Shih A, Coutavas E, Rush MG, D'Eustachio P: Characterization of four novelras-like genes expressed in a human teratocarcinoma cell line. Mol Cell Biol 10:1793–1798, 1990

    Google Scholar 

  79. Soule HD, Maloney TM, Wolman SR, Peterson WD Jr, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC: Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50:6075–6086, 1990

    Google Scholar 

  80. Rey I, Taylor-Harris P, van Erp H, Hall A: R-ras interacts with rasGAP, neurofibromin, and c-raf but does not regulate cell growth or differentiation. Oncogene 9:685–692, 1994

    Google Scholar 

  81. Fernandez-Sarabia MJ, Bischoff JR: Bc1-2 associates with theras-related protein R-ras p23. Nature 366: 274–275, 1993

    Google Scholar 

  82. Gibbs JB: Ras C-terminal processing enzymes — new drug targets. Cell 65:1–4, 1991

    Google Scholar 

  83. Khosravi-Far R, Cox AD, Kato K, Der CJ: Protein prenylation: key to ras function and cancer intervention? Cell Growth and Diff 3:461–469, 1992

    Google Scholar 

  84. Hancock JF: Anti-Ras drugs come of age. Curr Biol 3:770–772, 1993

    Google Scholar 

  85. Clarke S: Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61:355–386, 1992

    Google Scholar 

  86. Giannakouros T, Magee AI: Protein prenylation and associated modifications. CRC Rev 31:8030–8035, 1992

    Google Scholar 

  87. Cox AD, Der CJ: Protein prenylation: more than just glue? Curr Op Cell Biol 4:1008–1016, 1992

    Google Scholar 

  88. Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ: Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA 89: 6403–6407, 1992

    Google Scholar 

  89. Reiss Y, Goldstein JL, Seabra MC, Casey PJ, Brown MS: Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell 62:81–88, 1990

    Google Scholar 

  90. Reiss Y, Stradley SJ, Gierasch LM, Brown MS, Goldstein JL: Sequence requirement for peptide recognition by rat brain p21ras protein farnesyltransferase. Proc Natl Acad Sci USA 88:732–736, 1991

    Google Scholar 

  91. Goldstein JL, Brown MS, Stradley SJ, Reiss Y, Gierasch LM: Nonfarnesylated tetrapeptide inhibitors of protein farnesyltransferase. J Biol Chem 266: 15575–15578, 1991

    Google Scholar 

  92. Farnsworth CC, Gelb MH, Glomset JA: Identification of geranylgeranyl-modified proteins in HeLa cells. Science 247:320–322, 1990

    Google Scholar 

  93. Epstein WW, Lever D, Leining LM, Bruenger E, Rilling HC: Quantitation of prenylcysteines by a selective cleavage reaction. Proc Natl Acad Sci USA 88:9668–9670, 1991

    Google Scholar 

  94. Casey PJ: Biochemistry of protein prenylation. J Lipid Res 33:1731–1740, 1992

    Google Scholar 

  95. James GL, Goldstein JL, Brown MS, Rawson TE, Somers TC, McDowell RS, Crowley CW, Lucas BK, Levinson AD, Marsters JC Jr: Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science 260:1937–1942, 1993

    Google Scholar 

  96. Kohl NE, Mosser SD, deSolms SJ, Giuliani EA, Pompliano DL, Graham SL, Smith RL, Scolnick EM, Oliff A, Gibbs JB: Selective inhibition ofras-dependent transformation by a farnesyltransferase inhibitor. Science 260:1934–1937, 1993

    Google Scholar 

  97. Garcia AM, Rowell C, Ackermann K, Kowalczyk JJ, Lewis MD: Peptidomimetic inhibitors ofras farnesylation and function in whole cells. J Biol Chem 268: 18415–18418, 1993

    Google Scholar 

  98. Nigam M, Seong C-M, Qian Y, Hamilton AD, Sebti SM: Potent inhibition of human tumor p21ras farnesyltransferase byA 1 A 2-lacking p21ras CA 1 A 2 X peptidomimetics. J Biol Chem 268:20695–20698, 1993

    Google Scholar 

  99. Cox AD, Garcia AM, Westwick JK, Kowalczyk JJ, Lewis MD, Brenner DA, Der CJ: The CAAX peptidomimetic compound B581 specifically blocks farnesylated, but not geranylgeranylated or myristylated, oncogenic Ras signaling and transformation. J Biol Chem 269:19203–19206, 1994

    Google Scholar 

  100. Mayer BJ, Ren R, Clark KL, Baltimore D: A putative modular domain present in diverse signaling proteins. Cell 73:629–630, 1993

    Google Scholar 

  101. Musacchio A, Gibson T, Rice P, Thompson J, Saraste M: The PH domain: a common piece in the structural patchwork of signaling proteins. Trends Biochem Sci 18:343–348, 1993

    Google Scholar 

  102. Kolch W, Heidecker G, Lloyd P, Rapp UR: Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature 349:426–428, 1991

    Google Scholar 

  103. Westwick JK, Cox AD, Der CJ, Cobb MH, Hibi M, Karin M, Brenner DA: Oncogenic Ras activates c-Jun via a separate pathway from the activation of extra-cellular-signal regulated kinases. Proc Natl Acad Sci USA 91:6030–6034, 1994

    Google Scholar 

  104. Wick M, Lucibello FC, Müller R: Inhibition of Fos-and Ras-induced transformation by mutant Fos proteins with structural alterations in functionally different domains. Oncogene 7:859–867, 1992

    Google Scholar 

  105. Granger-Schnarr M, Benusiglio E, Schnarr M, Sassone-Corsi P: Transformation and transactivation suppressor activity of the c-Jun leucine zipper fused to a bacterial repressor. Proc Natl Acad Sci USA 89: 4236–4239, 1992

    Google Scholar 

  106. Langer SJ, Bortner DM, Roussel MF, Sherr CJ, Ostrowski MC: Mitogenic signaling by colony-stimulating factor 1 andras is suppressed by theets-2 DNA-binding domain and restored bymyc overexpression. Mol Cell Biol 12:5355–5362, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, G.J., Der, C.J. Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res Tr 35, 133–144 (1995). https://doi.org/10.1007/BF00694753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694753

Key words

Navigation