Skip to main content

NF-κB, IκB, and IKK: Integral Components of Immune System Signaling

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1172))

Abstract

The NF-κB (Nuclear Factor kappa B) transcription factor plays crucial roles in the regulation of numerous biological processes including development of the immune system, inflammation, and innate and adaptive immune responses. Control over the immune cell functions of NF-κB results from signaling through one of two different routes: the canonical and noncanonical NF-κB signaling pathways. Present at the end of both pathways are the proteins NF-κB, IκB, and the IκB kinase (IKK). These proteins work together to deliver the myriad outcomes that influence context-dependent transcriptional control in immune cells. In the present chapter, we review the structural information available on NF-κB, IκB, and IKK, the critical terminal components of the NF-κB signaling, in relation to their physiological function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agou F, Ye F, Goffinont S, Courtois G, Yamaoka S, Isräel A, Veron M (2002) NEMO trimerizes through its coiled-coil C-terminal domain. J Biol Chem 277(20):17464–17475. https://doi.org/10.1074/jbc.M201964200

    Article  CAS  PubMed  Google Scholar 

  2. Bagneris C, Ageichik AV, Cronin N, Wallace B, Collins M, Boshoff C, Waksman G, Barrett T (2008) Crystal structure of a vFlip-IKKgamma complex: insights into viral activation of the IKK signalosome. Mol Cell 30(5):620–631. https://doi.org/10.1016/j.molcel.2008.04.029

    Article  CAS  PubMed  Google Scholar 

  3. Baltimore D, Beg AA (1995) DNA-binding proteins. A butterfly flutters by. Nature 373(6512):287–288. https://doi.org/10.1038/373287a0

    Article  CAS  PubMed  Google Scholar 

  4. Bergqvist S, Alverdi V, Mengel B, Hoffmann A, Ghosh G, Komives EA (2009) Kinetic enhancement of NF-κB:DNA dissociation by IκBα. Proc Natl Acad Sci USA 106(46):19328–19333. https://doi.org/10.1073/pnas.0908797106

    Article  PubMed  Google Scholar 

  5. Berkowitz B, Huang DB, Chen-Park FE, Sigler PB, Ghosh G (2002) The X-ray crystal structure of the NF-κB p50/p65 heterodimer bound to the interferonβ κB site. J Biol Chem 277(27):24694–24700. https://doi.org/10.1074/jbc.M200006200

    Article  CAS  PubMed  Google Scholar 

  6. Chen FE, Huang DB, Chen YQ, Ghosh G (1998) Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA. Nature 391(6665):410–413. https://doi.org/10.1038/34956

    Article  CAS  Google Scholar 

  7. Chen YQ, Ghosh S, Ghosh G (1998) A novel DNA recognition mode by the NF-κB p65 homodimer. Nat Struct Biol 5(1):67–73

    Article  Google Scholar 

  8. Chen YQ, Sengchanthalangsy LL, Hackett A, Ghosh G (2000) NF-κB p65 (RelA) homodimer uses distinct mechanisms to recognize DNA targets. Structure 8(4):419–428

    Article  CAS  Google Scholar 

  9. Chen ZJ, Parent L, Maniatis T (1996) Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 84(6):853–862

    Article  CAS  Google Scholar 

  10. Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33(3):275–286. https://doi.org/10.1016/j.molcel.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  11. Chen-Park FE, Huang DB, Noro B, Thanos D, Ghosh G (2002) The κB DNA sequence from the HIV long terminal repeat functions as an allosteric regulator of HIV transcription. J Biol Chem 277(27):24701–24708. https://doi.org/10.1074/jbc.M200007200

    Article  CAS  PubMed  Google Scholar 

  12. Cheng CS, Feldman KE, Lee J, Verma S, Huang DB, Huynh K, Chang M, Ponomarenko JV, Sun SC, Benedict CA, Ghosh G, Hoffmann A (2011) The specificity of innate immune responses is enforced by repression of interferon response elements by NF-κB p 50. Sci Signal 4(161):ra11. https://doi.org/10.1126/scisignal.2001501

    Article  Google Scholar 

  13. Courtois G, Isräel A (2011) IKK regulation and human genetics. Curr Top Microbiol Immunol 349:73–95. https://doi.org/10.1007/82_2010_98

    Article  CAS  PubMed  Google Scholar 

  14. Cramer P, Larson CJ, Verdine GL, Müller CW (1997) Structure of the human NF-κB p 52 homodimer-DNA complex at 2.1 Å resolution. EMBO J 16(23):7078–7090. https://doi.org/10.1093/emboj/16.23.7078

    Article  CAS  Google Scholar 

  15. Delhase M, Hayakawa M, Chen Y, Karin M (1999) Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 284(5412):309–313

    Article  CAS  Google Scholar 

  16. Dembinski HE, Wismer K, Vargas JD, Suryawanshi GW, Kern N, Kroon G, Dyson HJ, Hoffmann A, Komives EA (2017) Functional importance of stripping in NFκB signaling revealed by a stripping-impaired IκBα mutant. Proc Natl Acad Sci USA 114(8):1916–1921. https://doi.org/10.1073/pnas.1610192114

    Article  CAS  PubMed  Google Scholar 

  17. Escalante CR, Shen L, Thanos D, Aggarwal AK (2002) Structure of NF-κB p50/p65 heterodimer bound to the PRDII DNA element from the interferon-β promoter. Structure 10(3):383–391

    Article  CAS  Google Scholar 

  18. Fusco AJ, Huang DB, Miller D, Wang VY, Vu D, Ghosh G (2009) NF-κB p52:RelB heterodimer recognizes two classes of κB sites with two distinct modes. EMBO Rep 10(2):152–159. https://doi.org/10.1038/embor.2008.227

    Article  CAS  PubMed  Google Scholar 

  19. Ganchi PA, Sun SC, Greene WC, Ballard DW (1993) A novel NF-κB complex containing p65 homodimers: implications for transcriptional control at the level of subunit dimerization. Mol Cell Biol 13(12):7826–7835

    Article  CAS  Google Scholar 

  20. Ghosh G, van Duyne G, Ghosh S, Sigler PB (1995) Structure of NF-κB p50 homodimer bound to a κB site. Nature 373(6512):303–310. https://doi.org/10.1038/373303a0

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh G, Wang VY, Huang DB, Fusco A (2012) NF-κB regulation: lessons from structures. Immunol Rev 246(1):36–58. https://doi.org/10.1111/j.1600-065X.2012.01097.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hatada EN, Nieters A, Wulczyn FG, Naumann M, Meyer R, Nucifora G, McKeithan TW, Scheidereit C (1992) The ankyrin repeat domains of the NF-κB precursor p105 and the protooncogene bcl-3 act as specific inhibitors of NF-κB DNA binding. Proc Natl Acad Sci USA 89(6):2489–2493

    Article  CAS  Google Scholar 

  23. Hayden MS, Ghosh S (2004) Signaling to NF-κB. Genes Dev 18(18):2195–2224. https://doi.org/10.1101/gad.1228704

    Article  CAS  PubMed  Google Scholar 

  24. Hayden MS, West AP, Ghosh S (2006) NF-κB and the immune response. Oncogene 25(51):6758–6780. https://doi.org/10.1038/sj.onc.1209943

    Article  CAS  PubMed  Google Scholar 

  25. Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298(5596):1241–1245. https://doi.org/10.1126/science.1071914

    Article  CAS  PubMed  Google Scholar 

  26. Huang DB, Chen YQ, Ruetsche M, Phelps CB, Ghosh G (2001) X-ray crystal structure of proto-oncogene product c-Rel bound to the CD28 response element of IL-2. Structure 9(8):669–678

    Article  CAS  Google Scholar 

  27. Huang DB, Huxford T, Chen YQ, Ghosh G (1997) The role of DNA in the mechanism of NFκB dimer formation: crystal structures of the dimerization domains of the p50 and p65 subunits. Structure 5(11):1427–1436

    Article  CAS  Google Scholar 

  28. Huang DB, Vu D, Ghosh G (2005) NF-κB RelB forms an intertwined homodimer. Structure 13(9):1365–1373. https://doi.org/10.1016/j.str.2005.06.018

    Article  CAS  PubMed  Google Scholar 

  29. Huxford T, Ghosh G (2009) A structural guide to proteins of the NF-κB signaling module. Cold Spring Harb Perspect Biol 1(3):a000075. https://doi.org/10.1101/cshperspect.a000075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huxford T, Hoffmann A, Ghosh G (2011) Understanding the logic of IκB:NF-κB regulation in structural terms. Curr Top Microbiol Immunol 349:1–24. https://doi.org/10.1007/82_2010_99

    Article  CAS  PubMed  Google Scholar 

  31. Huxford T, Huang DB, Malek S, Ghosh G (1998) The crystal structure of the IκBα/NF-κB complex reveals mechanisms of NF-κB inactivation. Cell 95(6):759–770

    Article  CAS  Google Scholar 

  32. Huxford T, Mishler D, Phelps CB, Huang DB, Sengchanthalangsy LL, Reeves R, Hughes CA, Komives EA, Ghosh G (2002) Solvent exposed non-contacting amino acids play a critical role in NF-κB/IκBα complex formation. J Mol Biol 324(4):587–597

    Article  CAS  Google Scholar 

  33. Isräel A (2010) The IKK complex, a central regulator of NF-κB activation. Cold Spring Harb Perspect Biol 2(3):a000158. https://doi.org/10.1101/cshperspect.a000158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jacobs MD, Harrison SC (1998) Structure of an IκBα/NF-κB complex. Cell 95(6):749–758

    Article  CAS  Google Scholar 

  35. Leonardi A, Chariot A, Claudio E, Cunningham K, Siebenlist U (2000) CIKS, a connection to IκB kinase and stress-activated protein kinase. Proc Natl Acad Sci USA 97(19):10494–10499. https://doi.org/10.1073/pnas.190245697

    Article  CAS  PubMed  Google Scholar 

  36. Leung TH, Hoffmann A, Baltimore D (2004) One nucleotide in a κB site can determine cofactor specificity for NF-κB dimers. Cell 118(4):453–464. https://doi.org/10.1016/j.cell.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  37. Liang C, Zhang M, Sun SC (2006) β-TrCP binding and processing of NF-κB2/p100 involve its phosphorylation at serines 866 and 870. Cell Signal 18(8):1309–1317. https://doi.org/10.1016/j.cellsig.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  38. Liu S, Misquitta YR, Olland A, Johnson MA, Kelleher KS, Kriz R, Lin LL, Stahl M, Mosyak L (2013) Crystal structure of a human IκB kinase β asymmetric dimer. J Biol Chem 288(31):22758–22767. https://doi.org/10.1074/jbc.M113.482596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Malek S, Huang DB, Huxford T, Ghosh S, Ghosh G (2003) X-ray crystal structure of an IκBβ:NF-κB p65 homodimer complex. J Biol Chem 278(25):23094–23100. https://doi.org/10.1074/jbc.M301022200

    Article  CAS  PubMed  Google Scholar 

  40. Marienfeld R, Berberich-Siebelt F, Berberich I, Denk A, Serfling E, Neumann M (2001) Signal-specific and phosphorylation-dependent RelB degradation: a potential mechanism of NF-κB control. Oncogene 20(56):8142–8147. https://doi.org/10.1038/sj.onc.1204884

    Article  CAS  PubMed  Google Scholar 

  41. Marienfeld RB, Palkowitsch L, Ghosh S (2006) Dimerization of the IκB kinase-binding domain of NEMO is required for tumor necrosis factor α-induced NF-κB activity. Mol Cell Biol 26(24):9209–9219. https://doi.org/10.1128/MCB.00478-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martone R, Euskirchen G, Bertone P, Hartman S, Royce TE, Luscombe NM, Rinn JL, Nelson FK, Miller P, Gerstein M, Weissman S, Snyder M (2003) Distribution of NF-κB-binding sites across human chromosome 22. Proc Natl Acad Sci USA 100(21):12247–12252. https://doi.org/10.1073/pnas.2135255100

    Article  CAS  PubMed  Google Scholar 

  43. Mathes E, Wang L, Komives E, Ghosh G (2010) Flexible regions within IκBα create the ubiquitin-independent degradation signal. J Biol Chem 285(43):32927–32936. https://doi.org/10.1074/jbc.M110.107326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278(5339):860–866

    Article  CAS  Google Scholar 

  45. Michel F, Soler-Lopez M, Petosa C, Cramer P, Siebenlist U, Müller CW (2001) Crystal structure of the ankyrin repeat domain of Bcl-3: a unique member of the IκB protein family. EMBO J 20(22):6180–6190. https://doi.org/10.1093/emboj/20.22.6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mitchell S, Vargas J, Hoffmann A (2016) Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med 8(3):227–241. https://doi.org/10.1002/wsbm.1331

    Article  CAS  PubMed  Google Scholar 

  47. Moorthy AK, Huang DB, Wang VY, Vu D, Ghosh G (2007) X-ray structure of a NF-κB p50/RelB/DNA complex reveals assembly of multiple dimers on tandem κB sites. J Mol Biol 373(3):723–734. https://doi.org/10.1016/j.jmb.2007.08.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mulero MC, Shahabi S, Ko MS, Schiffer JM, Huang DB, Wang VY, Amaro RE, Huxford T, Ghosh G (2018) Protein cofactors are essential for high-affinity DNA binding by the nuclear factor κB RelA subunit. Biochemistry 57(20):2943–2957. https://doi.org/10.1021/acs.biochem.8b00158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Müller CW, Rey FA, Harrison SC (1996) Comparison of two different DNA-binding modes of the NF-κB p50 homodimer. Nat Struct Biol 3(3):224–227

    Article  Google Scholar 

  50. Müller CW, Rey FA, Sodeoka M, Verdine GL, Harrison SC (1995) Structure of the NF-κB p50 homodimer bound to DNA. Nature 373(6512):311–317. https://doi.org/10.1038/373311a0

    Article  PubMed  Google Scholar 

  51. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (1999) The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398(6724):252–256. https://doi.org/10.1038/18465

    Article  CAS  PubMed  Google Scholar 

  52. Palkowitsch L, Leidner J, Ghosh S, Marienfeld RB (2008) Phosphorylation of serine 68 in the IκB kinase (IKK)-binding domain of NEMO interferes with the structure of the IKK complex and tumor necrosis factor-α-induced NF-κB activity. J Biol Chem 283(1):76–86. https://doi.org/10.1074/jbc.M708856200

    Article  CAS  PubMed  Google Scholar 

  53. Panne D, Maniatis T, Harrison SC (2007) An atomic model of the interferon-β enhanceosome. Cell 129(6):1111–1123. https://doi.org/10.1016/j.cell.2007.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Phelps CB, Sengchanthalangsy LL, Huxford T, Ghosh G (2000) Mechanism of IκBα binding to NF-κB dimers. J Biol Chem 275(38):29840–29846. https://doi.org/10.1074/jbc.M004899200

    Article  CAS  PubMed  Google Scholar 

  55. Polley S, Huang DB, Hauenstein AV, Fusco AJ, Zhong X, Vu D, Schröfelbauer B, Kim Y, Hoffmann A, Verma IM, Ghosh G, Huxford T (2013) A structural basis for IκB kinase 2 activation via oligomerization-dependent trans auto-phosphorylation. PLoS Biol 11(6):e1001581. https://doi.org/10.1371/journal.pbio.1001581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Polley S, Passos DO, Huang DB, Mulero MC, Mazumder A, Biswas T, Verma IM, Lyumkis D, Ghosh G (2016) Structural basis for the activation of IKK1/α. Cell Rep 17(8):1907–1914. https://doi.org/10.1016/j.celrep.2016.10.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Potoyan DA, Zheng W, Ferreiro DU, Wolynes PG, Komives EA (2016) PEST control of molecular stripping of NFκB from DNA transcription sites. J Phys Chem B 120(33):8532–8538. https://doi.org/10.1021/acs.jpcb.6b02359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D, Randow F, Wakatsuki S, Dikic I (2009) Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136(6):1098–1109. https://doi.org/10.1016/j.cell.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  59. Ramsey KM, Dembinski HE, Chen W, Ricci CG, Komives EA (2017) DNA and IκBα both induce long-range conformational changes in NFκB. J Mol Biol 429(7):999–1008. https://doi.org/10.1016/j.jmb.2017.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rushe M, Silvian L, Bixler S, Chen LL, Cheung A, Bowes S, Cuervo H, Berkowitz S, Zheng T, Guckian K, Pellegrini M, Lugovskoy A (2008) Structure of a NEMO/IKK-associating domain reveals architecture of the interaction site. Structure 16(5):798–808. https://doi.org/10.1016/j.str.2008.02.012

    Article  CAS  PubMed  Google Scholar 

  61. Savinova OV, Hoffmann A, Ghosh G (2009) The Nfkb1 and Nfkb2 proteins p105 and p100 function as the core of high-molecular-weight heterogeneous complexes. Mol Cell 34(5):591–602. https://doi.org/10.1016/j.molcel.2009.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schuster M, Annemann M, Plaza-Sirvent C, Schmitz I (2013) Atypical IkappaB proteins—nuclear modulators of NF-κB signaling. Cell Commun Signal 11(1):23. https://doi.org/10.1186/1478-811X-11-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sen R, Baltimore D (1986) Inducibility of kappa immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47(6):921–928

    Article  CAS  Google Scholar 

  64. Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46(5):705–716

    Article  CAS  Google Scholar 

  65. Sengchanthalangsy LL, Datta S, Huang DB, Anderson E, Braswell EH, Ghosh G (1999) Characterization of the dimer interface of transcription factor NFκB p50 homodimer. J Mol Biol 289(4):1029–1040. https://doi.org/10.1006/jmbi.1999.2823

    Article  CAS  PubMed  Google Scholar 

  66. Shih VF, Kearns JD, Basak S, Savinova OV, Ghosh G, Hoffmann A (2009) Kinetic control of negative feedback regulators of NF-κB/RelA determines their pathogen- and cytokine-receptor signaling specificity. Proc Natl Acad Sci USA 106(24):9619–9624. https://doi.org/10.1073/pnas.0812367106

    Article  PubMed  Google Scholar 

  67. Shiina T, Konno A, Oonuma T, Kitamura H, Imaoka K, Takeda N, Todokoro K, Morimatsu M (2004) Targeted disruption of MAIL, a nuclear IκB protein, leads to severe atopic dermatitis-like disease. J Biol Chem 279(53):55493–55498. https://doi.org/10.1074/jbc.M409770200

    Article  CAS  PubMed  Google Scholar 

  68. Sil AK, Maeda S, Sano Y, Roop DR, Karin M (2004) IκB kinase-α acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature 428(6983):660–664. https://doi.org/10.1038/nature02421

    Article  CAS  PubMed  Google Scholar 

  69. Sue SC, Dyson HJ (2009) Interaction of the IκBα C-terminal PEST sequence with NF-κB: insights into the inhibition of NF-κB DNA binding by IκBα. J Mol Biol 388(4):824–838. https://doi.org/10.1016/j.jmb.2009.03.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun SC (2017) The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 17(9):545–558. https://doi.org/10.1038/nri.2017.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tao Z, Fusco A, Huang DB, Gupta K, Young Kim D, Ware CF, Van Duyne GD, Ghosh G (2014) p100/IκBdelta sequesters and inhibits NF-κB through kappaBsome formation. Proc Natl Acad Sci USA 111(45):15946–15951. https://doi.org/10.1073/pnas.1408552111

    Article  CAS  PubMed  Google Scholar 

  72. Tartey S, Matsushita K, Vandenbon A, Ori D, Imamura T, Mino T, Standley DM, Hoffmann JA, Reichhart JM, Akira S, Takeuchi O (2014) Akirin2 is critical for inducing inflammatory genes by bridging IκBζ and the SWI/SNF complex. EMBO J 33(20):2332–2348. https://doi.org/10.15252/embj.201488447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tegethoff S, Behlke J, Scheidereit C (2003) Tetrameric oligomerization of IκB kinase gamma (IKKgamma) is obligatory for IKK complex activity and NF-κB activation. Mol Cell Biol 23(6):2029–2041

    Article  CAS  Google Scholar 

  74. Trinh DV, Zhu N, Farhang G, Kim BJ, Huxford T (2008) The nuclear IκB protein IκBζ specifically binds NF-κB p50 homodimers and forms a ternary complex on κB DNA. J Mol Biol 379(1):122–135. https://doi.org/10.1016/j.jmb.2008.03.060

    Article  CAS  PubMed  Google Scholar 

  75. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412(6844):346–351. https://doi.org/10.1038/35085597

    Article  CAS  PubMed  Google Scholar 

  76. Xu G, Lo YC, Li Q, Napolitano G, Wu X, Jiang X, Dreano M, Karin M, Wu H (2011) Crystal structure of inhibitor of κB kinase β. Nature 472(7343):325–330. https://doi.org/10.1038/nature09853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yamamoto M, Yamazaki S, Uematsu S, Sato S, Hemmi H, Hoshino K, Kaisho T, Kuwata H, Takeuchi O, Takeshige K, Saitoh T, Yamaoka S, Yamamoto N, Yamamoto S, Muta T, Takeda K, Akira S (2004) Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature 430(6996):218–222. https://doi.org/10.1038/nature02738

    Article  CAS  Google Scholar 

  78. Yamazaki S, Muta T, Takeshige K (2001) A novel IκB protein, IκBζ, induced by proinflammatory stimuli, negatively regulates nuclear factor-κB in the nuclei. J Biol Chem 276(29):27657–27662. https://doi.org/10.1074/jbc.M103426200

    Article  CAS  PubMed  Google Scholar 

  79. Yoshikawa A, Sato Y, Yamashita M, Mimura H, Yamagata A, Fukai S (2009) Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin. FEBS Lett 583(20):3317–3322. https://doi.org/10.1016/j.febslet.2009.09.028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research is funded by the National Institutes of Health Grant GM085490 to GG. Biochemistry research at SDSU is supported in part by the California Metabolic Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourisankar Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mulero, M.C., Huxford, T., Ghosh, G. (2019). NF-κB, IκB, and IKK: Integral Components of Immune System Signaling. In: Jin, T., Yin, Q. (eds) Structural Immunology. Advances in Experimental Medicine and Biology, vol 1172. Springer, Singapore. https://doi.org/10.1007/978-981-13-9367-9_10

Download citation

Publish with us

Policies and ethics