Skip to main content

Pathways Implicated in Stem Cell Migration: The SDF-1/CXCR4 Axis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 750))

Abstract

The hallmark of hematopoietic stem and progenitor cells (HSPCs) is their motility, which is essential for their function, such as recruitment upon demand. Stromal Derived Factor-1 (SDF-1, CXCL12) and its major receptor CXCR4 play major roles in stem cell motility and development. In vitro migration assays, implicating either gradients or cell surface-bound forms of SDF-1, are easy to perform and provide vital information regarding directional and random stem cell motility, which correlate with their repopulation potential in clinical and experimental transplantations. In vivo stem cell homing to the bone marrow, their retention, engraftment, and egress to the circulation, all involve SDF-1/CXCR4 interactions. Finally, other stem cell features such as stem cell survival and proliferation, are also dependent on the SDF-1/CXCR4 axis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Peled, A., Petit, I., Kollet, O., et al. (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4 Science 283, 845–8.

    Google Scholar 

  2. Wright, D.E., Bowman, E.P., Wagers, A.J., Butcher, E.C., and Weissman, I.L. (2002) Hematopoietic stem cells are uniquely selective in their migratory response to chemokines J Exp Med 195, 1145–54.

    Article  PubMed  CAS  Google Scholar 

  3. Ponomaryov, T., Peled, A., Petit, I., et al. (2000) Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function J Clin Invest 106, 1331–9.

    Article  PubMed  CAS  Google Scholar 

  4. Sugiyama, T., Kohara, H., Noda, M., and Nagasawa, T. (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niche Immunity 25, 977–88.

    Article  PubMed  CAS  Google Scholar 

  5. Lapidot, T., Dar, A., and Kollet, O. (2005) How do stem cells find their way home? Blood 106, 1901–10.

    Article  PubMed  CAS  Google Scholar 

  6. Lapidot, T., and Petit, I. (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells Exp Hematol 30, 973–81.

    Article  PubMed  CAS  Google Scholar 

  7. Mendez-Ferrer, S., Lucas, D., Battista, M., and Frenette, P.S. (2008) Haematopoietic stem cell release is regulated by circadian oscillations Nature 452, 442–7.

    Article  PubMed  CAS  Google Scholar 

  8. Broxmeyer, H.E., Orschell ,C.M., Clapp, D.W., et al. (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist J Exp Med 201, 1307–18.

    Article  PubMed  CAS  Google Scholar 

  9. Nie, Y., Han, Y.C., and Zou, Y.R. (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells J Exp Med 205, 777–83.

    Article  PubMed  CAS  Google Scholar 

  10. Voermans, C., Kooi, M.L., Rodenhuis, S., van der Lelie, H., van der Schoot, C.E., and Gerritsen, W.R. (2001) In vitro migratory capacity of CD34+ cells is related to hemato­poietic recovery after autologous stem cell transplantation Blood 97, 799–804.

    Article  PubMed  CAS  Google Scholar 

  11. Petit, I., Goichberg, P., and Spiegel, A., et al. (2005) Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells J Clin Invest 115, 168–76.

    PubMed  CAS  Google Scholar 

  12. Shivtiel, S., Kollet, O., Lapid, K., et al. (2008) CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules J Exp Med 205, 2381–95.

    Article  PubMed  CAS  Google Scholar 

  13. Kawai, T., Choi, U., Whiting-Theobald, N.L., et al. (2005) Enhanced function with decreased internalization of carboxy-terminus truncated CXCR4 responsible for WHIM syndrome Exp Hematol 33, 460–8.

    Article  PubMed  CAS  Google Scholar 

  14. Kawai, T., Choi, U., Cardwell, L., et al. (2007) WHIM syndrome myelokathexis reproduced in the NOD/SCID mouse xenotransplant model engrafted with healthy human stem cells transduced with C-terminus-truncated CXCR4 Blood 109, 78–84.

    Google Scholar 

  15. Ngo, H.T., Leleu, X., Lee, J., et al. (2008) SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia Blood 112, 150–8.

    Article  PubMed  CAS  Google Scholar 

  16. Metcalf, D. (1977) Hemopoietic colonies: in vitro cloning of normal and leukemic cells. Recent Results Cancer Res (61):Title page, 1–227.

    Google Scholar 

  17. Wagner, D.D., and Frenette, P.S.. (2008) The vessel wall and its interactions Blood 111, 5271–81.

    Article  PubMed  CAS  Google Scholar 

  18. Peled, A., Grabovsky, V., Habler, L., et al. (1999) The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow J Clin Invest 104, 1199–211.

    Article  PubMed  CAS  Google Scholar 

  19. Hartmann, T.N., Grabovsky, V., Pasvolsky, R., et al. (2008) A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells J Leukoc Biol 84, 1130–40.

    Article  PubMed  CAS  Google Scholar 

  20. Cinamon, G., Shinder, V., and Alon, R. (2001) Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines Nat Immunol 2, 515–22.

    Article  PubMed  CAS  Google Scholar 

  21. Shulman, Z., Pasvolsky, R., Woolf, E., et al. (2006) DOCK2 regulates chemokine-triggered lateral lymphocyte motility but not transendothelial migration Blood 108, 2150–8.

    Article  PubMed  CAS  Google Scholar 

  22. Schreiber, T.H., Shinder, V., Cain, D.W., Alon, R., and Sackstein, R. (2007) Shear flow-dependent integration of apical and subendothelial chemokines in T-cell transmigration: implications for locomotion and the multistep paradigm Blood 109, 1381–6.

    Article  PubMed  CAS  Google Scholar 

  23. Vagima, Y., Avigdor, A., Goichberg, P., et al. (2009) MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization J Clin Invest 119, 492–503

    Article  PubMed  CAS  Google Scholar 

  24. Kalchenko, V., Shivtiel, S., Malina, V., et al. (2006) Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing J Biomed Opt 11, 050507.

    Article  PubMed  Google Scholar 

  25. Wright, D.E., Wagers, A.J., Gulati, A.P., Johnson, F.L., and Weissman, I.L. (2001) Physiological migration of hematopoietic stem and progenitor cells Science 294, 1933–6.

    Article  PubMed  CAS  Google Scholar 

  26. Christopherson, K.W., 2nd, Hango, C.G., Mantel, C.R., and Broxmeyer, H.E. (2004) Modulation of hematopoietic stem cell homing and engraftment by CD26 Science 305, 1000–3.

    Google Scholar 

  27. Tavor, S., Petit, I., Porozov, S., et al. (2004) CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice Cancer Res 64, 2817–24.

    Article  PubMed  CAS  Google Scholar 

  28. Kollet, O., Shivtiel, S., Chen, Y.Q., et al. (2003) HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver J Clin Invest 112, 160–9.

    PubMed  CAS  Google Scholar 

  29. Jin, D.K., Shido, K., Kopp, H.G., et al. (2006) Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes Nat Med 12, 557–67.

    Article  PubMed  CAS  Google Scholar 

  30. Wojakowski, W., Tendera, M., Michalowska, A., et al. (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute ­myocardial ­infarction Circulation 110, 3213–20.

    Article  PubMed  CAS  Google Scholar 

  31. Weiss, L., Bullorsky, E., Ashkenazi, and Y.J., Slavin S. (1988) Optimal time interval between myeloablative whole body irradiation and reconstitution with syngeneic bone marrow graft Bone Marrow Transplant 3, 207–10.

    Google Scholar 

  32. Meyerrose, T.E., Herrbrich, P., Hess, D.A., and Nolta, J.A.. (2003) Immune-deficient mouse models for analysis of human stem cells Biotechniques 35, 1262–72.

    PubMed  CAS  Google Scholar 

  33. Wege, A.K., Melkus, M.W., Denton, P.W., Estes, J.D., and Garcia, J.V. (2008) Functional and phenotypic characterization of the humanized BLT mouse model Curr Top Microbiol Immunol 324, 149–65.

    Article  PubMed  CAS  Google Scholar 

  34. Dick, J.E. (2008) Stem cell concepts renew cancer researc. Blood 112, 4793–807.

    Article  PubMed  CAS  Google Scholar 

  35. Pelus, L.M. (2008) Peripheral blood stem cell mobilization: new regimens, new cells, where do we stand Curr Opin Hematol 15, 285–92.

    Article  PubMed  Google Scholar 

  36. Velders, G.A., and Fibbe, W.E. (2005) Involvement of proteases in cytokine-induced hematopoietic stem cell mobilization Ann N Y Acad Sci 1044, 60–9.

    Article  PubMed  CAS  Google Scholar 

  37. Kollet, O., Dar, A., and Lapidot, T. (2007) The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization Annu Rev Immunol 25, 51–69.

    Article  PubMed  CAS  Google Scholar 

  38. Spiegel, A., Kalinkovich, A., Shivtiel, S., Kollet, O., and Lapidot, T. (2008) Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment Cell Stem Cell 3, 484–92.

    Article  PubMed  CAS  Google Scholar 

  39. Dar, A., Kalinkovich, A., Netzer, N., et al. (2006) AMD3100 Signals Via the Nervous System, Inducing Release to the Circulation of Bone Marrow SDF-1, Which Is Crucial for Progenitor Cell Mobilization ASH Annual Meeting Abstracts 108, 1315.

    Google Scholar 

  40. Petit, I., Szyper-Kravitz, M., Nagler, A., et al. (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4 Nat Immunol 3, 687–94.

    Google Scholar 

  41. Spiegel, A., Kollet, O., Peled, A., et al. (2004) Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling Blood 103, 2900–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsvee Lapidot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vagima, Y., Lapid, K., Kollet, O., Goichberg, P., Alon, R., Lapidot, T. (2011). Pathways Implicated in Stem Cell Migration: The SDF-1/CXCR4 Axis. In: Filippi, MD., Geiger, H. (eds) Stem Cell Migration. Methods in Molecular Biology, vol 750. Humana Press. https://doi.org/10.1007/978-1-61779-145-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-145-1_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-144-4

  • Online ISBN: 978-1-61779-145-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics