Skip to main content

Oxidative Stress and Aging

  • Conference paper
Book cover Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 543))

Abstract

Free radical-derived reactive oxygen species (ROS) are constantly generated in most living tissue and can potentially damage DNA, proteins and lipids. “Oxidative stress” occurs if ROS reach abnormally high concentrations. Harman was the first to propose that the damaging effects of ROS may play a key role in the mechanism of aging. Genetic studies of such distantly related species as C. elegans, Drosophila melanogaster, and mice support this hypothesis. However, ROS are not only a cause of structural damage, but also physiologically important mediators in biological signaling processes. Abnormally high levels of ROS may therefore lead to dysregulation of redox-sensitive signaling pathways. The redox-sensitive targets in these pathways are often signaling proteins with redox-sensitive cysteine residues which are oxidized to sulfenic acid moieties and mixed disulfides, thereby altering the signaling function of the protein. Because the formation of these mixed disulfides can also occur through a prooxidative shift in the intracellular thiol/disulfide redox status (REDST), the respective signaling pathways respond not only to ROS but also to changes in REDST. Information about the concentration of ROS in living tissue is scarce, but aging-related changes in REDST are well documented. Several studies with cell cultures or experimental animals have shown that the oxidative shift in the intracellular glutathione REDST is typically associated with cellular dysfunction. Complementary studies in humans have shown that oxidative changes in the plasma (i.e., extracellular) REDST are correlated with aging-related pathophysiological processes. The available evidence suggests that these changes play a key role in various conditions which limit the human life span. Several attempts have been made to ameliorate the consequences of aging by thiol-containing antioxidants, but this approach requires a detailed knowledge of the effects of thiol-containing antioxidants on cysteine homeostasis, REDST, and redox-sensitive signaling pathways of the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen RG, and Tressini M. Oxidative stress and gene regulation. Free Rad Biol & Med 28:463499, 2000.

    Article  Google Scholar 

  2. Aslund F, Zheng M, Beckwith J, and Storz G. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci USA 96:6161–6165, 1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, and Rhee SG. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. J Biol Chem 272:217–221, 1997.

    Article  CAS  PubMed  Google Scholar 

  4. Barford D, Jia Z, and Tonks NK. Protein tyrosine phosphatases take off. Nat Struct Biol 2: 1043–1053, 1995.

    Article  CAS  PubMed  Google Scholar 

  5. Barrett WC, DeGnore JP, Keng Y-F, Zhang Z-Y, Yim MB, and Chock PB Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine ohosohatase IB. J Biol Chem 274:34543–34546. 1999.

    Article  CAS  PubMed  Google Scholar 

  6. Barrett WC, DeGnore JP, Konig S, Fales HM, Keng Y-F, Zhang Z-Y, Yim MB, and Chock PB. Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38: 6699–6705, 1999.

    Article  CAS  PubMed  Google Scholar 

  7. Bauer CE, Elsen S, and Bird TH. Mechanisms for redox control of gene expression. Annu Rev Microbiol 53:495–523. 1999.

    Article  CAS  PubMed  Google Scholar 

  8. Boveris A, Cadenas A, and Stoppani, AO. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–444, 1976.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Chan PH. Role of oxidants in ischemic brain damage. Stroke 27:1124–1129, 1996.

    Article  CAS  PubMed  Google Scholar 

  10. Chance B, Sies H, and Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605, 1979.

    CAS  PubMed  Google Scholar 

  11. Clerk A, Fuller SJ, Michael A, and Sugden PH. Stimulation of “stress-regulated” mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. J Biol Chem 273:7228–7234, 1998.

    Article  CAS  PubMed  Google Scholar 

  12. Cordis GA, Maulik G, Bagchi D, Riedel W, and Das DK. Detection of oxidative DNA damage to ischemic reperfiised rat hearts by 8-hydroxydeoxyguanosine formation. J Mol Cell Cardiol 30:1939–1944, 1998.

    Article  CAS  PubMed  Google Scholar 

  13. Downey JM. Free radicals and their involvement during long-term myocardial ischemia and reperfusion. Annu Rev Physiol 52:487–504, 1990.

    Article  CAS  PubMed  Google Scholar 

  14. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 82:47–95, 2002.

    PubMed  Google Scholar 

  15. Dröge W. The plasma redox state and ageing. Ageing Res Rev 1:257–278, 2002.

    Article  PubMed  Google Scholar 

  16. Dröge W. Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exo Gerontol 37:1333–1345. 2002.

    Article  Google Scholar 

  17. Gaiter D, Mihm S, and Dröge W. Distinct effects of glutathione disulphide on the nuclear transcription factor kappa B and the activator protein-1. Eur J Biochem 221:639–648, 1994

    Article  Google Scholar 

  18. Garcia JH, Lassen NA, Weiller C, Sperling B, and Nakagawara J. Ischemic stroke and incomplete infarction. Stroke 27:761–765, 1996.

    Article  CAS  PubMed  Google Scholar 

  19. Gersh BJ. Current issues in reperfusion therapy. Am J Cardiol 82:3P–11P, 1998.

    Article  CAS  PubMed  Google Scholar 

  20. Granger DN. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol 255:H1269–H1275, 1988.

    CAS  PubMed  Google Scholar 

  21. Hack V, Breitkreutz R, Kinscherf R, Rohrer H, Bartsch P, Taut F, Benner A, and Dröge W. The redox state as a correlate of senescence and wasting and as a target for therapeutic intervention. Blood 92:59–67, 1998.

    CAS  PubMed  Google Scholar 

  22. Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 11:298300, 1956.

    Google Scholar 

  23. Hehner SP, Breitkreutz R, Shubinsky G, Unsoeld H, Schulze-OsthofY K, Schmitz ML, and Dröge W. Enhancement of T cell receptor signaling by a mild oxidative shift in the intracellular thiol pool. J Immunol 165:4319–4328, 2000.

    CAS  PubMed  Google Scholar 

  24. Honda Y and Honda S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13: 1385–1393, 1999.

    CAS  PubMed  Google Scholar 

  25. Jaeschke H, Smith CV, and Mitchell JR. Hypoxic damage generates reactive oxygen species in isolated perfused rat liver. Biochem Biophys Res Commun 150:568–574, 1988.

    Article  CAS  PubMed  Google Scholar 

  26. Karin M, Liu Z, and Zandi E. AP-1 function and regulation. Curr Opin Cell Biol. 9:240–246, 1997.

    Article  CAS  PubMed  Google Scholar 

  27. Kuge S. and Jones N. YAP-1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. The EMBO J 13:655–664, 1994.

    CAS  Google Scholar 

  28. Lazou A, Bogoyevitch MA, Clerk A, Fuller SJ, Marshall CJ, and Sugden PH. Regualtion of mitogen-activated protein kinase cascade in adult rat heart preparations in vitro. Circ Res 75: 932–941, 1994.

    Article  CAS  PubMed  Google Scholar 

  29. Lee CK, Klopp RG, Weindruch R, and. Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science 285:1390–1393, 1999.

    Article  CAS  PubMed  Google Scholar 

  30. Lin, Y-J, Seroude L, and Benzer S. Extended life-span and stress resistance in the drosophila mutant methuselah. Science 282:943–946, 1998.

    Article  CAS  PubMed  Google Scholar 

  31. Los M, Schenk H, Hexel K, Baeuerle PA, Dröge W, and Schulze-Osthoff K. IL-2 gene expression and NF-kB activation through CD28 requires reactive oxygen production by 5-lipoxygenase. The EMBO J 14:3731–3740, 1995

    CAS  Google Scholar 

  32. Maulik N, Engelman RM, Rousou JA, Flack JE, Deaton DW, and Das DK. Ischemic preconditioning suppresses apoptosis by upregulating the antideath gene Bel-2. Surg Forum 49: 209–211, 1998.

    CAS  Google Scholar 

  33. Maulik N, Sato M, Price BD, and Das D. An essential role of NFkB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Lett 429:365–369, 1998.

    Article  CAS  PubMed  Google Scholar 

  34. Maulik N, Yoshida T., Engelman RM, Deaton DW, Flack JE, Rousou J A and Das DK. Ischemic preconditioning attenuates apoptotic cell death associated with ischemia/reperfusion. Mol Cell Biochem 186:139–145, 1998.

    Article  CAS  PubMed  Google Scholar 

  35. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312: 159–163, 1985.

    Article  CAS  PubMed  Google Scholar 

  36. Meyer M, Schreck R, and Baeuerle PA. H2O2 and antioxidants have opposite effects on activation of NF-kB and AP-1 in intact cells: AP-1 as secondary antioxidant response factor. EMBO J 12:2005–2015, 1993.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, and Pelicci RG. The p66shcadaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313. 1999.

    Article  CAS  PubMed  Google Scholar 

  38. Mihm S, Ennen J, Pessara U, Kurth R, and Dröge W. Inhibition of HIV-1 replication andNFkB activity by cysteine and cysteine derivatives. AIDS 5:497–503, 1991.

    Article  CAS  PubMed  Google Scholar 

  39. Nohl H, Gille L, Schonheit K, and Liu Y. Conditions allowing redox-cycling ubisemiquinone in mitochondria to establish a direct redox couple with molecular oxygen. Free Rad Biol Med 20:207–213, 1996.

    Article  CAS  PubMed  Google Scholar 

  40. Orr WC and Sohal RS. Extension of lifespan by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130, 1994.

    Article  CAS  PubMed  Google Scholar 

  41. Otani H, Engelman RM, Rousou JA, Breyer RH, and Das DK. Enhanced prostaglandin synthesis due to phospholipase breakdown in ischemic reperfused myocardium. Control of its production by a phospholipase inhibitor or free radical scavengers. J Mol Cell Cardiol 18: 953–961, 1986.

    Article  CAS  PubMed  Google Scholar 

  42. Otani H, Engelman RM, Rousou JA, Breyer RH, Lemeshow S, and Das DK. Cardiac performance during reperrusion improved by pretreatment with oxygen-free radical scavengers. J Thorac Cardiovasc Surg 91:290–295, 1986.

    CAS  PubMed  Google Scholar 

  43. Ozaki M, Deshpande SS, Angkeow P, Bellan J, Lowenstein CJ, Dinauer MC, GoldschmidtClermont PJ, and Irani K. Inhibition of the Racl GTPase protects against nonlethal ischemia/ reperfusioninduced necrosis and apoptosis in vivo. FASEB J 14:418–429, 2000.

    CAS  PubMed  Google Scholar 

  44. Palmer RMJ, Rees DD, Ashton DS, and Moncada S. L-argimne is the physiological precursor for the formation of nitric oxide in endothelium dependent relaxation. Biochem Biophys Res Commun 153:1251–1256, 1988.

    Article  CAS  PubMed  Google Scholar 

  45. Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Boulianne GL, and John P. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nature Genet 19:171174, 1998.

    Article  Google Scholar 

  46. Roth, S. and Dröge W. Regulation of T cell activation and T cell growth factor (TCGF) production by hydrogen peroxide. Cell Immunol 108:417–424, 1987.

    Article  CAS  PubMed  Google Scholar 

  47. Schenk H, Klein M, Erdbrügger W, Dröge W, and Schulze-Osthoff K. Distinct effects of thioredoxin and antioxidants on the activation of transcription factorsNF-kB and AP-1. Proc Natl Acad Sci USA 91:1672–1676, 1994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Schoonbroodt S, Legrand-Poels S, Best-Belpomme M, and Piette J. Activation of theNF-kB transcription factor in a T-lymphocytic cell line by hypochlorous acid. Biochem J 321:777–785, 1997.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Schreck R, and Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation ofNF-kB transcription factor and HIV-1. Trends Cell Biol 1:39–42, 1991.

    Article  CAS  PubMed  Google Scholar 

  50. Schreck R, Rieber P, and Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV-1. EMBO J 10: 2247–2258, 1991.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, and Fiers W. Depletion of the mitochondrial transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J 12:3095–3104. 1993.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Staal FJT, Roederer M, Herzenberg LA, and Herzenberg LA. Intracellular thiols regulate activation of nuclear factorkB and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA 87:9943–9947, 1990.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Storz G, Tartaglia LA, and Ames BN. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248:189–194, 1990.

    Article  CAS  PubMed  Google Scholar 

  54. Taub J, Lau JF, Ma C, Hahn JH, Hoque R, Rothblatt J, and Chalfie M. A cytosolic catalase is needed to extend adult lifespan in C. elegans darf-C and clk-1 mutants. Nature 399:162–166, 1999.

    Article  CAS  PubMed  Google Scholar 

  55. Tosaki A, Bagchi D, Hellegouarch A, Pali T, Cordis GA, and Das DK. Comparisons of ESR and HPLC methods for the detection of hydroxyl radicals in ischemic/reperfused hearts. A relationship between the genesis of oxygen-free radicals and reperfusion-induced arrhythmias. Biochem Pharmacol 45:961–969, 1993.

    Article  CAS  PubMed  Google Scholar 

  56. Turrens JF, Alexandre A, and Lehninger AL. Ubisemiquinone is the election donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414, 1985.

    Article  CAS  PubMed  Google Scholar 

  57. Ushio-Fukai M, Griendling KK, Becker PL, and Alexander RW. Role of reactive oxygen species in angiotensin II-induced transactivation of epidemal growth factor receptor in vascular smooth muscle cells. Circulation 100 (suppl):I–263, 1999.

    Google Scholar 

  58. Wanagat J, Cao Z, Pathare P, and Aiken JM. Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J 15:322–332, 2001.

    Article  CAS  PubMed  Google Scholar 

  59. Yoshizumi M, Abe J, Haendeler J, Huang Q, and Berk BC. Src and Cas mediate JNK activation but not ERK1/2 and p38 kinases by reactive oxygen species. J Biol Chem 275:11706–11712, 2000.

    Article  CAS  PubMed  Google Scholar 

  60. Zainal TA, Oberley TD, Allison DB, Szweda LI, and Weindruch R. Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. FASEB J 14:1825–1836, 2000.

    Article  CAS  PubMed  Google Scholar 

  61. Zheng M, Aslund F, and Storz G. Activation of the OxyR transcription factor by reversible disulfide bond fomration. Science 279:1718–1721, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Dröge, W. (2003). Oxidative Stress and Aging. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 543. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8997-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8997-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4753-8

  • Online ISBN: 978-1-4419-8997-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics