RT Journal Article SR Electronic T1 Differentiation of Human Umbilical Cord-derived Mesenchymal Stem Cells, WJ-MSCs, into Chondrogenic Cells in the Presence of Pulsed Electromagnetic Fields JF In Vivo JO In Vivo FD International Institute of Anticancer Research SP 495 OP 500 VO 27 IS 4 A1 ESPOSITO, MARCO A1 LUCARIELLO, ANGELA A1 COSTANZO, CARMELINA A1 FIUMARELLA, ANGELAMARIA A1 GIANNINI, ANTONIO A1 RICCARDI, GIOVANNI A1 RICCIO, ILARIA YR 2013 UL http://iv.iiarjournals.org/content/27/4/495.abstract AB During cartilage regeneration, proliferation and differentiation of new chondrocytes are required and towards this goal, in humans electromagnetic stimulation has been used in order to increase the spontaneous regenerative capacity of bone and cartilage tissue. In vivo tissue engineering has pointed out that the absence of an abundant source of cells accelerating the healing process is a limiting factor in the ability to repair articular cartilage. Considering that the umbilical cord is a viable alternative source of mesenchymal stem cells (MSC), our study evaluated the possibility of a combined use of Wharton's jelly - mesenchymal stem cells (WJ-MSCs) and pulsed electromagnetic field (PMEF). The first effect observed was that compared with the untreated cells, when the WJ-MSCs were treated with PMEF, there was an increase in the division of cells and a rapid increase in cell density and the morphological and biochemical data showed that the treatment with PMEF reduced the time to obtain chondrocyte cell differentiation and deposition of extracellular matrix. Taken together these data indicate the capacity of PEMF to induce early differentiation of WJ-MSCs cells towards cartilaginous tissue.