
Abstract. Background/Aim: CIC-sarcomas are characterized
by rearrangements of the capicua transcriptional repressor
(CIC) gene on chromosome subband 19q13.2, generating
chimeras in which CIC is the 5’-end partner. Most reported CIC-
sarcomas have been detected using PCR amplifications together
with Sanger sequencing, high throughput sequencing, and
fluorescence in situ hybridization (FISH). Only a few CIC-
rearranged tumors have been characterized cytogenetically.
Here, we describe the cytogenetic and molecular genetic features
of a CIC-sarcoma carrying a t(10;19)(q26;q13), a chromosomal
rearrangement not previously detected in such neoplasms.
Materials and Methods: A round cell sarcoma removed from the
right thigh of a 57-year-old man was investigated by G-banding
cytogenetics, FISH, PCR and Sanger sequencing. Results: The
tumor cells had three cytogenetically related clones with the
translocations t(9;18)(q22;q21) and t(10;19)(q26;q13) common
to all of them. FISH with a BAC probe containing the CIC gene
hybridized to the normal chromosome 19, to der(10)t(10;19),
and to der(19)t(10;19). PCR using tumor cDNA as template
together with Sanger sequencing detected two CIC::DUX4
fusion transcripts which both had a stop TAG codon immediately
after the fusion point. Both transcripts are predicted to encode
truncated CIC polypeptides lacking the carboxy terminal part of
the native protein. This missing part is crucial for CIC’s DNA

binding capacity and interaction with other proteins.
Conclusion: In addition to demonstrating that CIC
rearrangement in sarcomas can occur via the microscopically
visible translocation t(10;19)(q26;q13), the findings in the
present case provide evidence that the missing part in CIC-
truncated proteins has important functions whose loss may be
important in tumorigenesis.

According to the fifth edition of the World Health Organization
classification of soft tissue and bone tumors, published in 2020,
CIC-sarcoma is a high-grade, undifferentiated, round cell
sarcoma characterized genomically by rearrangements of the
capicua transcriptional repressor (CIC) gene on chromosome
subband 19q13.2 with generation of fusions in which CIC is
the 5’-end partner (1-4). The most common chimera, found in
95 % of the cases, stems from fusion of CIC with the double
homeobox 4 gene (DUX4) (5, 6). Rare tumors have also been
reported in which CIC fused with forkhead box O4 (FOXO4
on Xq13.1), leucine twenty homeobox (LEUTX on 19q13.2),
NUT midline carcinoma family member 1 (NUTM1 on 15q14),
and NUT family member 2A (NUTM2A on 10q23.2) (7-15).
Recently, a fusion between ataxin 1 (ATXN1 on 6p22.3) and
DUX4 was found in two central nervous system sarcomas (16,
17). Because the tumors with ATXN1::DUX4 had the same
histology, immunohistochemical staining profile and DNA
methylation pattern as CIC-rearranged sarcoma, it was
concluded that the term ‘CIC-rearranged sarcoma’ may include
some tumors with non-CIC alterations (16, 17).

The DUX4 gene maps on the q35 band of chromosome 4
and is located within a D4Z4 repeat array associated with the
autosomal dominant hereditary disease facioscapulohumeral
muscular dystrophy (accession number AF117653) (18). A
similar D4Z4 repeat array which also contains DUX4 maps on
chromosome band 10q26 (accession number AY028079) (19).
DUX4 is expressed and regulates genes during the early stages
of embryogenesis (20-22). It is barely expressed in most adult
tissues with the exception of testis and thymus (23, 24). In the
testes, the DUX4 genes from both 4q35 and 10q26 were in the
germ-line lineage (23) shown to be expressed approximately
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equally. In vitro expression experiments showed that DUX4
protein is localized to the nucleus, induces cell death, is a
transcriptional activator of paired-like homeodomain
transcription factor 1 (PITX1), and also functions as a co-
repressor of nuclear receptors of progesterone and
glucocorticoids (25-27). In CIC-rearranged tumors, fusion of
CIC with both 4q35/DUX4 and 10q26/DUX4 have been
reported (5, 6, 28-38).

The majority of reported CIC-rearranged tumors were
detected using various types of PCR amplifications together
with Sanger sequencing, high throughput sequencing, and
fluorescence in situ hybridization techniques (5, 6, 29-31,
33-35, 37-41). The detection of CIC::DUX4 chimera has
become crucial in establishing a correct diagnosis for tumors
that are otherwise difficult to classify (42, 43). 

Only very few CIC-rearranged tumors have been
cytogenetically examined in spite of the fact that a
chromosomal corollary to the gene fusion should be readily
visible in suitably stained preparations intended for
karyotyping. The translocation t(4;19)(q35;q13) was first
described in 1992, as part of a complex karyotype, in an
embryonal rhabdomyosarcoma (RMS) cell line (44) and as
part of a three-way translocation, t(4;19;12)(q35;q13.1;q13),
in a tumor diagnosed as undifferentiated/embryonal RMS
(45). In 1996, t(4;19)(q35;q13) was found as a sole
cytogenetic abnormality in a poorly differentiated
extraskeletal mesenchymal sarcoma (46). That finding,
together with the other two above-mentioned cases, led the
authors to suggest that that t(4;19)(q35;q13) represents a
recurrent chromosomal aberration typical of mesenchymal
stem cells (46). It was subsequently found also in an

intrabdominal teratoma (47), a subcutaneous primitive
neuroectodermal tumor/Ewing sarcoma without EWSR1
rearrangements (48), and in two cases of Ewing-like sarcoma
(5). Molecular investigation of the latter two tumors led to
cloning and identification of the CIC::DUX4 chimera (5).
Later, a t(4;19)(q35;q13) was, in some cases together with a
CIC::DUX4 chimera, reported in seven more tumors
diagnosed as undifferentiated round cell sarcomas (28, 31,
33, 36). A chromosome translocation t(4;22)(q35;q12),
shown by FISH to fuse EWSR1 with DUX4, was found in an
embryonal rhabdomyosarcoma (49). Finally, a t(X;19)
generating a CIC::FOXO4 chimera was reported in both a
desmoplastic small round cell tumor and an undifferentiated
round cell sarcoma (8, 50). 

Here, we update information about the genetics of CIC
sarcomas and describe the genomic and pathological features
of a diagnostically challenging tumor found to carry a
t(10;19)(q26;q13) chromosome translocation leading to a
CIC::DUX4 chimera. 

Materials and Methods

Ethics statement. The study was approved by the regional ethics
committee (Regional komité for medisinsk forskningsetikk Sør-Øst,
Norge, http://helseforskning.etikkom.no). Written informed consent
was obtained from the patient to publication of the case details. The
ethics committee’s approval included a review of the consent
procedure. All patient information has been de-identified.

Case report. The patient was a 57-year-old, previously healthy man
who had experienced pain in his left inguinal region for one month.
Radiological imaging showed a well demarcated tumour measuring
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Figure 1. Microscopic examination of the CIC-sarcoma. (A) Hematoxylin and eosin (HE)-stained section showing the small round cell tumor, well-
demarcated from the surrounding tissue, magnification ×100. (B) HE-stained section showing the round cell morphology. Irregular vesicular nuclei,
some with distinct nucleoli, magnification ×400.



11.0×11.5×8.0 cm in the left adductor magnus muscle. The surgical
specimen had a heterogeneous cut surface, brown and fleshy with
areas of necrosis (<50% of tumour volume). Representative areas
were selected for pathology analyses. 

On microscopic examination (Figure 1), the tumour showed a
small round cell neoplasm growing in sheets and lobules. The
background was partly fibrotic, partly oedematous. The tumour cells
had irregular vesicular chromatin, often with small nucleoli and a
thin brim of light eosinophilic or clear cytoplasm. The mitotic rate
was 23/10 HPF (1,734 mm2). Immunohistochemical staining was
positive for CD99, TLE1, cylinD1, and BCOR (weak). MDM2,
AE1/AE3, Cam5.2, and CD117 were focally positive. Myogenin,
desmin, S100, CD34, TdT, CD3, CD20, MUM1, SOX10,
Chromogranin A, and Synapthophysin were negative. Molecular
analysis with the Oncomine childhood cancer panel (ThermoFisher
Scientific, Waltham, MA, USA) showed no fusion transcripts.

Chromosome banding analysis. A representative tumor area was
investigated cytogenetically as previously described (51). The
material was mechanically and enzymatically disaggregated, and the
resulting cells were short-term cultured, harvested and processed for
cytogenetic examination. To obtain G-banding of chromosomes,
Wright’s stain was used (Sigma Aldrich; St Louis, MO, USA). The
cytogenetic analysis and karyotype description followed the
recommendations of the International System for Human
Cytogenomic Nomenclature (ISCN) 2020 guidelines (52). 

Fluorescence in situ hybridization (FISH). The BAC clone RP11-
556K23, which maps to 19q13.2 and contains the CIC gene, was
used (33). The FISH probe was prepared from bacteriophage Phi29
DNA polymerase amplified BAC DNAs using previously described
methodology and labelled with fluorescein-12-dCTP (PerkinElmer,
Boston, MA, USA) to obtain a green signal (53, 54). Fluorescent
signals were captured and analyzed using the CytoVision system
(Leica Biosystems, Newcastle, UK). BAC DNA was also sequenced
with T7 (5’-TAATACGACTCACTATAGGG-3’) and SP6 (5’-
ATTTAGGTGACACTATAG-3’) primers using the BigDye
terminator v1.1 cycle sequencing kit (ThermoFisher Scientific) in
order to obtain BAC-end sequences and verify the map position of
BAC clone RP11-556K23. 

Reverse transcription (RT) PCR and Sanger sequencing analyses.
Total RNA was extracted using the miRNeasy Mini Kit (Qiagen,
Hilden, Germany) from a frozen (–80˚C) part of the tumor specimen
adjacent to where material had been taken for cytogenetic analysis and
histologic examination. cDNA was synthesized from one μg of total
RNA in a 20 μl reaction volume using iScript Advanced cDNA
Synthesis Kit for RT-qPCR according to the manufacturer’s
instructions (Bio-Rad, Hercules, CA, USA). cDNA corresponding to
20 ng total RNA was used as template in a 25 μl reaction volume PCR
assay containing 12.5 μl Premix Ex Taq™ DNA Polymerase Hot Start
Version (Takara Bio Europe/SAS, Saint-Germain-en-Laye, France)
and 0.4 μM of each of the forward (CIC-4377F) and reverse (DUXL4-
1553R1) primers. The sequence of the CIC-4377F primer was 5’-CCG
AGG ACG TGC TTG GGG AGC TA-3’ corresponding to position
4573-4595 of the NCBI Reference Sequence NM_015125.5 [Homo
sapiens capicua transcriptional repressor (CIC), mRNA, reported 12-
JUN-2022]. The sequence of the DUXL4-1553R1 primer was 5’-
CCA GGA AAG AAT GGC AGT TCT CCG C-3’ corresponding to
position 1577-1553 of the reference sequence XM_047445716.1

(reported 05-April-2022) which represents a predicted Homo sapiens
double homeobox protein 4-like protein 4 and maps on chromosome
10 (https://www.ncbi.nlm.nih.gov/nuccore/XM_047445716.1). The
DUXL4-1553R1 primer corresponds also to position 1472-1448
(with a nucleotide substitution) of the reference sequence
NM_001306068.3 (reported 24-July-2022) which represents the
Homo sapiens double homeobox 4 (DUX4), transcript variant 1,
mRNA and maps on 4q35.2.

PCR amplification was conducted on a C-1000 Thermal cycler
(Bio-Rad) using the following thermal cycling profile: An initial
denaturation step of 30 sec at 94˚C followed by 35 cycles of 7 s at
98˚C, 30 s at 60˚C, 30 s at 72˚C and a final extension step for 5 min
at 72˚C. Three μl of the PCR products were stained with GelRed
(Biotium, Fremont, CA, USA), analyzed by electrophoresis through
1.0 % agarose gel, and photographed. DNA gel electrophoresis was
performed using lithium borate buffer (55). The remaining PCR
products were purified with the MinElute PCR Purification Kit
(Qiagen) and cloned to pCR4-TOPO TA vector using the TOPO TA
cloning kit for sequencing (ThermoFischer Scientific). Twelve
colonies were sequenced with the dideoxy procedure using the
BigDye terminator v1.1 cycle sequencing kit following the
company’s recommendations (ThermoFisher Scientific). 

Bioinformatics. The sequences obtained by Sanger sequencing were
compared to the NCBI Reference Sequences NM_015125.3 (CIC)
and NM_001306068.3 (DUX4) using the Basic Local Alignment
Search Tool (BLAST) (56). They were aligned to the sequences on
the Human GRCh37/hg19 assembly and the recently described T2T-
CHM13 v2.0 human genome (57) using the BLAST-like alignment
tool (BLAT) and the human genome browser at UCSC (58, 59).
They were also compared with the sequences reported in the articles
by Italiano et al. (6), Machado et al. (32), Gambarotti et al. (34),
Kao et al. (60), Tsukamoto et al. (37), Yoshida et al. (41), and
Cocchi et al. (38). For multiple sequence alignment, the MultAlin
software (61) was used (http://multalin.toulouse.inra.fr/multalin/).

Results

G-banding analysis of tumor cells detected three related
clones which had the translocations t(9;18)(q22;q21) and
t(10;19)(q26;q13) in common. The karyotype describing
clonal evolution was: 46,XY,del(1)(p34p35),t(9;18)(q22;q21),
t (10;19)(q26;q13)[5]/46, idem,-del(1) ,add(6)(p21),
+r[3]/47,idem,-del(1),add(6),+8,+r[5]. A karyogram of the
third clone is shown in Figure 2.

Sequencing of the BAC-probe RP11-556K23-end with the
primer SP6 showed that this part of the clone corresponds to
chr19:42,725,294-42,725,782 (GRCh37/hg19) (Figure 3A).
Sequencing of the other end of the probe with the T7 primer
showed it to correspond to chr19:42,941,280-42,941,801
(Figure 3B). The sequencing data verified that the BAC
probe RP11-556K23 maps to subband 19q13.2 (Figure 3C)
and contains many genes, among them CIC (Figure 3D).
FISH with the BAC probe RP11-556K23 on metaphase
spreads showed the probe hybridizing to three chromosomes
resulting in green signals on the normal chromosome 19, on
der(10)t(10;19), and on der(19)t(10;19) (Figures 3E and 3F). 
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RT-PCR with primers CIC-4377F and DUXL4-1553R1
amplified an approximately 300 bp cDNA fragment (Figure
4A). Cloning to pCR4-TOPO TA vector and sequencing of
the cloned amplified PCR product showed that it actually
consisted of two chimeric CIC::DUX4 cDNA fragments. In
the first fragment, named type 1 fusion, nucleotide 4750 of
the CIC sequence with accession number NM_015125.5
fused to nucleotide 1418 of DUX4 sequence with accession
number NM_001306068.3 (Figure 4B). In the second
fragment, the type 2 CIC::DUX4 fusion transcript, nucleotide
4777 of the CIC/NM_015125.3 sequence had fused to
nucleotide 1418 of DUX4/NM_001306068 (Figure 4C). At
the junction, both transcripts had four nucleotides, AGGT,
which were thus common to both CIC and DUX4 sequences
(Figure 4B and C). Comparison of the type 1 and 2
CIC::DUX4 fusion transcripts with other published
sequences showed that they are recurrent (Figure 5).

Because both CIC::DUX4 cDNA fragments had a stop
TAG codon immediately after the fusion point (Figure 4B

and C), they would code for a truncated CIC protein. Thus,
CIC::DUX4 fusion transcript type 1 would code for a
truncated protein lacking the last 103 amino acids
corresponding to amino acids 1506 to 1608 of the CIC
protein with reference number NP_055940.3 (isoform CIC-
S), whereas the type 2 CIC::DUX4 transcript would code
for a truncated protein that lacks the last 94 aa of CIC
corresponding to amino acids 1515 to 1608 of the CIC
protein/NP_055940.3 (isoform CIC-S) (Figure 6). 

Discussion

In the present study, we used chromosome banding, FISH
and RT-PCR/Sanger sequencing methodologies to reach
the diagnosis CIC sarcoma for a tumor whose
morphologic features alone were insufficient to arrive at
this conclusion. Cytogenetic analysis showed, among
several aberrations, a t(10;19)(q26;q13) chromosome
translocation, while FISH showed splitting of a probe
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Figure 2. G-Banding analysis of the CIC-sarcoma represented by a karyogram of the clone 47,XY,-1,add(6)(p21),+8,t(9;18)(q22;q21),t(10;19)(q26;q13),+r.
Arrows indicate breakpoints.
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Figure 3. Fluorescence in situ hybridization (FISH) examination of the CIC-sarcoma. (A) Partial sequence of the BAC clone RP11-556K23 using the
SP6 primer. (B) Partial sequence of the BAC clone RP11-556K23 using the T7 primer. (C) Ideogram of the chromosome 19 showing the mapping
positions of the CIC gene (vertical line) and the BAC clone RP11-556K23 probe (green box). (D) Diagram showing the mapping pattern of the FISH
probe RP11-556K23 for the CIC gene. Some neighboring genes in the region are also shown. (E) FISH results on a metaphase spread. Green signals
are seen on chromosomes 19, der(10)t(10;19) and der(19)t(10;19). (F) Inverted DAPI staining of the metaphase spread used for FISH experiments.



which contained the CIC gene and RT-PCR/Sanger
sequencing confirmed the presence of a CIC::DUX4
chimeric gene (Figure 2 and Figure 3). 

To the best of our knowledge, this is the second solid
tumor (of altogether four malignant neoplasms) in which a
t(10;19)(q24;q13) translocation was detected. The
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Figure 4. Molecular genetic analysis of the CIC-sarcoma. (A) Gel electrophoresis of reverse transcription (RT) PCR amplification products: lane
1, amplification of a 300 bp cDNA fragment using the forward primer CIC-4377F and the reverse primer DUXL4-1553R1. M, GeneRuler 1 kb Plus
DNA ladder (ThermoFisher Scientific). (B) Partial sequence chromatogram showing the junction in the CIC::DUX4 fusion transcript type 1. (C)
Partial sequence chromatogram showing the junction in the CIC::DUX4 fusion transcript type 2. The triplets and the corresponding coding amino
acids are shown. Stop codon is noted with ***. The common four nucleotides AGGT at the junctions are underlined.



translocation was previously reported in two acute
lymphoblastic leukemias as the sole cytogenetic abnormality
(62, 63), and in a primary malignant neuroepithelial tumor
of the kidney which had the karyotype 45,XX,der
dic(1)t(1;13)(p1?3;p13),del(9)(p13),t(10;19)(q26;q13),-13
(64). At the DNA level, t(10;19)(q24;q13) has been shown
to target different genes. It resulted in truncation of the
FAM53B gene on subband 10q26.1 (63) in acute
lymphoblastic leukemia, whereas in sarcomas it generates
CIC::DUX4 chimeric genes as shown by the present case
and the tumors of references (6) and (37).

We detected two types, 1 and 2, of CIC::DUX4 fusion
transcript (Figure 4 and Figure 5), both of which were also
reported in previous articles (Figure 5) (6, 32, 34, 37, 38, 41,
60). The common features of both transcripts are: 1) that the
CIC gene breakpoint occurs in the coding region of the last
exon (exon 20 in reference sequence NM_015125.5); 2) that
the breakpoint in the DUX4 gene occurs within the 3’-end
untranslated region; 3) that at the junction there is a four

nucleotide sequence, AGGT, common to both CIC and
DUX4, and 4) that a stop TGA codon is introduced after the
fusion point resulting in a truncated CIC protein instead of
the chimeric CIC::DUX4 protein. 

The truncated protein encoded by CIC::DUX4 fusion
transcript 1 lacks the last 103 amino acids of the normal CIC
protein (amino acid 1506-1608 in CIC/NP_055940.3), whereas
the truncated protein coded for by CIC::DUX4 fusion transcript
2 lacks the last 94 amino acids of the CIC protein (Figure 6A)
(amino acids 1515-1608 in CIC/NP_055940.3). The N-terminal
of the missing part contains the phylogenetically conserved
peptide CLQLKIREVRQKIMQ (or RQKIMQ for the protein
coded by CIC::DUX4 fusion transcript 2) (Figure 6A and B)
that is part of the C1 region of the CIC protein important for
the repressor activity of CIC (65-67). Electrophoretic mobility
shift assays with CIC protein from Drosophila melanogaster
showed that deletion of the LKIREV or RQKL was enough for
the CIC protein to lose its ability to bind at optimal CIC
binding sites T(C/G)AATGAA (66, 67). 
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Figure 5. Multiple sequence alignment of the CIC::DUX4 fusion transcripts type 1 and type 2 with previously reported CIC::DUX4 fusion transcripts
by Cocchi et al. (38), Gambarotti et al. (34), Kao et al. (60), Machado et al. (32), Tsukamoto et al. (37), Yoshida et al. (41) and Italiano et al. (6).
CIC sequence is written in red and DUX4 sequence in black letters. The tetranucleotide AGGT which was found at the junction and was common
to both CIC and DUX4 is written in blue letters. The stop codon TAG or TGA is underlined. 



The carboxyl-terminal part of the missing sequence (amino
acids 1521-1608 in CIC/NP_055940.3) is conserved in
placental mammals and is 34% rich in the hydrophobic amino
acid proline (P) and 17% rich in alanine (A) (Figure 6A and
C). Proline rich regions are found in intrinsically disordered
regions of proteins and are involved in protein-protein
interactions by binding SRC homology 3 (SH3), WW, GYF
and EVH1 domains (68-76). Intrinsically disordered regions
play important roles in a plethora of cellular functions (76-
83). According to the database of protein disorder and
mobility annotations (MobiDB), the missing part of the CIC
protein (amino acids 1521-1608 in CIC/NP_055940.3) is an
intrinsically disordered region (https://mobidb.org/Q96RK0)
(84-86). It contains short motifs which may interact with the
above-mentioned domains (Figure 6C). For example, LPVPP,
APPLP and LPPPP may bind to the SH3 domain of a number
of proteins (87, 88). The PPLP short motif may bind to Group

II WW domains, such as the WW domains of the amyloid
beta precursor protein binding family B member 1 (APBB1,
also known as FE65) and pre-mRNA processing factor 40
homolog A (PRPF40A, also known as FBP11) (89, 90). The
motifs PPPP, LPPP and PSPP may bind to EVH1 domains
from various proteins (69, 74). In addition, the serine (S) in
PSPP (position 1595 in reference sequence NP_055940.3) can
be phosphorylated (pS). Motif pSP was shown to bind to
group IV WW domains, such as those from Pin1 (49), PDX-
1 C-terminus-interacting factor, and NEDD4 proteins (91-93). 

Proline rich regions are also found in repression domains
of various transcription factors. The TP53 transcription factor
has a 41.4% proline-rich and a 34.5% alanine-rich region
between amino acids 64-92 in sequence with accession
number NP_000537.3. This transcription repression domain
is essential for the induction of apoptosis, for the activation
of TP53 DNA binding capacity to tumor protein p53
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Figure 6. The C-terminal part of the CIC protein is absent from the truncated protein encoded by CIC::DUX4 fusion transcript 1. (A) The amino
acid sequence of the missing part corresponds to amino acids 1506-1608 in CIC/NP_055940.3. The intrinsically disordered region containing 
30 P (in bold) and 15 A amino acid residues is in gray background. The serine in the PSPP motif, which can be phosphorylated, is in red and
underlined. (B). The phylogenetically conserved peptide CLQLKIREVRQKIMQ in various species. (C) Conservation of the intrinsically disordered
region in mammals.  *above serine in the PSPP motif.



inducible protein 3 (TP53I3, also known as PIG3), and for
activation of TP53 following ionizing radiation (94-96). The
HHEX (officially full name is haematopoietically expressed
homeobox, also known as PRH) transcription factor has an
N-terminal transcription repression domain between amino
acids 1-143 in sequence with accession number
NP_002720.1. It is 20% rich in proline and 11.4% rich in
alanine (97-100). Finally, the transcription repression domain
of the WT1 protein, found between amino acids 71-180 in
sequence with accession number NP_000369.4, is 20%,
14%, and 13.6% rich in amino acids proline, glycine, and
alanine, respectively (101-103).

Conclusion

Although functional studies are still lacking, current
knowledge suggests that the missing part of CIC in the
truncated proteins translated from CIC::DUX4 fusion
transcripts 1 and 2 influences the CIC protein’s DNA binding
capacity, the transcription repression function, and
interaction with other proteins, possibly in particular
interactions with proteins carrying an SH3, WW, GYF and
EVH1 domain. Absence of this part of CIC seems to be
crucial in CIC-mediated tumorigenesis.
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