
Abstract. Background/Aim: The aim of this study was the
conception, production, material analysis and cytocompatibility
analysis of a new collagen foam for medical applications.
Materials and Methods: After the innovative production of
various collagen sponges from bovine sources, the foams were
analyzed ex vivo in terms of their structure (including pore
size) and in vitro in terms of cytocompatibility according to EN
ISO 10993-5/-12. In vitro, the collagen foams were compared
with the established biomaterials cerabone and Jason
membrane. Materials cerabone and Jason membrane. Results:
Collagen foams with different compositions were successfully
produced from bovine sources. Ex vivo, the foams showed a
stable and long-lasting primary structure quality with a bubble
area of 1,000 to 2,000 μm2. In vitro, all foams showed
sufficient cytocompatibility. Conclusion: Collagen sponges
represent a promising material for hard and soft tissue
regeneration. Future studies could focus on integrating and
investigating different additives in the foams.

Collagen is the most abundant protein in the human body
and constitutes around 25-30% of the total amount of protein
(1, 2). Up to now, 28 different types of collagen have been
discovered (3). As an essential part of the extracellular

matrix (ECM), different collagen types can be found in
bones, cartilage, tendons and skin, as well as in teeth, cornea
and blood vessels (4-6). Collagen is biocompatible and
completely biodegradable by endogenous human proteases
(7, 8). In addition, it is characterized by its ability to
positively influence cell adhesion, cell proliferation, and
differentiation (1, 4, 9). These qualities can be further
increased by adding growth and differentiation factors to the
collagen matrix (10, 11). Antibacterial properties can be
developed by adding nanoparticles such as AgNP (12, 13).
By additional physical as well as chemical cross-linking (6-
8, 14) or the combination of different types of collagen with
and without additional bioabsorbable materials, the usually
short-lasting degradation time of natural collagen can be
further extended, which ensures a sufficient durability (e.g.,
in wound dressings) (15, 16). 

These properties make collagen as one of the most
promising biomaterials in modern medicine. Depending on
the area of application, it is obtained autogenously,
allogenically or xenogenically (17, 18). Collagen is widely
used as a wound dressing in the treatment of acute or
chronic wounds (19), burn wounds (20, 21) or sites of skin
donation and skin grafts (22), through its ability of shielding
the wound from infection and contamination, reducing
scarring, absorbing wound exudate, and promoting the
skin’s natural regeneration ability (19, 23, 24). In addition,
collagen is able to bind platelets and thus activate the
coagulation cascade (25, 26), which makes it very suitable
for acute use in wound care. Resorbable barrier membranes
made of collagen are of great importance in guided bone
regeneration (GBR) for dentistry and oral and maxillofacial
surgery, in order to shield the regenerating bone from the
ingrowth of the surrounding tissue (27-29). Furthermore,
different compositions of collagen can be used as tissue
grafts in peripheral nerve regeneration, vascular prostheses
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and arterial reconstruction (30-33). In addition, by
promoting cell growth and adhesion, collagen is ideally
suited as a substance in tissue engineering, where it can be
used as part of bioinks to encapsulate cells (34, 35) or as
basic substance for scaffold production (2, 22). Thereby, it
is essential for the development of artificial skin implants
(36, 37). 

The present study aimed to develop a new collagen foam
based on bovine split skin for tissue regeneration. The
regeneration-promoting properties of collagen are
extensively described in literature (4, 15, 38). Especially for
wound regeneration, collagen foams appear to be a
promising approach, since a foam can optimally adapt to a
wound bed in terms of area and volume and has both a
shielding and cushioning effect on the tissue (19). The
approach of using biomaterials as applicable foams in
wound management has already been implemented in a
different context. The wound foams that have been used up
to now are primarily designed for the care of moist or
weeping chronic wounds, as their base materials have good
exudate-absorbing characteristics (19). 

With the use of collagen and the creation of a moisturizing
instead of a dehumidifying environment in the wound bed,
the foam presented in this study aims to positively influence
the self-healing of soft tissue by using the natural
regenerative properties of this biomaterial. The newly
developed collagen-based foam has the potential to be a new
and innovative biomaterial for use in soft tissue regeneration
and could play a major role in the care of patients with acute
or chronic wounds.

The focus of this preclinical study was to analyze the
material characteristics and cytocompatibility of different

novel collagen foams. For this purpose, pore size, density
and surface structure of the foams were examined and
described ex vivo using a dynamic foam analyzer (DFA) and
cryo-SEM. In addition, in vitro cytocompatibility studies
were carried out in accordance with ISO 10993-5/-12, as
already described in previous work (24, 39, 40).

Materials and Methods
Collagen foam preparation. For fabricating the collagen foam,
bovine split skin was homogenized via serial mechanical treatment
steps, as illustrated in Figure 1. Briefly, split skin was thawed at
4˚C. Then, the split skin was rinsed in double-deionized water
(ddH2O) which was added at a ratio of 6.5:1 (w/w) to the split skin.
The split skin was then rinsed under agitation using a paddle mixer
(IKA® Digital 20, IKA® Works, Inc., Wilmington, NC, USA) at 70
rpm for 3 h and pre-homogenized at 720 rpm for another 3 h. The
pH value was adjusted to 2.9 with HAc (acetic acid water solution).
The suspension was stored at room temperature overnight before
further processing. After adjusting the pH value to 3.2, the split skin
suspension was homogenized with an IKA® Ultra-Turrax
homogenizer (IKA® Works, Inc.) (about 12,000 rpm) for 1 min. The
homogenization was then treated in a water bath at 75˚ for 1 h. The
treated suspension was further diluted using 0.1% HAc at a ratio of
1:1 and filtered via a Buchner Funnel. The filtered suspension was
then foamed using a foaming paddle to form liquid collagen foam.
Foams with a final protein concentration ranging from 10 to 50
mg/ml were prepared. 

Ex vivo analyses. Pore structure and foam characterization. For
determination of the bubble size and size distribution of the
collagen foams, a dynamic foam analyzer (DFA100, Krüss GmbH,
Hamburg, Germany) equipped with a CCD-camera was applied.
Size and amount of the bubble fractions were determined via the
“bubbles’ different projected area” method (Figures 2 and 3).
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Figure 1. Processing of collagen foam.



Cryo focus ion beam/Scanning electron microscopy (SEM).
Collagen foams with a final concentration of 20 mg/ml were
analyzed by cryo-SEM. Briefly, the sample was frozen in liquid
nitrogen. Without removing the sample from the liquid nitrogen, it
was mounted onto a cooled sample holder. The holder was
transferred into a vacuum shuttle (Leica EM VCT100, Leica
Microsystems GmbH, Wetzlar, Hessen, Germany). After loading,
the shuttle was connected immediately to a sputter coater (Balt-Tec
SCD 500, Leica Biosystems Division of Leica Microsystems Inc.,
Buffalo Grove, IL, USA) and evacuated so that the sample could be
transferred to the cryo stage of the electron microscope (Zeiss LEO
1540XB with cryo stage, Carl Zeiss Microscopy Deutschland
GmbH, Oberkochen, Baden-Württemberg, Germany). The sample
was then imaged with the electron beam and the stage was heated
until sublimation of the ice matrix could be observed, which
occurred around –100˚C. The sample was transferred after coating
with about 10 nm of platinum. Using a focused ion beam, the cross
section of the samples was prepared and imaged with SEM.

In vitro experiments. The cytocompatibility analysis was conducted
according to the DIN EN ISO 10993-5: 2009/-12: 2012 regulations
as previously published (24, 27, 39). In brief, each of two collagen
foam samples with final concentrations of 10 mg/ml or 30 mg/ml
were used for the extract assays. The samples were extracted for
72±2 h in extraction medium at 37˚C, 5% CO2 and 95% humidity.
The extraction medium was then transferred to L-929 mouse
fibroblasts, purchased from the European Collection of Cell
Cultures, ECACC (Salisbury, UK) and incubated with the cells at
standard cell culture conditions; 37˚C, 5% CO2 and 95% humidity
for 24 h. Viability, proliferation and cytotoxicity determinations
were carried out using the XTT assay (Roche Diagnostics,
Mannheim, Germany), BrdU ELISA (Roche Diagnostics) and LDH
assay (BioVision, Milpitas, CA, USA) in four determinations for
each test sample. As comparative materials with expectable
biocompatibility, Jason® membrane and Cerabone® (both from
botiss biomaterials GmbH, Zossen, Germany) were used for
additional extract assays and examined under the same conditions,
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Figure 2. Macroscopic and microscopic imaging of the collagen foam. (A) Freshly prepared collagen foam. (B) Freeze dried foam for light-
microscopic slides. As the foam was lyophilized, the pore size was not directly correlated to the pore size in foam.

Figure 3. FIB-cryo-SEM imaging of the foam. (A) Image with a full width of 100 μm. The structure of the collagen foam can be observed. The
bubbles were organized in an oriented structure during foam formation. (B) Image with a full length of 17.09 μm. The bubble shown in the image
has a diameter of about 14 μm and the foam lamella can be observed clearly.



as already described above. Blank values (only medium without
cells, also in quadruple determination) were subtracted from all
values. Furthermore, RM-A test samples [polyurethane film with
0.1% zinc diethyldithiocarbamate (ZDEC) (Hatano Research
Institute, Food and Drug Safety Center, Hadano, Japan) were used
as positive control materials. As negative control, grade 4 titanium
plates were incubated under the above-described extraction
conditions. 

Statistics. An analysis of variance (ANOVA), which enabled
comparison of the data from the study groups via the GraphPad
Prism 8.0 software (GraphPad Software Inc., La Jolla, CA, USA)
was conducted for statistical analysis. Statistical differences were
designated as significant if the p-values were less than 0.05
(*p≤0.05), and highly significant if the p-values were less than 0.01
(**p≤0.01) or less than 0.001 (***p≤0.001). Finally, the data are
shown as mean±standard deviation.

Results

Results of the ex vivo measurements. DFA bubble structure
and distribution depending on collagen density.

The number of bubbles and the size distribution of the
collagen foam bubbles were analyzed via DFA and shown
in Figure 4. The left panel shows the real-time images of
the bubbles within the foams. The green dots show the
relative uniform sizes of the produced foam. Projection
areas of the most foam bubbles were measured between
1000 μm2 and 2000 μm2, indicating diameters ranging from
46μm to 94 μm. The largest bubble population had 28-48
μm diameter (20 mg/ml). The black line and red line for
bubble count and mean bubble area, depending on time,
showed the relatively high stability and uniformity of the
prepared foam.

Results of the in vitro measurements. According to ISO
10993-5:2009, non-toxic ranges are defined for values >70%
of the blank sample for BrdU and XTT assays and for values
<30% of the positive control for LDH assays. The collagen
foam showed satisfactory biocompatibility in both
concentrations tested (Figure 5). Thereby, a significant
difference (p≤0.001) compared to the positive control was
shown in all three assays. In the BrdU and XTT assays, only
a minor significant difference (p≤0.01) compared to the
negative control was measured at the concentration of 10
mg/ml. At the concentration of 30 mg/ml, however, there
was no significant difference compared to the negative
control. In the LDH assay, both collagen foams showed
significant differences to the positive control and values
below the 30%-threshold. The established reference
materials Jason® membrane  and Cerabone® showed also
highly cytocompatible results in both the XTT and BrdU
assay with no significant differences to the negative control.
In the LDH assay, both materials showed significant
differences to the positive control and were below the 30%-
threshold (p≤0.001). 

Discussion

Collagen-based biomaterials are an essential element for
soft tissue management with special focus on wound care.
For example, collagen materials are frequently used for
acute and chronic wounds as well as burns after surgical
interventions (15, 16, 19, 20). The advantage of collagen is
based on its proliferation-, differentiation- and adhesion-
promoting properties, which favor early vascularization and
therefore rapid tissue regeneration (1, 4, 9). In addition,
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Figure 4. Bubble counts and distribution. The main fraction of the collagen foam has a bubble area of 1,000 to 2,000 μm2, which is equivalent to
an average diameter of about 36 to 50 μm.



collagen-based biomaterials are able to absorb liquids many
times of their own weight and bind reactive oxygen as well
as nitrogen species, which could also interfere with tissue
regeneration (41, 42). 

Until today, biomaterials for soft tissue regeneration like
wound foams consist mainly of polyurethanes, hydro fibers
or mixtures of these two materials, which absorb wound
exudate in large volumes and thereby, create favorable
conditions for wound healing (43, 44). Depending on the
manufacturer, some foam dressings are additionally coated
with silicone layers, which fixate the foam in the wound bed.

Furthermore, foam dressings provide thermal isolation and
protect the wound from bacteria and infections (43, 44).
Another favorable advantage of current foams is their ability
to completely fill out the wound beds, which reduces the
remaining dead space for bacterial colonization and possible
infections (45-47). 

However, current available foam dressings also feature
some disadvantages. Due to their strong fluid-absorbing
properties, they are suitable for use on moderately to
severely exudative wounds, but are contraindicated e.g., for
use in very dry or necrotic wound areas (47). Most foams
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Figure 5. Cytocompatibility results using L929 cells in the different assays. (A) proliferation measured by BrdU assay; (B) viability measured by
the Sodium 3,3’-[1(phenylamino)carbonyl]-3,4-tetrazolium]-3is(4-methoxy-6-nitro) Benzene Sulfonic acid Hydrate (XTT)-assay; (C) cytotoxicity
measured by the Lactate Dehydrogenase (LDH) assay. Values were normalized against blind control. Means with error bars indicate standard
deviations. Dotted line indicates thresholds which should not be exceeded (LDH) or undershot (XTT, BrdU). Significant differences are declared
(*p≤0.01, **p≤0.001). MC: Medium control; NC: negative control (titanium grade 4); PC: positive control; CF: collagen foam.



can be left on the wound bed for up to a week before they
need to be removed (48). However, with removal there is
always the risk of additional shear stress to the already
agitated lesion, especially if newly formed tissue has already
grown into the foam. The same applies to patients with very
sensitive skin and the use of additional fixations for the foam
dressings, which have to be removed with change of the
dressing and thus can damage the newly formed tissue. 

By using collagen as the basic material for a new type of
wound foam, it could be possible to combine the regeneration-
promoting properties of collagen with the advantages of a
flexible foam, being able to adapt to any size and volume of
the wound bed. A major advantage would be the ability to
integrate the collagen directly into the wound bed as part of
the newly formed ECM, which could make subsequent
removal unnecessary and constantly supports tissue
regeneration. Furthermore, by adjusting the liquid content of
the foam, a moistening environment can be achieved for
special indications like dry wounds. Therefore, the aim of the
present study was to examine the macro- and micro-structure
of an innovative collagen foam ex vivo and to investigate its
cytocompatibility in vitro according to DIN ISO 10993. This
new foam dressing could address and improve wound
management for a broad range of applications. 

First of all, the structure of the newly created collagen
foam with a final concentration of 20 mg/ml was examined
ex vivo using FIB-cryo-SEM and DFA. It could be shown
that the bubbles in the foam were mainly uniform in
diameter (~36-50 μm) and area (~1,000-2,000 μm2) and also
distributed homogeneously within the foam (~600/mm2).
Furthermore, the number and size of the bubbles remained
constant over the total observation period of 5 min. These
results suggest that the process used to produce the collagen
foam can create a uniform microstructure within it.
Collagen, as a natural component of human ECM, has
binding sites for adhesion of fibroblasts, macrophages and
epithelial cells, which is utilized in the creation of wound
sponges or scaffolds in 3D-printing, both with defined pore
sizes (49, 50). It is assumed that a constant pore size
between 100-200 μm is optimal to enable the surrounding
cells to proliferate and adhere to the surrounding porous
structure (49, 50). These observations suggest that collagen
foams should also provide this ideal pore size and
distribution, with additional beneficial effect on tissue
regeneration. In reference to our own measured values for
the projection area and diameter of the bubbles formed, we
assume similar advantageous attributes for enabling the
foam to have a positive effect on the adhesion and ingrowth
of the surrounding connective tissue cells. These
possibilities should be further addressed in future studies.
Furthermore, bubble size seems to decrease with an
increasing viscosity of the foam. Since a higher viscosity
could ensure a better hold within the wound and thus make

the use of additional fixation systems redundant, it is
important to carry out further investigations addressing
more closely with the above-mentioned hypotheses. 

In vitro, the foam showed sufficient cytocompatibility in all
colorimetric assays for both tested concentrations. It could be
shown that there were no significant differences to the negative
control for the higher concentration (30 mg/ml), while mild
significant differences (p≤0.05) to the negative control were
found for the lower concentration (20 mg/ml), which, however,
appear to be negligible. The results of the reference materials
for soft and hard tissue regeneration, Cerabone® and Jason®
membrane, showed a good cytocompatibility in all colorimetric
assays.

The results obtained for the collagen foam in the present
study are congruent with previous observations, revealing that
collagen, as natural and ubiquitous component of ECM, shows
little to no damaging effects on the surrounding tissue, thus
having sufficient biocompatibility (17, 51, 52). However,
additional in vitro assays could be used in order to analyze the
properties and regenerative qualities of the foam in an even
more differentiated manner. For example, it would be possible
to further survey the differentiation processes of stem cells or
primary cell lines that are potentially induced by the foam (53,
54). In addition, quantitative and qualitative measurement of
the release of pro- or anti-inflammatory cytokines by
immunologically active cell lines would give additional
information about inflammation processes in the presence of
the collagen foam. Nevertheless, the presented in vitro results
require future in vivo investigations in order to analyze tissue
reactions of the foam using histological, histomorphometrical
and immunohistochemical assays. In this context, additional
loading of the foam, e.g., with silver nanoparticles or platelet-
rich plasma (PRP), could be an interesting approach. 

Altogether, the present study shows satisfactory in vitro
compatibility of the newly developed collagen foams. It also
shows that both reference materials, Cerabone® and Jason®
membrane, are highly biocompatible materials for soft and hard
tissue regeneration. The analysis of the microstructure reveals
the effectiveness of the manufacturing process to create a
homogeneous microstructure of the foam with mostly
consistent bubble size and diameter. Taken together, these
results suggest that collagen foams show the potential to be a
promising new biomaterial for tissue regeneration, especially
for wounds. Future additional studies, particularly addressing
tissue responses in vivo, are required to emphasize the present
results.
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data management failure, which led to misinterpretation of the
cytocompatibility results. The retraction note was published in In
Vivo 36(5): 2530, 2022. Following careful consideration of the
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article is republished with the correct data from the LDH assay. The
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