
Abstract. Background/Aim: Although the 5-year survival
rate for localized prostate cancer is nearly 100%, prognosis
for patients with metastases, of which the bone is the most
common site, is poor. In order to evaluate efficacy of
treatments against metastatic prostate cancer, experimental
tibia-bone-metastasis mouse models of prostate cancer have
been previously established. In the present study, we used a
novel procedure for establishment of an experimental tibia-
bone metastasis mouse model, with human PC-3 prostate
cancer expressing green fluorescent protein (GFP), that more
closely matches prostate cancer growing in the bone.
Materials and Methods: PC-3 human prostate cancer cells,
labeled with GFP, were initially subcutaneously injected into
the flank of five male nude mice to obtain tumor tissues. Once
the tumor tissue grew larger than 10 mm in diameter, the
tumor tissue was harvested and minced into fragments of 1
mm3. A 1-mm hole was made in the proximal left tibia of
eight male nude mice, using the tip of a 5-mm blade, and a
tumor fragment was implanted into the hole for an exact fit.
Tumor size was measured once a week, by non-invasive
imaging of GFP fluorescence. The mice were sacrificed four
weeks after tumor implantation. Results: Tumors grew in 8

out of 8 mice (100%). All tumors were non-invasively
detectable with GFP fluorescence, through the skin. Increased
tumor growth in the tibia was observed every week.
Conclusion: The establishment in the tibia of the novel
experimental bone-metastatic mouse model of human prostate
cancer enables facile screening, in a clinically-relevant
system, of improved therapeutics for this recalcitrant disease.

Prostate cancer is the second most common cancer in men
worldwide. The 5-year survival rate for localized prostate
cancer is nearly 100%, in contrast, the 3-year survival rate
for patients with metastatic disease is 60-70 % (1-4). About
85-100% of patients who die of prostate cancer have bone
metastasis, which is the most common metastasis site (5, 6). 

The therapeutic strategy for metastatic prostate cancer
comprises first-line therapy of androgen-deprivation therapy
alone/or with docetaxel and/or prednisone. However,  further
development is needed.

Evaluation of metastasis by detection of green fluorescent
protein (GFP) fluorescence is a very powerful technique (7).
Experimental tibia-metastasis mouse models of PC-3-GPF
prostate cancer, with cell injection into the bone marrow, have
been previously established (7-10). However, the establishment
ratio is inconsistent, depending on the technical level of the
procedure and the quality of cells which are injected. The
present study uses implantation of prostate-tumor fragments,
that fit exactly into a hole made in the tibia, to closely model
bone-metastatic prostate cancer in the clinic. 

Materials and Methods
Mice. Male athymic nu/nu nude mice (4-6 weeks) (AntiCancer, Inc.,
San Diego, CA, USA) were used for the present study. All mice
were kept in a barrier facility, a high efficacy particulate air
(HEPA)-filtered rack, under standard conditions of 12 h light/dark
cycles. The Institutional Animal Care and Use Committee (IACUC)
protocol, according to the National Institutes of Health (NIH) Guide
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for the Care and Use of Animals, was approved under Assurance
Number A3873-1, as previously described (11-14). 

Cell culture. The PC-3 human prostate cancer cell line, obtained
from the American Type Culture Collection (Manassas, VA, USA),
was previously labeled with GFP (7). Cells were cultured in
Dulbecco’s Modified Eagle Medium, supplemented with 10% fetal
bovine serum and 1% penicillin/streptomycin, and incubated with
5% CO2 at 37˚C.

Novel procedure to establish a PC-3-GFP tibia-bone experimental
metastasis mouse model. PC-3-GFP cells (2.5×106 cells/100 μl PBS)
were initially subcutaneously injected into the flank of five male nude
mice. Once the tumor tissue grew larger than 10 mm in diameter, it
was harvested and minced into fragments of 1 mm3. Eight male nude
mice were used to establish a PC-3-GFP tibia-bone metastasis model.
A 5-mm incision was made in the skin over the proximal part of the
left tibia. The left knee joint was bent, to expose the tibia, and a 
1- mm-diameter hole was made in the proximal tibia, using the tip of
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Figure 1. Tumor-fragment tibia-implantation method for establishment of a PC-3-GFP experimental bone-metastasis mouse model. (A) A five-mm
incision was made in the skin over the proximal part of the left tibia. (B) The exposed proximal part of the left tibia is shown. (C, D) A 1-mm-
diameter hole was made in the proximal tibia. (E) A 1-mm3 PC-3-GFP tumor fragment, harvested from a subcutaneous tumor, was prepared for
insertion into the hole. (F) The tumor fragment was implanted into the tibia. The white arrow shows the hole, into which the tumor fragment was
inserted. See Materials and Methods for details. Scale bar: 10 mm.

Figure 2. Representative images of growing PC-3-GFP tibia-bone experimental metastasis visualized non-invasively with GFP fluorescence. (A)
Two weeks after tumor implantation. (B) Three weeks after tumor implantation. (C) Four weeks after tumor implantation.



a 5-mm blade (Medipoint, Inc., Mineola, NY, USA). Once a hole was
made, the blade was tilted along the tibia-bone axis and rotated
several times to make the hole 1 mm in diameter. A 1-mm3 PC-3-GFP
tumor fragment was inserted into the hole (Figure 1). The wound was
sutured with 5-0 nylon sutures. The procedure was performed
according to an osteosarcoma-PDOX tibia implantation model
previously reported (11-14).

Non-invasive imaging and measurement of PC-3-GFP tibia growth.
Tumor size was measured once a week, by non-invasive detection
of GFP fluorescence (15-17) with a FluorVivo fluorescence imaging
system (INDEC Systems, Inc., Los Altos, CA, USA), using the
following formula: tumor volume (mm3)=length (mm) × width (mm)
× width (mm) × 1/2. All mice were sacrificed four weeks after tumor
implantation. Data are shown as mean±standard deviation (SD).

Results

PC-3 prostate tumors grew in the tibia in 8 out of 8 mice
(100%). All tumors were non-invasively imaged with GFP
fluorescence, through the skin (Figure 2). Tumor volume
determined at 2, 3, and 4 weeks after implantation increased
with time and the growth became more rapid after 3 weeks
(Figure 2 and Figure 3).

Discussion 

In the present study, we established an experimental tibia-bone
metastasis mouse model of prostate cancer. Compared to
previous tibia-bone metastasis models (7-10), in which cell
injection was performed, this new procedure proved to be more
accurate and efficient, since tumors grew in all the mice, a 100%

establishment rate, compared to an approximately 90% in a
previous study (8). The lower establishment rate by cell injection
may be due to cells leaking out of the medullary cavity of the
bone. In contrast, in the case of tumor fragment- implantation in
the present study, in which the fragment size is the same as the
bone hole, the fragment could be fixed in the medullary cavity
of the bone, which could guarantee accurate localization. 

The non-invasively-imageable model of experimental
prostate-cancer bone metastasis will be useful for identifying
more effective drugs for this recalcitrant disease.
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