
Abstract. Background/Aim: The clinical use of arsenic
trioxide (As2O3) is hampered due to its cardiotoxicity.
Therefore, it is critical to prevent As2O3-induced loss of
endothelial integrity. The purpose of this study was to examine
As2O3-induced endothelial dysfunction and evaluate the efficacy
of crocetin on reversing As2O3-induced cardiotoxicity. Materials
and Methods: Cultured human umbilical vein endothelial cells
(HUVECs) were used to examine As2O3-induced oxidative
stress, apoptosis, production of reactive oxygen species (ROS)
and DNA adducts. In addition, the impact of crocetin on As2O3-
induced cardiotoxicity was evaluated. Results: As2O3 decreased
the viability of HUVEC cells and led to apoptosis. Additionally,
As2O3 elevated NADPH oxidase activity, and the levels of
intracellular ROS. Furthermore, the formamidopyrimidine
DNA-glycosylase- and endonuclease III-digestible adducts were
induced by As2O3. Crocetin treatment reversed the As2O3-
induced reduction in cell viability, the induction of apoptosis,
the activation of NADPH oxidase activity, ROS levels and DNA
adducts. Conclusion: Crocetin protects from As2O3-induced
cardio-toxicity.

Arsenic trioxide (As2O3) is a very toxic agent used in
Chinese medicine, which has been used to successfully treat
refractory acute promyelocytic leukemia (1). The efficacy of
As2O3 has been reported for its capacity to induce acute
promyelocytic leukemia cells to undergo apoptosis, however,
its cardio-toxicity has hindered its therapeutic application (2,
3). In addition, accumulated literature has pointed that
chronic exposure to As2O3 from drinking water is closely
associated with various human diseases, including
atherosclerosis (4), diabetes mellitus (5), hypertension (6),
ischemic heart disease (7, 8), peripheral vascular disease (9),
and cancer (10, 11). Up to date, relatively few published
articles are available on the influence of acute or chronic
As2O3 exposure on the vascular endothelial system. At the
same time, the identification of potential traditional Chinese
medicine for the prevention of the diseases associated with
chronic exposure to As2O3 is of great interest. Εndothelial
cells, human umbilical vein endothelial cells (HUVEC) are
frequently used as the cell model, are the main targets of
vasculopathy caused by As2O3 exposure. As2O3 has been
reported to cause oxidative stress, and induce endothelial
cells to undergo programmed cell death (12). Oxidative
stress and its intracellular consequences are believed to be
the major cause of As2O3 cytotoxicity (13).

Crocetin (C20H24O4; molecular weight 328.4g/mol) is a
primary constituent of saffron (Crocus sativus L), which has
been known to possess lots of beneficial pharmacological
effects, such as anti-inflammatory (14) and anti-apoptotic
(15, 16). Crocetin has also been reported to effectively
eliminate ischemia-reperfusion-induced oxidative damage in
rats and scavenge free radicals (17). More interesting,
crocetin has beneficial cardiovascular effects, such as
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reducing oxidative stress (18), atherosclerosis (19),
hypertension (20) and cardiac hypertrophy (21, 22). Crocetin
has also been reported to significantly enhance glutathione
peroxidase and superoxide dismutase activities (18). In
addition, crocetin can regulate various myocardial enzymes,
and collaborate with them to reduce cardio-toxicity and
apoptosis (18, 23). However, the effect of crocetin on the
DNA level has never been studied.

Based on the aforementioned findings, the current study
aimed to evaluate the effects of As2O3 exposure on HUVEC
cells in relation to apoptosis, oxidative stress, and DNA

adducts, and to investigate whether and how crocetin
reverses As2O3 toxicity.

Materials and Methods
Cell line and chemicals. Human umbilical vein endothelial cells
(HUVECs) (American Type Culture Collection, CRL-1730,
Manassas, VA, USA) were cultured in RPMI-1640 (Hyclone, UT,
USA) containing 10% fetal calf serum. As2O3, crocetin, 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), and
dimethyl sulfoxide (DMSO) were obtained from Sigma Chemical
Company (St. Louis, MO, USA). 
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Figure 1. The effects of As2O3 and crocetin on HUVEC cell viability. (A) HUVEC cells are observed under a microscope at 40X after 24-h treatment
with 0, 4, 8, 16, and 32 μM As2O3. (B) The quantitation results of 0~32 μM As2O3 treatment for 24 h in HUVEC cells. Data are presented as
mean±SD of at least three experiments. *Statistically significant (p<0.05) compared with the untreated group. (C) Treatments of various doses of
crocetin with 32 μM (◆), 16 μM (▲), or 0 μM (●) As2O3 for 24 h. Data are presented as mean±SD of at least three experiments. *Statistically
significant (p<0.05) compared with the control (As2O3 alone) group.



Cell viability assay. Cell viability of HUVEC cells was tested by
MTT assay as previously published (24, 25). After drug treatments,
the cells were treated with MTT, and the plates were incubated in
the dark for 4 h at 37˚C. The intensity was measured with a
Multiskan MS ELISA reader (Labsystems, Helsinki, Finland). Each
experiment was repeated at least thrice.

Measurement of cell apoptosis. Cell apoptosis of HUVEC cells was
examined as previously published (26, 27). After drug treatments,
HUVEC cells were ethanol-fixed and incubated with propidium
iodide buffer for 30 min in the dark at 37˚C. After the fixing and
staining processes, HUVEC cells were filtered through a 40-μm
nylon filter and the percentage of HUVEC cells in the sub-G1 phase
was analysed by flow cytometry using a FACS Calibur instrument
(BD Biosciences, San Jose, CA, USA). Each experiment was
repeated at least thrice.

Intracellular ROS production. Intracellular ROS production was
measured as previously described (26, 27). After drug treatments,
HUVEC cells were harvested, re-suspended in 10 μM DCFH-DA,
incubated at 37˚C for 30 min, and analyzed by flow cytometry (BD
Biosciences). Results are expressed as fold of the untreated control
and each experiment was repeated at least thrice.

NADPH oxidase activity. The NADPH oxidase activity of HUVEC
cells was checked as previously described (28). After drug
treatments, HUVEC cells were harvested and centrifuged for 10 min
at 4˚C at 10,000 rpm. Then, the pellet was re-suspended to measure
the activity of NADPH oxidase. The reaction buffer was composed
of 100 mM of Tris-HCl, 1 mM of EDTA and 0.2 mM of NADPH.
The NADPH oxidase activity correlated with the decrease in
absorbance at 340 nm. Each experiment was repeated at least thrice.

Comet assay for oxidative DNA adducts. The FPG- and
endonuclease III-digestible adducts of HUVEC cells were examined
as previously described (28). Briefly, after preparation of typical 3-

layer agarose gel slides, the slides were lysed, washed, and
incubated at 37˚C for 30 min. Then, formamidopyrimidine DNA-
glycosylase (FPG) or endonuclease III (Trevigen, Gaithersburg,
MD, USA) together with the enzyme reaction buffer were added
and further incubated at 37˚C for 2 h. Then, the slides were put at
4˚C for 18 h, followed by incubation in an alkaline solution for 20
min, and then electrophoresed and stained by SYBR green I. The
comet moment was quantified with the formula ∑0→n [(amount of
DNA at distance X)×(distance X)]/total DNA. For each sample, at
least 50 cells were detected.
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Figure 2. The effects of As2O3 and crocetin on HUVEC cell apoptosis. (A) The effects of 24-h treatment of 0~32 μM As2O3 on HUVEC cells.
Apoptotic cells were detected by flow cytometry with sub-G1. Data were present as mean±SD for at least 3 experiments. *Statistically significant
(p<0.05) compared with untreated group. (B) Treatments of various doses of crocetin with 32 μM (◆), 16 μM (▲) or 0 μM (●) As2O3 for 24 h.
Data were present as mean±SD for at least 3 experiments. *Statistically significant (p<0.05) compared with the control (As2O3 alone) group.

Figure 3. The effects of As2O3 and crocetin on ROS production in
HUVEC cells. Treatments of 4, 8, or 16 μM As2O3 with or without 10
or 20 μM crocetin for 12 h. Data are presented as mean±SD of at least
three experiments. *Statistically significant (p<0.05) compared with the
control (As2O3 alone) group.



Statistical methodology. Results are shown as the mean±SEM for
each repeated data. Statistical significance was assessed by the
Student’s t-test or one-way ANOVA with post hoc test using the
SPSS (version 15.0) software (SPSS Inc., Chicago, IL, USA). p-
Values<0.05 were considered statistically significant.

Results

As2O3-induced cytotoxicity was reversed by crocetin. The
ability of As2O3 to induces cytotoxicity in HUVEC cells was
analyzed. Treatment with 0, 4, 8, 16, and 32 μM of
As2O3induced a dose-dependent decrease in cell viability as
visualized by microscopy (Figure 1A). In detail, cell viability
of HUVEC cells treated with 4 μM As2O3 was not
significantly affected (Figure 1B). However, treatment with
8, 16, and 32 μM of As2O3 for 24 h, led to 83.6, 58.4, and
21.5% cell viability, respectively (Figure 1B). Treatment
with crocetin reversed the 16 and 32 μM As2O3-induced
suppression in cell viability (Figure 1C).

As2O3-induced apoptosis was reversed by crocetin. The
ability of As2O3 to induce cell apoptosis in HUVEC cells
was then analyzed. Treatment of HUVEC cells with As2O3
concentrations higher than 8 μM for 24 h led to apoptosis
(Figure 2A). At 8, 16, and 32 μM, As2O3 induced 21.7,
38.3, and 66.1% of HUVEC cells to undergo apoptosis,
respectively (Figure 2A). Treatments with crocetin
reversed the 16 and 32 μM As2O3-induced cell apoptosis
(Figure 2B).

As2O3-induced oxidative stress was suppressed by crocetin.
As2O3 treatment induced the production of ROS dose-

dependently at the range of 4~16 μM at 24 h (Figure 3). The
4, 8, and 16 μM As2O3-induced ROS could be suppressed
by treatment with 10 and 20 μM of crocetin, respectively
(Figure 3).

As2O3-activated NADPH oxidase was suppressed by
crocetin. Four, 8, 16, and 32 μM As2O3 treatment activated
NADPH oxidase activity by 2.4-, 3.0-, 3.3- and 4.6-fold,
respectively (Figure 4A). Treatment with crocetin suppressed
the As2O3-activated NADPH oxidase activity in a dose-
dependent manner (Figure 4B).

As2O3-induced FPG- and Endonuclease III-digestible DNA
adducts was suppressed by crocetin. As2O3 treatment
induced FPG- and endonuclease III-digestible adducts dose-
dependently at 4, 8, and 16 μM (Figure 5 and Figure 6). The
oxidative adducts were effectively reduced by treatment with
10 and 20 μM of crocetin, and the reducing efficacy was
higher at 20 μM (Figure 5 and Figure 6).

Discussion

Increased apoptosis of HUVEC cells may be closely related
to loss of endothelial integrity, leading to vascular disorders
(29, 30). Our results confirmed that As2O3 can induce
HUVEC cells to undergo apoptosis, while crocetin can
effectively rescue the As2O3-induced HUVEC programmed
cell death (Figure 2B). In this study, As2O3-induced
apoptosis was not as severe as that in Yu’s experiments,
where 5 μM As2O3 induced about 40% apoptosis (31). Our
results are consistent with those of Ma’s findings, which
showed that 5 μM As2O3 was able to induce about 20%
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Figure 4. The effects of As2O3 and crocetin on NADPH oxidase activity in HUVEC cells. (A) The effects of treatment of 0~32 μM As2O3 on NADPH
oxidase activity in HUVEC cells. Data are presented as mean±SD for at least three experiments. *Statistically significant (p<0.05) compared with
the untreated group. (B) Treatment of various doses of crocetin with 32 μM (◆), 16 μM (▲), or 0 μM (●) As2O3 for 24 h. Data are presented as
mean±SD of at least three experiments. *Statistically significant (p<0.05) compared with the control (As2O3 alone) group.



apoptosis in HUVEC cells (32). The differences may be
probably due to different culturing passages of HUVEC
cells. Treatment with crocetin was found to effectively
reverse the As2O3-induced apoptosis in HUVEC cells
(Figure 2B). The As2O3-induced ROS production started to
increase at 30 min, and could be sustained for 12 h (data not
shown). Here, we only show the ROS status at 12 h (Figure
3). Treatment with crocetin did not alter the levels of ROS
(Figure 3), but suppressed the As2O3-induced induction of
ROS levels, and 20 μM was more effective than 10 μM of
crocetin (Figure 3). In a rat model, crocetin has been
reported to not only induce the activities of superoxide
dismutase, glutathione-peroxidase, and catalase, but also
decrease the levels of malondialdehyde and ROS (33). 

A number of cardiovascular disorders, such as
atherosclerosis and hypertension, have been closely related to
increased vascular ROS levels, which has been designated as
oxidative stress (34, 35). Our studies showed that As2O3
activated NADPH oxidase, and that treatment with crocetin can
effectively reverse it (Figure 4B). This may be the major
mechanism related to As2O3-mediated intracellular ROS
generation. There is no doubt that As2O3-induced ROS
production could be due to different mechanisms other than
NADPH oxidase, and could cause different consequences. For
instance, As2O3 has been reported to induce the loss of
mitochondrial membrane potential and ROS formation, leading
to DNA damage and cell apoptosis (36, 37). Moreover, ROS
formation has been found to associate with autophagy and
other programmed cell death mechanisms (37, 38).

One of the novel findings of this study is the measurement
of crocetin-induced suppression of As2O3-induced FPG-
digestible adducts and endonuclease III-digestible adducts. The
subtle alterations in DNA adducts are one of the end points for
understanding how ROS induced intracellular damage and cell
death. Consistent with previous findings (28), treatment of
As2O3 was capable of inducing FPG-digestible endonuclease
III-digestible DNA adducts dose-dependently at the range of
4~16 μM (Figure 5 and Figure 6). As previously reported, FPG
can specifically digest oxidized purines, such as 8-oxoguanine,
5-hydroxycytosine, 5-hydroxyuracil, 2,6-diamino-4-hydroxy-
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Figure 5. The effects of As2O3 and crocetin on FPG-digestible adducts
in HUVEC cells. Treatments of 4, 8, or 16 μM As2O3 with or without 10
or 20 μM crocetin for 12 h. Data are presented as mean±SD of at least
three experiments. & and *statistically significant (p<0.05) compared
with the untreated and control (As2O3 alone) groups, respectively.

Figure 6. The effects of As2O3 and crocetin on Endonuclease III-
digestible adducts in HUVEC cells. Treatments of 4, 8 or 16 μM As2O3
with or without 10 or 20 μM crocetin for 12 h. Data are presented as
mean±SD of at least three experiments. & and *statistically significant
(p<0.05) compared with the untreated and control (As2O3 alone)
groups, respectively.

Figure 7. The effects of As2O3 and crocetin on Endonuclease III-
digestible adducts in HUVEC cells. Treatments of 4, 8 or 16 μM As2O3
with or without 10 or 20 μM crocetin for 12 h. Data are presented as
mean±SD of at least three experiments. & and *statistically significant
(p<0.05) compared with the untreated and control (As2O3 alone)
groups, respectively.



5-N-methylformamidopyrimidine, and 4,6-diamino-5-
formamidopyrimidine (35). However, endonuclease III can
specifically digest oxidized pyrimidines, such as thymine
glycol, 5,6-dihydrothymine, 5-hydroxydihydrothymine, 5-
hydroxycytosine, 5-hydroxyuracil, and uracil glycol (39). This
study showed for the first time that treatment with crocetin
could reverse the formation of these As2O3-induced oxidative
DNA adducts (Figure 5 and Figure 6) dose-dependently,
although the detail mechanisms require further investigation.
We did not however examine whether As2O3 can induce lipid
peroxidation, and whether crocetin can reverse it. In 2017, Ma
et al. found that As2O3 can increase lipid peroxidation in
HUVEC cells (32), while the effects of crocetin on this requires
further investigation. A scheme summarizing the effects of
crocetin on the As2O3-induced NADPH oxidase activity, ROS
levels and oxidative DNA adducts is shown in Figure 7. 

In conclusion, crocetin is capable of reversing the As2O3-
induced apoptosis, the activation of NADPH oxidase, and the
production of ROS and oxidative DNA adducts in HUVEC
cells. The antioxidant capacities of crocetin can aid
cardiovascular disease prevention in clinical practice.
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