
Abstract. Background/Aim: The combination of regorafenib
with cisplatin/pemetrexed has indicated controllable safety
and encouraging antitumor activity in non-small cell lung
cancer (NSCLC) patients. However, the anti-NSCLC effects
and action mechanisms of regorafenib combined with
cisplatin is ambiguous. The major goal of the study was to
study the inhibitory effects and action mechanisms of
regorafenib combined with cisplatin in NSCLC cells.
Materials and Methods: Cell viability, flow cytometry,
immunofluorescence staining, western blotting, migration,
and invasion assays were employed to verify the anti-NSCLC
effects and mechanisms of regorafenib in combination with
cisplatin. Results: Cisplatin-induced epidermal growth factor
receptor (EGFR)/nuclear factor ĸB (NF-ĸB) signaling was
effectively inhibited by regorafenib treatment. Regorafenib,
erlotinib (EGFR inhibitor) and QNZ (NF-ĸB inhibitor) may
all enhance the cytotoxicity effect of cisplatin. The invasion
ability was effectively decreased by combination treatment.
Caspase-dependent and -independent apoptosis was activated

by cisplatin combined with regorafenib. Conclusion:
Apoptosis induction and EGFR/NF-ĸB inactivation correlate
with regorafenib-enhanced anti-NSCLC efficacy of cisplatin.
This study provides evidence of the therapeutic efficacy of
regorafenib in combination with cisplatin on NSCLC.

Cisplatin, a platinum-based anticancer drug, is standard
treatment for advanced non-small cell lung cancer (NSCLC).
DNA damage-induced apoptosis correlates with the anti-
cancer mechanism of cisplatin (1, 2). Cell and animal models
have revealed that enhancement of apoptosis induction and
suppression of oncogenic signaling such as Wnt, AKT,
epidermal growth factor receptor (EGFR), and nuclear factor-
kappaB (NF-ĸB) by potential complementary approaches
have been reported to sensitize NSCLC cells to cisplatin (3-
6). For instance, sodium valproate, a histone deacetylase
inhibitor, and microRNA miR-381 have been found to
enhance anti-NSCLC efficacy of cisplatin through inducing
apoptosis and inhibiting NF-ĸB signaling, respectively (7, 8). 

Several tyrosine kinase inhibitors (TKIs) targeting EGFR
and anaplastic lymphoma kinase (ALK) have been shown to
improve survival of NSCLC patients receiving platinum-based
doublet chemotherapy (9, 10). Regorafenib, an oral multi-
target TKI, is used for the treatment of solid tumors such as
hepatocellular carcinoma (HCC), renal cell carcinoma,
differentiated thyroid cancer, and metastatic colorectal cancer
(11, 12). Induction of apoptosis and down-regulation of
AKT/NF-ĸB signaling were associated with regorafenib-
inhibited progression of NSCLC cells (13). In addition, the
combination of regorafenib with cisplatin/pemetrexed has
shown manageable tolerability and encouraging antitumor
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activity in NSCLC patients (14). However, the anticancer
effect and action mechanism of regorafenib combined with
cisplatin has not yet been elucidated. The main purpose of the
study was to verify anti-proliferative, anti-invasive, and
apoptotic effects and mechanisms of regorafenib in
combination with cisplatin in NSCLC cells.

Materials and Methods
Cell lines. Human lung adenocarcinoma cell line, A549 was
maintained in RPMI-1640 medium (Thermo Fisher Scientific,
Fremont, CA, USA) with 10% fetal bovine serum (FBS) 2 mM L-
glutamine, 100 units/ml penicillin and 100 μg/ml streptomycin
(Thermo Fisher Scientific), at a 37˚C incubator with 5% CO2 and
95% humidity.

Reagents and antibodies. The chemical reagents purchased from
Sigma (St.Louis, MO, USA) were listed as follows: 3-(4, 5-
Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT);
QNZ (NF-ĸB inhibitor); rgorafenib, cisplatin and dimethyl sulfoxide
(DMSO). Primary antibodies against MMP-9, phosphor-NF-ĸB
ser536, NF-ĸB, Cyclin D1, VEGF-A, β-actin, α-tubulin were
obtained from Elabsicence (Houston,TX USA). Primary antibodies
against MMP-2 (proteintech, Rosemont, IL, USA) and phosphor-
EGFR Tyr1068 (Cell Signaling, Danvers, MA, USA) were
purchased as indicated.

Cell viability assay. A549 cells were seeded in 96-well plates, at a
density of 5×103 cells/well overnight and treated with regorafenib
2.5-30 μM, cisplatin 2.5-30 μM and regorafenib 10 μM combine
different concentrations (5~20 μM) of cisplatin for 48h. A549 cells
were also treated with 0-5 μM QNZ and combined with 5-20 μM
cisplatin for 48 h. The medium was then replaced by 100 μl MTT
reagent (0.5 mg/ml) and maintained for another 2h. Finally, the
MTT medium were be removed and replaced with 100 μl DMSO
for further dectection. The absorbance was dectected by SpectraMax
iD3 microplate reader (Molecular Devices, San Jose, CA, USA) at
570 nm (15).

Caspase-3, -8, -9 activity analyses. A549 cells were seeded in 6
well plates, at a density of 1×105 cells/well overnight and treated
with regorafenib 10 μM and/or cisplatin 15 μM for 48 h. A549
cells were further stained with active caspase-3, caspase-8 and
caspase-9 staining Kit (CaspGLOW™ fluorescein staining kit,
BioVision) for 30 min at 37˚C incubator. The activate caspase-3
and caspase-9 were determined by FL-1 channel. The activate
caspase-8 was determined by FL-2 channel using NovoCyte flow
cytometry with NovoExpress® software (Agilent Technologies Inc.,
Santa Clara, CA, USA). The quantification was performed by
FlowJo software (16).

Fas activity analyses. A549 cells were seeded in 6 well plates, at a
density of 1×105 cells/well overnight and treatment regorafenib 10
μM and/or cisplatin 15 μM for 48 h. A549 cells were further stained
with FITC conjugated Fas (Thermo Fisher Scientific) in 100 μl
binding buffer for 15 min in the dark at room temperature (17). The
Fas was determined by FL-1 channel using NovoCyte flow
cytometry with NovoExpress® software (Agilent Technologies Inc.
and quantified by FlowJo software.

Invasion and migration assay. Transwell chambers (BD
Biosciences, Franklin Lakes, NJ, USA) were coated with
(migration) or without (invasion) 50 μl matrigel in serum free
medium (1:1) overnight. A549 cells were plated in 10 cm and
seeding with 1×106 cells/plate followed with treatment of
regorafenib 10 μM and/or cisplatin 15 μM for 48 h. The viable
A549 cells (2×105) were re-suspended in 200 μl serum-free medium
and added to the upper chamber. The 10% FBS/RPMI medium were
placed into the lower chamber of cell migration/invasion inserts.
Cells were allowed for migration or invasion for 48 h, then cells
were be fixed with 4% paraformaldehyde in PBS for 30 min at 4˚C,
stained with crystal violet solution for 15 min and photographed by
microscope (Nikon ECLIPSE Ti-U, Minato City, Tokyo, Japan), and
quantified by ImageJ software version 1.50 (National Institutes of
Health, Bethesda, MD, USA) (18, 19).

Western blotting assay. A549 cells were plated in 10 cm, seeded
with 1×106 cells and treated with regorafenib 10 μM, cisplatin 15
μM and combination for 48 h. After treatment, A549 cells were
collected and extracted with total proteins by NP-40 lysis buffer
containing proteinase inhibitor cocktail and phosphatase inhibitor
(Sigma-Aldrich). The protein concentration was measured by
Bradford method (Bio-Rad). Forty microgram of protein per group
were separated by 10-15% SDS-page and transferred onto
polyvinylidene difluoride (PVDF) membranes (EMD Millipore,
Bedford, MA, USA). Membranes were blocked with blocking buffer
(5% non-fat dry milk), hybridized with the first antibody and
reactivated with horseradish peroxidase (HRP)-conjugated second
antibody. Chemiluminescence images were detected by the
chemiluminescent image system (ChemiDoc-It 515, UVP, Upland,
CA, USA) (20). 

Immunofluorescence staining of AIF. A549 cells were seeded onto
4-well Nunc™ Lab-Tek™ II Chamber slide™ (Thermo Fisher
Scientific, Fremont, CA, USA) overnight at 2.5×104 cells/well
density. A549 cells were treated with regorafenib 10 μM, cisplatin
15 μM and combination for 48 h. Cells were then fixed,
permeabilized by 4% paraformaldehyde, blocked by 1% BSA,
stained by AIF and followed with Alexa Fluor 488 secondary
antibody conjugation. Detail procedure was described in previous
study (21). AIF nuclear translocation was finally imaged by Zeiss
Axio Scope.A1 fluorescence microscope (Germany).

Statistical analysis. Statistical significance was measured by one-
way ANOVA analysis. p-values<0.05, <0.01 and <0.005 were all
considered as statistically significant. The statistical analysis was
conducted using the GraphPad Prism 7. All experiments were
independently repeated at least three times.

Results

Regorafenib-enhanced cytotoxicity of cisplatin is associated
with EGFR/NF-ĸB inactivation in NSCLC. In Figure 1A and
B, the viability of A549 cells was decreased by regorafenib
and cisplatin alone in a dose-dependent manner. As illustrated
in Figure 1C, the combination of regorafenib with cisplatin
effectively increased cytotoxicity in A549 cells. To identify
the action mechanism of regorafenib combined with cisplatin,
NF-ĸB inhibitor and EGFR inhibitor (erlotinib) combined
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with cisplatin were used to evaluate cytotoxicity on A549
cells. In Figure 1D and E, cell viability was also reduced by
QNZ alone and combined with cisplatin. In addition, the
cytotoxicity of cisplatin was also triggered by erlotinib
(Figure 1F). Moreover, regorafenib significantly suppressed
cisplatin-induced phosphorylation of EGFR and NF-ĸB. In
sum, the toxicity induction of cisplatin by regorafenib was
associated with EGFR and NF-ĸB inactivation.

Regorafenib intensified cisplatin-inhibited invasion and
migration of NSCLC cells. To investigate whether regorafenib

combined with cisplatin may further inhibit the metastatic
potential of A549 cells, we performed invasion and migration
transwell assays. As illustrated in Figure 2A, the percentage
of migration and invasion capacity of A549 cells was
decreased in the combination treatment group as compared to
single-treatment group (Figure 3A). In Figure 2B and C, the
lowest migration and invasion areas were found in
regorafenib combined with cisplatin group. The migration
capacity of A549 cells was suppressed by cisplatin combined
with regorafenib group as compared to each of the single
treatment groups. Also, the number of invading cells was
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Figure 1. Induction of cytoxicity and inactivation of EGFR/NF-ĸB was found in regorafenib combination with cisplatin in A549 cells. A549 cells
were treated with (A) 0-30 μM regorafenib, (B) 0-25 μM cisplatin, (C) 10 μM regorafenib combined with 0-25 μM cisplatin, (D) 0-5 μM QNZ, (E)
1 μM QNZ combined with 0-25 μM cisplatin and (F) 10 μM erlotinib combined with 0-25 μM cisplatin for 48 h and assayed by MTT. (G-H) The
expression pattern and quantification results of EGFR and NF-ĸB phosphorylation are shown. a1p<0.05, a2p<0.01, a3p<0.005 vs. 0 μM of treatment;
b2p<0.01, b3p<0.005 vs. 10 μM regorafenib, 1 μM QNZ or 10 μM erlotinib; c1p<0.05 vs. 15 μM cisplatin).



further reduced by the combined treatment compared to the
single treatment groups (Figure 3A and C). Furthermore, we
investigated whether metastasis-related proteins, such as
VEGF, MMP-2, and MMP-9 may be suppressed by
regorafenib combined with cisplatin. A significant reduction
of VEGF, MMP-2, and MMP-9 was found in the combination
treatment group compared to regorafenib and cisplatin single
treatment (Figure 3D). In conclusion, regorafenib can
facilitate cisplatin-induced metastatic inhibition. 

Regorafenib enhanced cisplatin-triggered intrinsic and
extrinsic apoptosis effects in NSCLC cells. To investigate
whether regorafenib affects the chemosensitivity and enhances
the apoptosis effect of cisplatin, we investigated the activation
of apoptosis indicators, such as caspase-3, -8 and -9. As
illustrated in Figure 2A-C, the activate forms of caspase-3, -8
and -9 were significantly induced by combining regorafenib
and cisplatin for 48 h. These results showing that regorafenib
enhances both intrinsic (caspase-8) and extrinsic (caspase-9)
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Figure 2. Synergistic activation of death receptor of apoptosis and mithochondria-dependent apoptosis were found in regorafenib combined with
cisplatin in A549 cells. A549 cells were treated with 10 μM regorafenib, 15 μM cisplatin and their combination for 48 h. The activation patterns
and quantification results of (A) caspase-3, (B) caspase-8, and (C) caspase-9 were assayed by flow cytometry. (D) AIF nuclear translocation
pattern of each group is displayed. a2p<0.01, a3p<0.005 vs. 0 μM of treatment; b3p<0.005 vs. 10 μM regorafenib; c1p<0.05, c2p<0.01, c3p<0.005
vs. 15 μM cisplatin scale bar = 50 μM.



apoptosis pathways induced by cisplatin compared to cisplatin
alone. After validating caspase-dependent apoptosis, caspase-
independent marker, AIF was also investigated by
immunofluorescence staining. As shown in Figure 2D, the

nuclear translocation of AIF was increased by regorafenib
combined with cisplatin. Taken together, regorafenib
effectively triggered cisplatin-induced intrinsic and extrinsic
apoptosis pathways.
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Figure 3. Suppression of metastasis effect was found in regorafenib combined with cisplatin in A549 cells. A549 cells were treated with 10 μM
regorafenib, 15 μM cisplatin and their combination for 48 h. (A) Migration and invasion pattern of A549 after different treatments are displayed.
The quantification of (B) migration area and (C) invasion area after different treatments are presented. (D) The metastasis related proteins expression
pattern and quantification bar chart are displayed. a2p<0.01, a3p<0.005 vs. 0 μM of treatment; b2p<0.01, b3p<0.005 vs. 10 μM regorafenib;
c2p<0.01 vs. 15 μM cisplatin scale bar = 100 μM.



Discussion

Binding of EGFR to its ligands induces rapid tumor progression
through initiation of downstream pathways such as
RAF/mitogen-activated protein kinase (MAPK)/ extracellular
signal-regulated kinase (ERK) kinase/ERK and phosphoinositide
3-kinases (PI3K)/AKT (22, 23). NF-ĸB activity is triggered with
EGFR signaling and is required for EGFR-driven NSCLC
progression (24). The NF-ĸB signaling cascade triggers
expression of downstream effector proteins such as MMP-9, -2,
and VEGF leading to lung cancer progression (25). Activation
of both EGFR and NF-ĸB was triggered by cisplatin and
associated with chemoresistance in cancers (26). 

Geftinib, the first generation of EGFR-TKI, has been
indicated to enhance an inhibitory effect of cisplatin through
disruption of the EGFR signaling cascade in wild-type EGFR
NSCLC cells (6). Our data showed that regorafenib, erlotinib,
and QNZ effectively augmented cytotoxicity of cisplatin in
A549 cells (Figure 1C, E and F). Notably, cisplatin-increased
protein levels of both EGFR Tyr1068 and NF-ĸB ser536 were
significantly inhibited by regorafenib treatment (Figure 1G-H).
Based on these results, we suggest that suppression of
EGFR/NF-ĸB signaling contributes to regorafenib-augmented
cytotoxicity of cisplatin in A549 cells.

Invasion-associated proteins MMP-2 (72 kDa gelatinase
A) and MMP-9 (92 kDa gelatinase B) promote tumor
invasion and metastasis through disruption of extracellular
matrix (ECM) and induction of epithelial-mesenchymal
transition (EMT) (27, 28). High expressions of both MMP-
2 and MMP-9 as unfavorable prognostic predictors were
correlated with lymph node metastasis and poor prognosis in
NSCLC patients (29, 30). Our results demonstrated that the
combination of regorafenib and cisplatin not only
significantly reduced the number of migration and invasion
cells, but also effectively abolished protein levels of both
MMP-2 and MMP-9 compared to regorafenib or cisplatin
monotherapy (Figure 3). Decreased protein levels of MMP-
2 and MMP-9 were condutive to regorafenib and effectively
triggered anti-invasion ability of cisplatin in NSCLC cells.

Cisplatin induces tumor cell death through extrinsic and
intrinsic apoptotic pathways. Extrinsic caspase-8 and
intrinsic caspase-9 pathways activate caspase-3 and promote
release of AIF from mitochondria resulting in formation of
apoptotic DNA fragmentation (31-33). Decreased expression
and activation of caspase-8, -9, and AIF have been found to
be related to cisplatin insensitivity in NSCLC cells (34-36).
Our results showed that regorafenib effectively enhanced
cisplatin-induced caspase-3, -8, and -9 activation (Figure 2A-
C). Furthermore, cisplatin-induced AIF nuclear translocation
was increased by regorafenib treatment (Figure 2D). Based
on these results we suggest that regorafenib enhanced
cisplatin-triggered apoptosis via caspase-dependent and -
independent pathways in NSCLC cells.

In conclusion, this study showed that regorafenib
enhanced cisplatin-induced tumor cell growth inhibition and
showed ability in invasion suppression in A549 cells.
Regorafenib effectively enhanced cisplatin-inhibited cell
growth and invasion in A549 cells. In addition, regorafenib
also promoted cisplatin-induced apoptosis through caspase-
dependent and -independent pathways. We suggest that
induction of apoptosis and inhibition of EGFR/NF-ĸB
signaling was associated with the anti-NSCLC effect of
regorafenib for sensitizing NSCLC cells to cisplatin.
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