
Abstract. Background/Aim: We established a data-driven
method for extracting spatial patterns of dose distribution
associated with radiation injuries, based on patients with
prostate cancer who underwent iodine-125 (I-125) seed
implantation. Patients and Methods: Seventy-five patients
underwent I-125 seed implantation for prostate cancer. We
modeled the severity of lower urinary tract symptoms (LUTS)
to be estimated using a linear model, which is formulated as
an inner product between the dose distribution D and voxel-
wise radiosensitivity B inside the prostate. For the estimation,
tensor regression based on a low-rank decomposition with
generalized fused lasso penalty was applied. Results: The
spatial distribution of B was visually assessed. Positive
parameters appeared dominantly in the region close to the
urethra and the prostate base. Conclusion: Our tensor
regression-based model can predict intra-organ radiosensitivity
in a data-driven manner, providing a compelling parameter
distribution associated with the development of LUTS after I-
125 seed implantation for prostate cancer.

To ensure good quality of life (QOL) for patients treated
with radiotherapy, optimizing dose distributions to avoid
susceptible sites in organs at risk (OARs) is quite essential.

To evaluate radiosensitivity of OARs, conventional
techniques rely on dose-volume histograms (DVHs).
However, a DVH-based approach basically assumes that the
radiosensitivity within a region of interest (ROI) is
homogeneous. Moreover, it abstracts the three-dimensional
(3D) spatial information of dose distributions into a two-
dimensional (2D) relationship between the volume and the
dose. Therefore, when using DVHs, it is difficult to
determine if a particular part of an organ is more sensitive
to radiation than other parts. These challenges that come
with conventional approaches have limited our knowledge of
the heterogeneous sensitivity of OARs to radiation.

The example considered here is the prostate, and the
adverse effects after iodine-125 (I-125) seed implantation for
prostate cancer. Brachytherapy is widely used as definitive
monotherapy or as a boost after external beam radiotherapy
(EBRT), because it provides excellent tumor control (1-3).
However, in some cases, irritable or obstructive lower
urinary tract symptoms (LUTS) occur as an adverse effect of
the treatment (4). Generally, the urinary symptoms develop
rapidly within 3 months and resolve gradually within
approximately 12 months after the procedure (5-7). Several
risk factors for LUTS have been reported, including higher
biological effective dose, prostate volume, the number of
needles implanted, pre-treatment International Prostate
Symptom Score (IPSS), and the use of hormonal therapy (8-
10). However, there has not been a study on the precise
dose-response relationship that considers a heterogeneous
intra-prostatic radiosensitivity for the development of LUTS.

Anatomically, the prostate exists below the bladder. The
urethra passes through the center of the prostate. The prostate
has a base and an apex, where the base, which constitutes
the upper surface of the organ, is fused with the bladder
neck. Because the internal sphincter muscle located in the
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bladder neck is important for urinary continence, it is
hypothesized that urinary-related toxicities are worse when
radiation causes damage to the prostate base.

In order to determine vulnerable sites inside the prostate,
several researchers have exploited a DVH-based approach.
In the majority of these studies, the prostate was manually
segmented into several compartments according to the
hypothesis regarding susceptible sites, which were
determined beforehand. Then, the dose delivered to each
compartment was examined for any adverse effects. Based
on these studies, an intra-prostatic region around the prostate
base and the bladder neck appears to be particularly sensitive
to radiation (11-14). However, there are some inconsistencies
among studies (15, 16). These inconsistencies may be
because when using the DVH-based approach, advanced
insight is needed into the candidate region so that manual
segmentation can take place, both of which would be
arbitrary due to inter-observer variation. Therefore, we
believe that a more data-driven approach exploiting state-of-
the-art computational techniques is necessary.

Recently, we proposed an approach to reveal intra-
prostatic heterogeneous radiosensitivity after brachytherapy
based on principal component analysis (PCA) (17). In this
research, each patient’s dose grid inside the prostate was
mapped to a common coordinate space using a technique
called anatomical standardization, which performs contour-
based non-rigid image registration to a template structure.
Then, standardized dose grids were flattened into a one-
dimensional (1D) dose vector for the subsequent PCA
analysis. The study was successful in statistically identifying
the responsible eigenvectors for the severity of LUTS
without any hypothesis for the vulnerable sites in advance;
however, it was still difficult to interpret the spatial
distribution of parameters represented as the weighted sum
of eigenvectors. Because vectorizing 3D dose information
into a 1D array to apply a PCA can cause a loss of spatial
information, we extended the previous framework to handle
the spatial information of dose distribution as it is.

Here, we demonstrate a tensor regression-based model to
establish a data-driven modeling for the heterogeneous intra-
organ radiosensitivity of the prostate. Based on previous
research using contour-based image registration (17-19), we
applied the same methodology for the anatomical
standardization of intra-prostatic dose distributions. Then,
spatial dose distributions were treated as 3D tensors. For the
dose-response relationship, a simple model was prepared, where
a summation between voxel-wise radiosensitivity and irradiated
dose to each voxel should have a linear relationship for the
development of LUTS. In machine learning models using
multidimensional array, such as 3D tensor, the dimensionality
of input can exceed the number of patients, causing the model
to overfit the training data. Therefore, we further applied tensor
decomposition in combination with generalized fused lasso

penalty. The latter is based on the assumption that adjacent
voxels in the prostate should have similar sensitivity to
radiation. Resultant parameter distribution representing the
radiosensitivity inside the prostate was visually evaluated.

Patients and Methods 

Patients and treatment. Because this was an extensive research
based on our previous technique, the patient population and
treatment details in the present study were the same as in our
previous report (17). Briefly, we retrospectively identified 75
patients with prostate cancer from our institution’s records. They
received I-125 seed implantation with a prescription dose of 160 Gy
from May 2009 to December 2013 at our institution. The details on
our treatment protocol and brachytherapy techniques are described
elsewhere (20). Patient characteristics are summarized in Table I.

Scoring of LUTS. For the quantitative evaluation of LUTS, a
composite score of the results from the IPSS questionnaire was
used. The IPSS is based on a patient’s response to seven questions
concerning urinary symptoms and one question on QOL. The total
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Table I. Patient characteristics.

Characteristics                                                        Patients (n=75)

Age, years                                                                            
  Median (Range)                                                       68 (51-81)
T stage                                                                                 
  T1c                                                                           48 (64.0%)
  T2a                                                                           19 (25.3%)
  T2b                                                                             2 (2.6%)
  T2c                                                                             3 (4.0%)
  T3a                                                                             1 (1.3%)
  T3b                                                                             1 (1.3%)
  Unknown                                                                   1 (1.3%)
N stage                                                                                 
  N0                                                                            74 (98.6%)
  N1                                                                              1 (1.3%)
M stage                                                                                
  M0                                                                           75 (100.0%)
PSA                                                                                      
  Median (Range)                                                     6.25 (1.3-93)
  ≤10                                                                           15 (20.0%)
  >10                                                                           60 (80.0%)
Gleason score                                                                      
  Median (Range)                                                          7 (5-9)
  ≤7                                                                             53 (70.6%)
  >7                                                                             22 (29.3%)
NCCN Risk Classification                                                  
  High risk                                                                    6 (8.0%)
  Intermediate risk                                                     51 (68.0%)
  Low risk                                                                   18 (24.0%)
Hormone therapy                                                                 
  Neoadjuvant                                                             15 (20.0%)
  Adjuvant                                                                    3 (4.0%)

PSA: Prostate-specific antigen; NCCN: National Comprehensive Cancer
Network.



score of IPSS can range from 0 to 35. In our institutional protocol,
a patient’s IPSS score is obtained before brachytherapy. Then,
patients respond to the IPSS questionnaire at each follow-up visit
every 3 months for the first year after treatment. In this study, IPSS
scores were collected retrospectively from the database. For the
calculation, the pre-treatment score was a baseline and the
maximum increase in IPSS score during the first 12 months after
treatment was obtained for each patient. Then, these values
representing an individual increase in IPSS scores were normalized
with a mean of 0 and a standard deviation of 1 among patients (Z-
score normalization). Finally, the normalized values were
concatenated to be a 1D array, denoted as y.

Pre-processing for the dose distribution. Data on intra-prostatic dose
distribution delivered in brachytherapy were obtained based on
computed tomography scanning at 1 month after treatment. At the
scanning procedure, a foley catheter was inserted to visualize the
urethra. Because the intensity of radiation is inversely proportional
to the square of the distance from the source, the dose values were
converted to the natural logarithm for smoothing the value
distribution. Based on the assumption that small doses less than 1.0
Gy have little effect on organ function, we rounded values less than
1.0 Gy to 0.0 Gy for simplicity. Then, as in the previous report (17),
anatomical standardization to map each patient’s intra-prostatic dose
distribution to a common coordinate with a template prostate was
applied. As a result, patient radiation doses were standardized in the
coordinate with a size of 46×35×36. By excluding the voxels
outside the template prostate, we considered a total of 31,018
effective covariates for the prediction model of LUTS severity. See
Figure 1 for examples of standardized dose distributions.

Tensor regression model for intra-prostatic radiosensitivity.
Generally, normal tissue complication of parallel organs can be
modeled as a summation of local radiation damage (21). Here, we
considered the prostate as a parallel functioning organ regarding the
development of LUTS, where a summation between voxel-wise
radiosensitivity and irradiated dose to each voxel should have a
linear relationship for the development of LUTS. Then, we tried to
model this linear relationship based on 3D tensors for the preference
of spatial information.

Tensors provide a natural representation for multidimensional data.
A first-order tensor is a 1D vector, a second-order tensor is a 2D
matrix, and tensors of order three or higher are called higher-order
tensors. We define a parameter distribution representing intra-prostatic
radiosensitivity as a tensor B∈Rp1×...×pD and an intra-prostatic dose
distribution as X∈Rp1×...×pD. Here, these tensors are considered as 3D
(D=3). Then, based on the assumption of the prostate as a parallel
organ, the severity of LUTS, y, is formulated as follows:
y  ̂ =<B,X>,
where an inner product between two tensors is calculated as
<B,X>=∑i1,…,iDβi1…iDxi1,…iD.

When maximum likelihood estimation is applied to the above
equation, it will be severely compromised by the huge number of
regression parameters of B because the number of patients in this
study was relatively limited. To mitigate the ultrahigh
dimensionality of the tensor in the regression problem, we exploited
a computational approach proposed by Zhou et al. (22). Briefly, the
approach starts with rank-R tensor decomposition, which
approximates original signals as a linear combination of eigenvalues
and the outer product of their corresponding eigentensors. Here, R

denotes the number of eigentensors needed for the approximation.
Based on this technique, a tensor B∈Rp1×...×pD admits a rank-R
decomposition as follows:

where β d
(r)
∈Rpd (d=1,…,D) indicates 1D vectors along with each

direction. An outer product of 1D vectors β 1 
(r) 

l...l β D
(r) constitutes

an r-th rank-one tensor, and the sum of R rank-one tensors can
approximate the original tensor B. Subsequently, when a tensor is
decomposable as a rank-R tensor, based on a mode-d matricization
and a vec operator (23), the tensor can be rewritten as:

denotes Khatri-Rao product between tensors (24), and 1R is a vector
of R ones. Based on these equations, our formulation of the
predictive model can be written as follows:

This simplifies the estimation of all parameters of B as a regression
problem of 1D vectors. Zhou et al. (22) solved this regression problem
by using an algorithm called block relaxation, which alternatively
updates Bd (d=1,…,D) while keeping other components fixed. This
enables us to break the simultaneous estimation of all parameters into
a sequence of low-dimensional parameter optimization. As a result,
the update rule can reduce the dimensionality from the order of ∏dpd
to the order of ∑dpd for regression.

In addition to the tensor decomposition described above, we further
considered regularization for the parameter estimation. Generally
speaking, regularization is necessary in the computation of tensor
regression for stabilizing the estimates and avoiding overfitting. The
selection of the kind of constrains is usually based on insights into the
subject the model addresses. To make the matter simple, we consider
that intrinsic radiosensitivity in the prostate should be contiguous,
where units adjacent to each other may have similar sensitivity to the
radiation injury. Thus, a penalty on the pairwise difference to make
successive variables similar was thought to be reasonable. This type
of regularization is known as generalized fused lasso, which can be
incorporated into the prediction model as follows:

where β∈Rd and λ1,λ2≥0. λ1 indicated the sparcity of critical
regions, and λ2 regulated the similarity between adjacent voxels. L1
norms penalize both the variables and their pairwise differences.
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The calculation was performed using SPArse Modeling Software
(SPAM) (25, 26).

Finally, we applied these computational techniques to minimize
a mean squared error (MSE) between the recorded severity of LUTS
y and the estimate y  ̂ . When the best model is acquired in terms of
prediction accuracy, the parameter distribution of B is visually
assessed to reveal the vulnerable sites in the prostate.

Results
Hyperparameter optimization. Our model has several
hyperparameters, such as the number of rank in the tensor
decomposition R and the balancing terms in the generalized
fused lasso penalty, λ1 and λ2. These hyperparameters were
optimized via k-fold cross-validation (k=15), splitting the
original dataset (n=75) into a validation (n=15) and a test
dataset (n=5). Hyperparameter values were ranged as
follows: R={1,2,…,5}, λ1={0,1.0×10–6),1.0×10–5),…,
1.0×10–1)}, λ2={0,1.0×10–6),1.0×10–5),…,1.0×10–1)}. The
best combination of hyperparameters was obtained based on

grid search in terms of the minimization of MSE between the
estimation of the model y  ̂ and the actual values y in the test
dataset. Table II shows the three best sets of hyperparameters
obtained. Figure 2 demonstrates the parameter distribution
of B from each model configuration.

Comparison of model accuracy with a baseline. The
prediction accuracy of the obtained models was compared
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Figure 1. Example results of anatomical standardization. Intra-prostatic dose distributions, which are different between patients, were mapped to a
common coordinate space with a template prostate through a contour-based non-rigid registration. After anatomical standardization, quantitative
comparison of dose distributions can be enabled. Note that the global topologies of dose distributions were preserved before and after the
standardization.

Table II. Three best parameter combinations minimizing MSE.

Model            Rank                   λ1                          λ2                      MSE

1                        4                 1.0×10–5               1.0×10–2                 0.69
2                        5                 1.0×10–3               1.0×10–1                 0.71
3                        3                 1.0×10–5               1.0×10–1                 0.74

MSE: Mean squared error.



with a constant model, which was defined as y=0. This
means that the estimates of the constant model always
correspond to the mean value of the severity of LUTS in the
dataset, which is normalized to be 0. Using this constant
model as a baseline, in model 1, the maximum improvement
in terms of MSE is obtained by 17.8%.

Evaluation of the effect of generalized fused lasso penalty.
Figure 3 presents an example effect from the generalized fused
lasso penalty based on the visualized parameter distribution of
B in model 3 (see Table II for the configuration of the model),
where the regionality of parameter distribution showed up
more clearly in the regularized model. We also confirmed that
MSE of the model was improved from 1.06 to 0.74 by
imposing the penalty.

Visual assessment of the parameter distribution. Although
the three models differed in terms of signal coarseness, there
seemed to be a shared pattern, where large parameters
gathered dominantly in the region close to the urethra and
the prostate base. To confirm this preference, we created an
averaged model from the three models. Figure 4 shows
overlapped regions with large parameter values around the
urethra and the prostate base.

Discussion

Considering the differences in radiosensitivity within tumors
or OARs should be the next step for refining state-of-the-art
radiotherapy, in order to optimize dose distribution based on
the balance between tumor control and complications.
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Figure 2. The parameter distributions representing intra-prostatic radiosensitivity of the three models. The magnitudes of parameters were highlighted
and overlaid on the template prostates. Note that the parameters of greater value are clustered around the urethra and the prostate base.



Current DVH-based models presume that all parts of an
OAR have the same intrinsic properties. However, there has
been accumulating evidence showing that healthy organs can
be heterogeneous in function as well as in sensitivities for
toxicities (27).

Some attempts have been made to introduce spatial
consideration into the model of normal tissue complication
in radiotherapy. For example, by exploiting a technique
called dose-surface maps, Buettner et al. (28) revealed that
late complications in the rectum after prostate radiotherapy
are related to the dose distribution shape. They also proposed

a quantitative prediction model based on a 3D dose
parameterization in the rectal wall, which outperformed the
standard DVH-based model (29). More recently, Liang et al.
(30) leveraged image registration techniques to map each
patient’s dose grid into a standardized coordinate space and
identified specific dose patterns associated with acute
hematologic toxicity based on PCA regression. In line with
this research, we applied anatomical standardization using
contour-based image registration in combination with PCA
regression to identify the vulnerable sites in the prostate after
brachytherapy (17). Because the previous study was limited
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Figure 3. An example/result of the regularization effect by imposing generalized fused lasso. The region associated with the development of lower
urinary tract symptoms (LUTS) appeared more clearly in the regularized model (rank=3, λ1=1.0×10−5, λ2=1.0×10−1) than in the unregularized
model (rank=3). We also confirmed that the model accuracy was improved in terms of mean squared error (MSE), from 1.06 to 0.74.

Figure 4. The result of the averaged model parameter distribution. Parameter distributions of the three models were averaged. Then, the mean
distribution was demonstrated on the template prostate. There was the same tendency of distribution when large parameters were preferentially
located around the urethra and the prostate base.



in terms of the loss of spatial information when applying
PCA to the dose array, we tried to mitigate this point by
extending the framework into a tensor regression problem.

Although the tensor-based approach can introduce spatial
consideration into the dosimetric analysis, it has only been
used in a limited number of prior studies. For example, Ospina
et al. (31) provided tensor-based population value
decomposition to extract characteristics of spatial dose
patterns associated with particular clinical outcomes. More
recently, Fargeas et al. (32) classified spatial dose patterns
based on the distances along with subspaces spanned by basis
vectors derived from tensor decomposition, demonstrating that
the tensor-based model can outperform the classic DVH-based
model in the prediction of clinical outcome.

Based on the assumption that radiosensitivity inside
OARs should be heterogeneous, we proposed a novel
framework leveraging tensor regression in a data-driven
manner to parameterize the radiosensitivity for an adverse
effect. Notably, several state-of-the-art techniques,
including block relaxation algorithm based on rank-R
tensor decomposition and generalized fused lasso,
effectively eased the tensor regression problem. We
consider that these techniques were essential because the
number of patients was too small to estimate the huge
number of parameters contained in tensors in a naïve
manner. This substantial imbalance between the number of
samples and the number of voxels in medical imaging,
including dose distribution of radiotherapy, may be quite
common because it is generally difficult to obtain a large
amount of patient data from a hospital. Therefore, we
consider that our proposal is a versatile approach for
extracting spatial patterns of covariates that are related to
some clinical outcomes.

The results showed that the region around the urethra and
the prostate base has large values of parameters representing
radiosensitivity for the development of LUTS. These results
are convincing because the internal sphincter muscle located
near the prostate base may play an essential role in urinary
continence. Moreover, the implication that high doses to the
urethra may be associated with urinary symptoms is also
compelling. Note that we obtained these results in an
intuitive manner without any hypothesis for candidate intra-
prostatic sites beforehand. In addition to that, our model also
provides a quantitative relationship between the spatial dose
distribution and the severity of an adverse effect as a normal
tissue complication model. Thus, by revealing sensitive areas
within OARs, our model can enable treatment planning of
radiotherapy of I-125 seed implantation for prostate cancer
to better meet the patient’s QOL. Additionally, our simple
linear model is extensible. Therefore, in the future, the model
should incorporate other clinical factors that also affect the
development of LUTS to establish precision brachytherapy
for better QOL for patients.

Conclusion

Our tensor regression-based model can predict intra-organ
radiosensitivity in a data-driven manner, providing a
convincing parameter distribution associated with the
development of LUTS after I-125 seed implantation for
prostate cancer. Because our technique is versatile for other
OARs, it will widen the opportunity for refining state-of-the-
art radiotherapy by optimizing dose distribution in a more
precise manner.
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