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Abstract. Background/Aim: KT2 is a lysine/tryptophan-rich
peptide modified from Crocodylus siamensis Leucrocin I. In
this study, we examined the cell toxicity, cellular uptake, anti-
migration and anti-invasion activities of KT2 in A375.52
human melanoma cells. Materials and Methods: A375.52 cells
were treated with KT2 peptide and then we performed MTT
assay, study of cellular uptake by a confocal microscope,
wound healing assay, transwell migration/invasion assay, and
evaluation of the expression of metastasis-associated proteins.
Results: KT2 can be internalized through the plasma
membrane and can slightly alter cell morphology, decrease
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the percentage of viable cells and inhibit cell migration and
invasion of A375.52 cells in a dose-dependent manner. This
peptide suppressed MMP-2 activity, as measured by gelatine
zymography assay. The protein level of MMP-2 was decreased
by KT2. KT2 also down-regulated metastasis pathway-related
molecules, including FAK, RhoA, ROCKI, GRB2, SOS-1, p-
JNK, p-c-Jun, PI3K, p-AKT (Thr308), p-AKT (Ser473), p-p38,
MMP-9, NF-kB, and uPA. Conclusion: These results indicate
that KT2 inhibits the migration and invasion of human
melanoma cells by decreasing MMP-2 and MMP-9 expression
through inhibition of FAK, uPA, MAPK, PI3K/AKT NF-kB,
and RhoA-ROCK signalling pathways. These findings suggest
that KT2 deserves further investigation as an anti-metastatic
agent for human melanoma.

Metastatic cancer, a major cause of cancer mortality,
accounts for approximately 90% of cancer-related deaths (1).
Metastasis is the spread of cancer cells to new areas in the
body by detaching from the primary tumour, travelling
through the blood circulatory and lymphatic systems,
escaping an immune system, extravasating at the distant
network of capillaries within a tissue, invading and
proliferating in new organs (2). Treatment options for
advanced cancer include local treatments (surgery, ablative
techniques, radiotherapy) and systemic treatment
(chemotherapy, drug-targeted therapy, drug-hormone therapy,
and immunotherapy) (1, 3, 4). Treatment choices depend on
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the primary cancer site and where it has spread. Local
therapies only influence a certain part of the body, and these
may be especially beneficial for cancer that remains limited
to systemic treatment (5). However, most patients still have
a poor prognosis after metastasis, and some patients cannot
be cured (6). Therefore, they stop all treatment or receive
some medications to relieve symptoms while maintaining
their quality of life.

The number of new cases of melanoma and non-
melanoma skin cancer has been rising over recent decades
(7). Melanoma develops from pigment-producing cells
named melanocytes, which is one of the most aggressive
cancers (8) that causes the majority of deaths in all skin
cancers (9). When found early, melanoma patients require
only surgery as the main treatment, but once cancer cells
metastasize throughout other parts of the body, melanoma
treatments still have limitations (10). For this reason,
researchers have explored new therapies for providing hope,
improving the survival rate, and curing patients.

Vast numbers of publications strongly suggest that
peptides are advantageous for finding and developing new
drugs. Peptides are highly selective, inexpensive to produce,
and easy to modify to improve stability and biological
activity; these special characteristics make them a therapeutic
choice for cancer (11, 12). Therapeutic peptides for cancer
treatment have been categorized into three main groups: (1)
antimicrobial/pore-forming peptides, (2) cell-penetrating
peptides and (3) tumour-targeting peptides (13). A large
number of bioactive peptides contain specific kinds of amino
acids and can be referred to as tryptophan-, proline-,
cysteine-, arginine-, or lysine-rich (14, 15). These
compositions affect cell membrane interactions, cell
penetration, and cell-selective, antibacterial or anticancer
activities (15-18). Some bioactive peptides, such as
leucine/lysine-rich K6L9 peptide (19), CT20p peptide (20),
and 9R-P201 peptide (21), have anti-metastatic effects.

KT2 (NGVQPKYKWWKWWKKWW-NH,), a cationic
amphipathic peptide, has 17 amino acids, 53% hydrophobic
residues, and 7 positively charged residues. The first seven-
amino acids constitute a naturally occurring Crocodylus
siamensis leucocyte peptide, which has antibacterial activity.
To enhance the antibacterial effect, the hydrophobic amino
acid tryptophan (W) was added to expand the hydrophobic
region, and lysine (K) was used to increase the hydrophilic
part and charge (22). KT2 was found to inhibit the viability
of cervical cancer HeLa cells (23) and induce apoptosis in
colon cancer HCT-116 cells both in vitro and in vivo (24-26).
Moreover, KT2 restrained the migration of HCT-116 cells
(25). We hypothesized that cationic KT2 may have anti-
migration and anti-invasion activities against other types of
cancer. Therefore, we investigated the anti-metastatic effects
of KT2 on human melanoma A375.S2 cells and the related
mechanisms of action.
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Materials and Methods

Chemicals and reagents. KT2, a synthetic peptide generated by the
Fmoc technique, was obtained from GL Biochem Ltd (Shanghai,
China). Minimum essential medium (MEM), fetal bovine serum (FBS),
and penicillin-streptomycin  were purchased from Gibco Life
Technologies, Inc. (Carlsbad, CA, USA). MTT (3-(4,5-dimethylthiazol-
2-yl)-2 5-diphenyltetrazolium bromide) was obtained from Invitrogen
(Carlsbad, CA, USA). Primary antibodies, including anti-FAK, -E-
cadherin, -SOS-1, -GRB2, -Snail, -PI3K, -p-AKT, and -NF-kB, were
purchased from Cell Signaling Technology, Inc. (Beverly, MA, USA).
Antibodies against VE-cadherin, vimentin, p-c-Jun, and -actin were
purchased from Sigma Chemical Corporation (St. Louis, MO, USA).
Anti-p-JNK, -MMP-2, -MMP-9, -RhoA, -ROCK1, -PKC, -uPA, -p-P38
antibodies and peroxidase-labelled antibodies were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Cell culture. A375.S2 human melanoma cells (The Food Industry
Research and Development Institute, Hsinchu, Taiwan) were
cultured in MEM supplemented with 10% FBS, 100 units/ml
penicillin, and 100 pg/ml streptomycin at 37°C with a humidified
atmosphere of 95% air and 5% CO,.

Cytotoxicity assay. To test the cytotoxic effect of KT2 on A375.S2
cells, 1x10% cells per well in 100 pl complete medium, were seeded
in a 96-well plate and treated with KT2 in 0.5% FBS-containing
medium. After treatment, cell viability was determined by MTT
assay. A 10-pl solution of 5 pg/ml MTT was added to each well for
3 h at 37°C. The supernatant was then discarded, and 100 ul DMSO
was added to dissolve the purple formazan crystal. All treatment
concentrations were repeated in three wells.

Cellular uptake of the KT2 peptide in A375.52 cells. A375.S2 cells
(1x105 cells) were plated on sterile square cover glass slides in 6-
well plates for 2 days and treated with 2.5 uM FITC-KT2 for 4 h.
The cells were rinsed 2 times with phosphate-buffered saline (PBS)
and fixed in 4% formaldehyde for 15 min in the dark. Samples were
mounted with a drop of mounting medium and observed under a
fluorescence microscope (Carl Zeiss Optical, Chester, VA, USA).

Wound healing assay. A375.S2 cells (2x105 cells) were plated in
MEM supplemented with 10% FBS in 6-well plates for 48 h until
full confluence. The cells were gently and slowly scraped with a
200 pl pipette tip across the centre of the well and washed with
serum-free medium to remove debris from the wells. Cells were
treated with 2.5, 5, and 10 pM KT2 in 0.5% FBS-containing
medium for 12 and 24 h. Cells were photographed using a light
microscope (200x) with a digital camera at 0, 12, and 24 h after
treatment. The area of wound closure in each picture was
determined by using ImagelJ software (NIH, Bethesda, MD, USA).

Cell migration and invasion assay. Transwell inserts with a pore
size of 8 um used in a 24-well plate (Millipore, Billerica, MA,
USA) were coated with collagen for the cell migration assay and-
coated with Matrigel for the invasion assay (collagen/Matrigel: 1X
PBS 1:10) overnight. The lower chambers were added to 1 ml of
MEM containing 10% FBS. A375.S2 cells (4.5x104 cells) were
seeded in the upper chamber and incubated in serum-free MEM
with 0, 2.5, 5, and 10 uM KT2. After 24 h, cells were fixed with
cold methanol and stained with crystal violet. Non-migratory cells
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Figure 1. The viability and morphology of KT2-treated A375.52 cells and the internalization of KT2. The cells (1x10% cells/well) were seeded and
treated with KT2 at various doses (0, 2.5, 5, 10, 20, and 40 uM) for 24 h. Cell viability was measured by the MTT assay, and the percentage of
viable cells was calculated (A). Cell morphology of the treated cells at various doses of KT2 (B). The cells were treated with 2.5 uM fluorescein
isothiocyanate (FITC)-labelled KT2, and samples were prepared as described in the Materials and Methods and photographed under a confocal
microscope (C). *p<0.05, **p<0.01, ***p<0.001.

217



in vivo 35: 215-227 (2021)

A 0h 12h 241

Control
2.5 M
5 M
10 pnM
120 -
B 0 12
100 - N24

(7
(=]
1

2222222

*hKk

60 -

*
*
*

X

Migrated cells (% of control)

0 25 5 10
KT2 concentration (uM)

Figure 2. Scratch wound healing assay. Cells (2x103 cells/well) in MEM supplemented with 10% FBS were plated into 6-well plates for 48 h until
full confluence. The cells were scraped with a 200 ul-pipette tip across the centre of the well and treated with 0, 2.5, 5.0, and 10 uM KT2 in 0.5%
FBS-containing medium for 12 and 24 h. Cells were photographed using a light microscope (200x) with a digital camera at 0, 12, and 24 h after
treatment. (A) The wound healing assay. (B) The rate of cell migration. ***p<0.001.
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Figure 3. The rate of A375.52 cell migration (A) and invasion (B). A375.52 cells (4.5x104 cells/well) were seeded in the upper chamber-coated
with collagen or Matrigel and were incubated in serum-free MEM with 0, 2.5, 5.0, or 10 uM KT2 for 24 h. Migratory or invasive cells were stained
with crystal violet and photographed under a light microscope at 200x . *p<0.05 and ***p<0.001.

or non-invasive cells were removed with cotton swabs and
photographed under a light microscope at 200x. The pictures were
analysed using ImagelJ, and percentage inhibition was calculated
based on total cell numbers in each picture (27).

Zymogram refolding gel assay. The experiment was carried out
according to previous studies (28, 29) with slight modification.
Sample preparation: The culture medium was collected after KT2
treatment and centrifuged at 13,000 rpm for 5 min to remove cell
debris. The supernatant was loaded into an 8% sodium dodecyl
sulfate-polyacrylamide gel-0.19% gelatine and run on 120 voltages
at 4°C. The gel was washed with 2.5% (vol/vol) Triton X-100 in
double distilled water (DDW) for 15 min three times and incubated
in the developing buffer (0.05 M Tris-base, 0.01 M CaCl,-2H,0,
0.05 M NaCl and 5% Brij V R 35 solution, pH 7.6) at 37°C for 24
h. The gel was stained with Coomassie blue R-250 for 30 min,

incubated with a destaining solution (10% acetic acid in 30%
methanol in DDW), and washed with DDW. Clear bands indicating
MMP-2 activity were seen.

Measurement of metastasis-associated protein expression by western
blot analysis. A375.82 cells (1x10¢ cells/dish) were plated and
treated with KT2 (2.5, 5.0, 10 uM) for 24 h. After the indicated time,
the cells were collected and washed once with PBS.PRO-PREP
protein extraction solution (iNtRON Biotechnology, Seongnam,
Gyeonggi-do, Korea) was added to the cell pellets according to the
manufacturer’s instructions. Total protein concentration was
determined using the Bio-Rad Protein Assay kit (Bio-Rad, Hercules,
CA, USA). which is based on the Bradford method. The same
amount of protein in each sample was separated by 8-12%sodium
dodecyl sulfate-polyacrylamide gel electrophoresis. Protein was
transferred onto polyvinylidene difluoride membranes (Millipore,
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Figure 4. The detection of MMP-2 activity and MMP-2 protein. A375.52 cells were treated with 2.5-10 uM KT2 for 24 h, media were collected to
detect MMP activity by using gelatine zymography (A), and cells were harvested for western blot analysis (B).

Billerica, MA, USA). The membranes were blocked with 2% fetal
bovine serum in PBST (0.1% Tween-20 in 1X PBS, pH 7.4) for 1
h. The membranes were incubated with primary antibodies (anti-
FAK, -p-INK, -MMP-2, -MMP-9, -RhoA, -ROCK1, -SOS-1, -
GRB2, -p-c-Jun, -PI3K, p-AKT (Thr308), p-AKT (Ser473), -NF-
kB, -uPA, -p-p38, and -B-actin) overnight and then incubated with
peroxidase-labelled secondary antibody. After washing steps, the
membranes were incubated in ECL western blot analysis substrate
(Bio-Rad, Hercules, CA, USA) and the protein bands were
visualized in the dark.

Immunostaining  of  metastasis-related  proteins. For the
immunofluorescent staining of apoptosis-related proteins, A375.S2
cells (1x105 cells/well) were plated onto cover slips in six-well plates
and treated with 10 uM KT?2. Cells were washed with PBS and fixed
in 3% paraformaldehyde for 15 min, washed with PBS, permeabilized
with 0.1% Triton X-100 for 10 min, and blocked with 2% FBS. After
washing, the cells were incubated with specific primary antibodies at
4°C overnight and then with FITC-conjugated anti-mouse or anti-
rabbit IgG antibody in the dark. Nuclei were stained with DAPI.

Statistical analysis. The results are presented as the mean+standard
deviation. The student’s #-test was used to compare data between
two groups, one-way analysis of variance (ANOVA) in SPSS
version 19.0 was used to measure statistically significant differences
between the means of the control and KT2-treated groups (*p<0.05,
*#p<0.01, #**p<0.001).
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Results

Cell-penetrating KT2 reduces A375.52 cell viability. Cationic
KT2 at 5-40 uM decreased cell proliferation at 24 h (0 pM:
100%=+1.84; 2.5 uM: 98.64%=+1.52; 5 uM: 90.14%+3.29; 10
UM: 77.99%=+141; 15 pM: 59.47%=+3.26; 20 uM: 41.22%+4.00;
40 pM: 1.92%=+0.24) (Figure 1A). However, KT2 at 2.5-10 uM
slightly affected cell morphological changes, as shown in Figure
1B. The KT2 peptide was internalized in A375.S2 cells, as
shown in Figure 1C.

KT2 impairs wound healing. The effect of cationic KT2 on
A375.S2 cell migration was investigated using a wound
healing assay (Figure 2A). After treatment for 24 h, KT2-
treated cells still exhibited wound gaps created by scratching,
whereas cells without treatment migrated into the centre of
the gap. KT2 peptide at 2.5-10 uM significantly suppressed
the motility of A375.S2 cell population in a dose- and time-
dependent manner (Figure 2B).

KT2 diminishes A375.52 Cell migration and invasion. The
migration and invasion of A375.S2 cells were seeded in
transwell chambers-coated with collagen or Matrigel. The
migration rates (calculated as % of control) were 87.79%,
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Figure 5. KT2 affected the levels of metastasis-associated proteins in A375.52 cells. The cells (1x100 cells/dish) were treated with KT2 (0, 2.5, 5,
and 10 uM) for 24 h. The cells were collected, and western blot analysis was performed as described in the Materials and Methods. The levels of
FAK, SOS-1, and GRB2 (A), p-JNK, NF-kB and RhoA (B), PI3K, p-AKT (Thr308) and p-AKT (Ser473) (C), uPA, p-c-Jun, and ROCK-1 (D), p-p38
and MMP-9 (E), are shown.
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71.79%, and 30.21% after cells were treated with 2.5, 5, and
10 uM KT?2 for 24 h, respectively (Figure 3A). In Figure 3B,
there were 76.88%, 22.15%, and 2.87% invasion rates at 24 h
after treatment with KT2 (2.5, 5, and 10 uM). In the presence
of KT2 (2.5-10 uM), A375.S2 cells suppressed cell migration
and invasion in a dose-dependent manner at 24 h.

KT2 decreases the activity and protein expression level of

MMP-2. A zymogram refolding gel assay was used to analyse
MMP-2 activity. After staining the gel, the results showed that
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Figure 6. Continued

MMP-2 digested a protein substrate (gelatine) in the modified
sodium dodecyl sulfate polyacrylamide gel electrophoresis
protocol; the bands were approximately 72 kDa in size, the
molecular weight of MMP-2 (Figure 4A). MMP-2 activity
was significantly inhibited by KT2 in a dose-dependent
manner. Similarly, the protein expression levels of MMP-2
were reduced after KT2 treatment (Figure 4B).

KT2 alters metastasis-associated proteins. Our results
showed that KT2 had anti-cell migration and anti-invasion
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effects on A375.S2 cells. Therefore, we further examined
whether KT2 suppressed cell metastasis via altered
metastasis-associated proteins. The results showed that KT2
decreased the protein expression of FAK, SOS-1, and
GRB2 (Figure 5A), p-JNK, NF-xB and RhoA (Figure 5B),
PI3K, p-AKT (Thr308) and p-AKT (Ser473) (Figure 5C),
uPA, p-c-Jun and ROCK-1 (Figure 5D), p-p38 and MMP-
9 (Figure 5E).

Merged

Merged

Figure 6. KT2 down-regulated the levels of NF-kB, RhoA, uPA, and p-AKT308 in A375.52 cells. The cells (1x105 cells/well) were treated with 10
uM KT2 for 24 h. The cells were stained with primary antibodies and secondary antibodies (green signal). The nuclei were stained with DAPI
(blue) as described in the Materials and Methods. The results showed the visualization of NF-kB and RhoA (A), uPA and p-AKT308 (B).

KT?2 inhibits NF-kB, RhoA, uPA, and p-AKT308 expression. To
confirm the effect of KT2 on the expression of cancer
metastasis-associated proteins, we assessed NF-kB, RhoA, uPA,
and p-AKT308 protein levels by immunofluorescent staining;
the stained samples were examined and photographed by
confocal laser system microscopy. The results indicated that KT2
suppressed the protein expression of NF-kB, RhoA, uPA, and p-
AKT308 at 24 h (Figure 6).
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Figure 7. The possible signalling pathway for KT2-mediated suppression of A375.52 cell migration and invasion in vitro.

Discussion

An important component of melanoma treatment is the
capability to combat metastasis, which can improve long-
term quality of life in patients. Most classical anticancer
drugs are toxic against both cancerous and normal cells, thus
leading to serious side-effects. Highly selective and more
effective new drugs are urgently required to address this
issue. In this context, bioactive peptides are being considered
as good drug candidates for cancer therapy. Peptides for
cancer therapy have been identified and developed for
several decades, and they exhibit many different properties,
such as selective membrane disruption, apoptosis induction,
and anti-angiogenic and anti-metastatic activities (13, 30).
These peptides target cancer cell membranes (31), the cell
cytoskeleton (20) mitochondria (20), receptors (32), and
intracellular biomolecules (DNA, RNA, or protein).
However, the mode of action by which these bioactive
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peptides inhibit cancer cell proliferation and migration
remains unclear.

A previous study showed that KT2 impaired the migration
of HCT-116 colon cancer cells (25), but there is no report
about the anti-metastasis effect of KT2 on A375.S2 human
skin melanoma cells. Amphipathic cationic KT2 may be
another possibility for the treatment of metastatic melanoma.
To this point, we investigated whether KT2 could prevent
metastatic cancer in human melanoma A375.S2 cells in vitro.

Lysine/tryptophan-rich KT2 (NGVQPKYKWWKWWKK
WW-NH,), an amphipathic cationic peptide, can be
internalized into A375.S2 cells (Figure 1C). It is well known
that arginine and lysine, positively charged amino acids, are
involved in the cell surface binding and uptake of cell-
penetrating peptides in mammalian cells (33). KT2 can also
penetrate the bacterial membrane of Escherichia coli O157: H7
cells (34). A cell-penetrating peptide of KT2 may have
cytotoxic activity and affect intracellular protein signalling
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pathways in human melanoma cells. Therefore, we examined
the cytotoxicity of KT2 in A375.S2 cells in vitro. KT2 at
concentrations of 5-40 uM significantly decreased A375.S2
cell growth at 24 h (Figure 1A), and KT2-treated cells slightly
exhibited cell morphological changes (Figure 1B). However,
KT2 was less cytotoxic to non-cancerous Vero cells and human
red blood cells (22, 25). Three concentrations of KT2 (2.5, 5,
and 10 uM) were selected for further experiments because they
led to a cell viability range of approximately 80-100%.

The scratch wound healing assay was performed to study
cell migration in vitro. The results showed that KT2 inhibited
the migration of A375.S2 cells in a dose- and time-dependent
manner (Figure 2) and correlated with the results of the
transwell migration assay (Figure 3A). These results were in
agreement with a recent study that KT2 restrained the cell
mobility of human colon cancer HCT-116 cells compared to
untreated cells in a dose-dependent manner (25). Moreover,
KT2 suppressed cell invasion at 2.5-10 uM after 12 and 24
h of treatment (Figure 3B). Cell invasion requires matrix
metalloproteinases (MMPs) to cleave extracellular matrix
(ECM) components; therefore, cells penetrate through the
ECM and travel to distant sites (35). MMP-2 activity was
measured by gelatine zymography, and the results showed
that 5 and 10 uM KT2 significantly reduced MMP-2 activity
after treatment for 24 h (Figure 4A and B), which was
confirmed by a decrease in MMP-2 protein (Figure 4C).
MMP-2 is elevated in human cancers and associated with
cancer invasion and angiogenesis (36). Therefore, the
suppression of MMP-2 can prevent tumour cell metastasis.

Other metastasis-related proteins were also examined by
western blot analysis (Figure 5) and imunofluorescence
staining (Figure 6). Elevated expression of FAK, RhoA, and
ROCK1 was found in cancer cells and is involved in
metastasis and aggressive tumour growth (37-39). These
proteins are an important target for metastatic cancer therapy.
KT?2 inhibited FAK, RhoA, and ROCK1 in A375.S2 cells. It
is possible that KT2 interferes with the integrin signalling
pathway involving FAK and A375.S2 cell migration and
invasion were then inhibited. Furthermore, suppressed FAK
cells inhibit cell proliferation and cell survival (28), leading to
a reduced percentage of viable A375.S2 cells, as shown by the
decreased protein expression levels of SOS-1 and GRB2, p-
INK, p-c-Jun, p-p38, NF-kB, p-AKT (Thr308), and p-AKT
(Serd73). These proteins have also been shown to be related
to cell metastasis (40-42). Moreover, the protein level of uPA
was reduced by KT2. uPA, a serine protease, cleaves
plasminogen to plasmin, which is able to promote cancer cell
proliferation and angiogenesis, degrade the ECM and
basement membrane, and activate pro-MMPs (43). The
reduction of uPA can inhibit MMP activity and improve anti-
invasion activity (40). However, KT2 up-regulated PI3K but
did not significantly change PKC and MMP-9. Hence, further
examinations are warranted.

The possible strengths of this study, KT2 peptide is derived
from a natural product, good cell penetration, high specificity
to cancer cells, and low toxicity against normal cells (25). In
this manuscript, we firstly showed that KT2 suppressed the
cell viability, cell migration and cell invasion of A375.S2
melanoma cells. It also had a good cell-penetrating ability.
Further investigations including the elucidation of other
molecular mechanisms, the exploration of its combination
with chemotherapy, and in vivo study should be performed.
Prediction of peptide binding sites on cell surfaces and/or
intracellular target will help elicidate more details about the
mechanism of action of the KT2 peptide.

Conclusion

Taken together, sufficient evidence at the cellular and
molecular levels, support claims that the anti-cancer peptide
KT2 could inhibit cancer cell metastasis by exhibiting an
inhibitory effect on FAK, RhoA, ROCK1, GRB2, SOS-1, p-
INK, p-c-Jun, PI3K, p-AKT (Thr308), p-AKT (Ser473), p-
p38, NF-xB, and uPA by down-regulating MMP-2 and -9 and
then inhibiting the invasion and migration of A375.S2 cells
(Figure 7). The study provides a rationale for using KT2 as a
potential agent for the treatment of metastatic melanoma.
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