
Abstract. Background/Aim: Arsenic trioxide (As2O3) is an
environmental pollutant. However, the detailed mechanisms
about As2O3-induced loss of endothelial integrity are
unknown. This study aimed at investigating how As2O3 causes
endothelial dysfunction and whether baicalin can reverse such
dysfunction. Materials and Methods: Human umbilical vein
endothelial cells (HUVECs) were used to examine As2O3-
induced oxidative stress, and apoptosis. The influence of
baicalin on As2O3-induced endothelial dysfunction were
investigated. Results: The viability of HUVECs was inhibited
by As2O3 and cells underwent apoptosis. As2O3 treatment
increased NADPH oxidase activity, and elevated the level of
reactive oxygen species (ROS). Formamidopyrimidine DNA-
glycosylase- and endonuclease III-digestible adducts were
accumulated. Baicalin reversed As2O3-induced apoptosis and
As2O3-suppressed cell viability. Baicalin caused a decrease in
NADPH oxidase activity, and re-balanced the ROS level.
As2O3-induced formamidopyrimidine DNA-glycosylase- and
endonuclease III-digestible adducts were down-regulated.

Conclusion: Baicalin was found to have the potential capacity
to protect endothelial cells from As2O3-induced cytotoxicity.

Arsenic has been recognized as a major inorganic pollutant,
and drinking contaminated groundwater is a major source of
arsenic toxicity for humans. The level of inorganic arsenic in
contaminated groundwater has been found to be as high as
5300 μg/l in Latin America and Asian countries (1-5). From
the viewpoint of epidemiology, mounting evidence has shown
that chronic exposure to inorganic arsenic from drinking water
is closely related to many human disorders, including
atherosclerosis (6), diabetes mellitus (7), hypertension (8),
ischemic heart disease (9, 10) peripheral vascular disease (11),
and cancer (12, 13). However, extremely little information is
available in the literature on the effects of inorganic arsenic
exposure on the vascular system. Translational scientists are
also interested in potential anti-toxic traditional Chinese
medicine for protection against these disorders caused by
chronic exposure to arsenic. Endothelial cells in blood vessels
are the key targets of vasculopathy caused by inorganic arsenic
exposure. Arsenic has been reported to increase vascular
oxidative stress, which has been reported to promote cell
apoptosis and dysfunction of endothelial cells (14). Oxidative
stress is thought to be a major part of the intracellular
mechanism of arsenic toxicity (15, 16), while its effects on
DNA has, as far as we are aware, never been studied. 

Scutellaria baicalensis Georgi has been used as traditional
Chinese medicine for more than 2,000 years, and has been
reported to have antioxidant, anti-inflammatory, antibacterial,
and immune-enhancing properties (17-21). Baicalin is a
flavonoid representing the major bioactive component from the
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roots of Scutellaria baicalensis Georgi and is reported to have
a series of pharmacological activities, including antioxidant,
anti-inflammatory, antiviral, anti-human immunodeficiency
virus and antitumor properties (17, 22-27). However, to our
knowledge, it has never been studied whether it may protect
from arsenic toxicity. The aim of the present study was to
evaluate the effects of As2O3 exposure on endothelial apoptosis
and oxidative stress, and to investigate whether baicalin can
effectively prevent such oxidative endothelial damage.

Materials and Methods

Cell culture and chemicals. Human umbilical vein endothelial cells
(HUVECs) (CRL-1730; American Type Culture Collection,
Manassas, VA, USA) were maintained in RPMI-1640 Medium
(Hyclone, South Logan, UT, USA), supplemented with 10% fetal calf
serum. Baicalin, As2O3, dimethyl sulfoxide (DMSO), 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and
propidium iodide (PI) were obtained from Sigma Chemical Co. (St.
Louis, MO, USA) and Aldrich Chemical Co. (Milwaukee, WI, USA).
Baicalin was freshly dissolved in DMSO and the final concentration
of DMSO in any experimental treatment was less than 0.05%.

Cell viability assay. Cell viability were performed by tetrazolium 3-
(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
colorimetric assay as previously published (28, 29). Briefly,
HUVECs were cultured on 96-well plates at a density of 3×104
cells/well, and then exposed to 0-20 μM As2O3, with or without pre-
treatment of 0-200 μg/ml baicalin for 1 h prior to As2O3 exposure.
After As2O3 exposure, the cells were re-incubated with 0.5 mg/ml
MTT. The plates were further incubated in the dark for 4 h at 37˚C.
The color intensity was then measured at 570 nm using a Multiskan
MS ELISA reader (Labsystems, Helsinki, Finland). Each experiment
was repeated at least in triplicate.

Cell apoptosis measurement. HUVECs were seeded in 10-cm dishes
at 2×106/ml and treated with 0-20 μM As2O3, with or without 0-200
μg/ml baicalin pre-treatment, and cells were incubated for 24 h.
Then the cells were fixed with 70% ethanol and incubated with PI
buffer [4 μg/ml PI, 0.5 μg/ml RNase, and 1% Triton X-100 in
phosphate-buffered saline (PBS)] for 30 min in the dark. After the
fixing and staining processes, the HUVECs were filtered through a
40-μm nylon filter and 10,000 HUVECs were analyzed for
appearance of sub-G1 phase cells using a FACS Calibur instrument
(BD Biosciences, San Jose, CA, USA) equipped with Cell Quest
software as described elsewhere (30, 31). The sub-G1 population
was deemed to be representative of the percentage of cells in
apoptosis. Each experiment was repeated at least in triplicate.

Measurement of ROS production. Cells were plated at a density of
2×105 cells/well into 12-well plates and incubated with 0-20 μM
As2O3 alone, 0-200 μg/ml baicalin alone, or pre-treatment 0-200
μg/ml of baicalin followed by co-treatment for 12 h. The cells were
harvested, re-suspended in 10 μM 2',7'-dichlorodihydrofluorescein
diacetate, incubated at 37˚C for 30 min and then analyzed by flow
cytometry (FACS Calibur; BD Bioscience). Results are expressed
as a fold of the value of the control and each experiment was
repeated at least in triplicate.

Detection of NADPH oxidase activity. HUVECs were plated at a
density of 2×105 cells/well into 12-well plates and incubated with 0-
20 μM As2O3 alone, 0-200 μg/ml baicalin alone, or pre-treatment 0-
200 μg/ml of baicalin followed by co-treatment for 24 h, and were
washed with PBS. Then cells were scraped from the plate in 1 ml of
PBS and centrifuged for 10 min at 4˚C at 9,100 × g. The supernatant
was discarded and the pellet was resuspended to measure the activity
of NADPH oxidase. The reaction buffer contained 100 mM of Tris-
HCl, 1 mM of EDTA and 0.2 mM of NADPH. NADPH oxidase
activity was calculated by monitoring the alteration in absorbance at
340 nm. Each experiment was repeated at least in triplicate.

Formamidopyrimidine DNA-glycosylase (FPG) and endonuclease
III-incorporated comet assay. A glass microscope slide was placed
on a hot plate at 60˚C, and 100 μl of 1% normal-melting point
agarose at 65˚C was firstly applied. A coverslip was applied
immediately and the slide was put on ice. Then the coverslips were
removed. A second layer of agarose containing HUVECs in a
volume of 80 μl was applied. This second layer was prepared by
mixing 400 μl of 1.5% low-melting point agarose with 200 μl of
PBS containing HUVECs. A coverslip was applied to each slide
with HUVECs. After the gel had solidified, the coverslips were
removed. In a similar manner as the first layer, 100 μl of 1.5% low-
melting-point agarose was then applied as a third layer. 

For enzyme digestion, as performed previously (32, 33), slides
were washed after lysis treatment with distilled water then incubated
at 37˚C for 30 min in enzyme reaction buffer. Then one unit of FPG
or one unit of endonuclease III in 10 μl of enzyme buffers supplied
by Trevigen (Gaithersburg, MD, USA) [FDG: 10 mM HEPES-KOH
(pH 7.4), 100 mM KCl; endonuclease III: 10 mM EDTA, 0.1 mg/ml
bovine serum albumin; and 10 mM HEPES-KOH (pH 7.4), 100 mM
KCl, and 10 mM EDTA] was added. A coverslip was applied and
the slides were further incubated at 37˚C for 2 h.

After removing coverslips, slides were immersed in cell lysis
solution (2.5 M NaCl, 100 mM EDTA and 10 mM Tris, pH adjusted
to 10.0 with NaOH, and 1% N-lauroylsarcosine, 1% Triton X-100,
and 10% DMSO added immediately before use) at 4˚C for 18 h.
DNA was totally denatured by incubating in 0.3 M NaOH, 1 mM
EDTA pH 13.4 for 20 min. Electrophoresis was performed at 25 V,
300 mA for 25 min using a tank. The slides were stained by adding
12.5 μl of 200x SYBR Green I. A coverslip was applied and the
comets were observed under a fluorescence microscope (wavelength
450-490 nm, farb teiler 510 nm, long-pass filter 520 nm). The comet
moment was calculated using the formula ∑0→n [(amount of DNA
at distance X)×(distance X)]/total DNA.

Statistical analysis. The results were expressed as the
mean±standard error of the mean of at least three independent
experiments in which triplicate samples were performed. Statistical
significance was assessed using Student’s t-test and one-way
ANOVA followed by post hoc test using SPSS (version 15.0)
software (SPSS Inc., Chicago, IL, USA). A value of p<0.05 was
considered statistically significant.

Results

As2O3-induced cytotoxicity and apoptosis were suppressed by
baicalin in HUVECs. Originally, we found that As2O3 induced
cell cytotoxicity, with dose-dependent reduction of cell
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viability (Figure 1A). Treatment of HUVECs with 10 μM and
20 μM reduced viability by 14.3% and 31.7%, respectively
(Figure 1B). Pre-treatment with baicalin restored cell viability
to almost normal levels (Figure 1C).

Treatment with As2O3 at 5 μM or more for 24 h was
capable of inducing a significant sub G1 population of cells,
i.e. significant apoptosis (Figure 2A). Pre-treatment with
baicalin abrogated the activation of apoptosis dose-
dependently (Figure 2B).

As2O3 induced oxidative stress in HUVECs which was
suppressed by baicalin. As2O3 treatment dose-dependently
induced significant ROS production at 15 min (Figure 3A). The
peak ROS level was reached at 8 h, and plateau at 12 h (Figure
3A). The effect of As2O3 treatment at 10 and 20 μM on ROS
was suppressed by pre-treatment with baicalin (Figure 3B).
Exposure to As2O3 increased NADPH oxidase activity dose-
dependently (Figure 4A). Pre-treatment with baicalin abrogated
As2O3-induced activation of NADPH oxidase (Figure 4B).
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Figure 1. The effects of As2O3 and baicalin on viability of human umbilical vein endothelial cells (HUVECs). A: The effects of 24-h treatment of
HUVECs with 0-20 μM As2O3. HUVECs were photographed under a microscope at ×40, representative images are shown. B: The quantification
of the effect of 0-20 μM As2O3 treatment for 24 h in HUVECs. C: The effect on HUVEC viability after pretreatment with baicalin for 1 h, and co-
treatment of baicalin with 20 μM (◆), 10 μM (▲) or 0 μM (●) As2O3 for 24 h. Data are the mean±SD for three independent experiments.
*Significantly different at p<0.05 compared with untreated control cells. 



As2O3 induced oxidative FPG- and endonuclease III-
digestible DNA adducts in HUVECs which was suppressed
by baicalin. As2O3 treatment induced a significant level of
FPG- and endonuclease III-digestible adducts (Figures 5A
and 6A). The levels of these oxidative adducts were
effectively reduced by pre-treatment with baicalin but did not
reach basal levels (Figures 5B and 6B).

Discussion

Vascular endothelium not only serves as a physical
monolayer between blood and tissue but plays an important
role in detection and reaction to blood-borne stresses.
Impaired endothelial function maybe an irreversible process
in the initiation event of various cardiovascular diseases and
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Figure 2. The effects of As2O3 and baicalin onapoptosis of human umbilical vein endothelial cells (HUVECs). A: The effects of 24-h treatment with
0-20 μM As2O3 on HUVECs. Apoptotic cells were detected by flow cytometry by the appearance of a sub-G1 cell population. B: The effect on
apoptosis of HUVECs after pretreatment with baicalin for 1 h, and co-treatment of baicalin with 20 μM (◆), 10 μM (▲) or 0 μM (●) As2O3 for 24
h. Data are the mean±SD for three independent experiments. *Significantly different at p<0.05 compared with untreated cells. 

Figure 3. The effects of As2O3 and baicalin on reactive oxygen species (ROS) production in human umbilical vein endothelial cells (HUVECs). A: HUVECs
were treated with 0, 5, 10, and 20 μM As2O3 for the indicated time, and ROS were detected with 2',7'-dichlorodihydrofluorescein diacetate. B: The effect
on ROS production in HUVECs after pretreatment with baicalin for 1 h, and co-treatment of baicalin with 20 μM (◆), 10 μM (▼), 5 μM (▲) or 0 μM
(●) As2O3 for 12 h. Data are the mean±SD for three independent experiments. *Significantly different at p<0.05 compared with untreated cells. 



it is worth determining the practical cardio-protective effects
of Chinese traditional medicine, such as baicalin. Arsenic
exposure induced HUVEC dysfunction through pro-
apoptotic and oxidative stress, which might be responsible
for its adverse effects on blood vessels. The protective role
of Chinese traditional medicine may be of great help in
prevention of cardiovascular disorders. In this study, the

effects of baicalin on As2O3-induced endothelial cell
apoptosis, oxidative stress and oxidative DNA adduct
production were revealed for the first time.

Increased endothelial cell apoptosis may contribute to the
loss of endothelial integrity and lead to vascular disorders
(34, 35). Our study confirmed a significant increase in
HUVEC apoptosis when cells were treated with As2O3,
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Figure 4. The effects of As2O3 and baicalin on NADPH oxidase activity in HUVECs. A: HUVECs were treated with 0-20 μM As2O3 for 24 h and
NADPH oxidase activity was evaluated as fold that of untreated cells. B: The effect on NADPH oxidase activity in HUVECs after pretreatment of
baicalin for 1 h, and co-treatment of baicalin with 20 μM (◆), 10 μM (▼), 5 μM (▲) or 0 μM (●) As2O3 for 24 h. Data are the mean±SD for
three independent experiments. *Significantly different at p<0.05 compared with untreated cells.

Figure 5. The effects of As2O3 and baicalin on formamidopyrimidine-DNA glycosylase (FPG)-digestible adducts in human umbilical vein endothelial
cells (HUVECs). A: HUVECs were treated with 0-20 μM As2O3 for 24 h and FPG-digestible adducts produced were detected with comet assay.
The data are presented as comet moments. B: The effect on FPG-digestible adducts in HUVECs after pretreatment with baicalin for 1 h, and co-
treatment of baicalin with 20 μM (◆), 10 μM (▼) or 0 μM (●) As2O3 for 24 h. Data are the mean±SD for three independent experiments.
*Significantly different at p<0.05 compared with untreated cells.



while pre-treatment with baicalin reduced As2O3-induced
HUVEC apoptosis (Figure 2B). The degree of As2O3-
induced apoptosis was not as strong as in Yu et al.’s finding,
reporting that 5 μM As2O3 was capable suppressed cell
viability by about 40% of (36). Our results are consistent
with Ma et al.’s finding that 5 μM As2O3 induced apoptosis
in less than 20% of HUVECs (37). The As2O3 induced
generation of ROS was rapidly detected, and sustained for
as long as 12 h (Figure 3A). Pre-treatment with baicalin did
not alter the level of ROS itself but did suppress ROS
production induced by As2O3. A number of risk factors for
cardiovascular disorders were reported to be associated with
increased vascular ROS (38, 39). Our studies also showed
that As2O3 activated NADPH oxidase, which was reversed
by pre-treatment with baicalin. Activation of NADPH
oxidase may be the major mechanism related to As2O3-
mediated intracellular generation of ROS. 

One of the highlights of this was the detection of FPG-
digestible adducts and endonuclease III-digestible adducts.
FPG specifically cleaves oxidized purines, including 8-
oxoguanine, 5-hydroxycytosine, 5-hydroxyuracil, 2,6-diamino-
4-hydroxy-5-N-methylformamidopyrimidine, and 4,6-
diamino-5-formamidopyrimidine (40), while endonuclease III
specifically cleaves oxidized pyrimidines, including thymine
glycol, 5,6-dihydrothymine, 5-hydroxydihydrothymine, 5-
hydroxycytosine, 5-hydroxyuracil, and uracil glycol (41). We
also demonstrated that baicalin pre-treatment reduced the
formation of As2O3-induced oxidative adducts, although the
detailed mechanisms of this need further investigation.

In conclusion, at a non-toxic dose, baicalin is of reducing
the As2O3-induced apoptosis, oxidative stress and DNA
adducts. The underlying mechanisms may provide novel
insights into potential clinical cardioprotective effects.
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