
Abstract. Background/Aim: Ischemia and reperfusion
injuries may produce deleterious effects on hepatic tissue
after liver surgery and transplantation. The impact of
ischemia-reperfusion injury (ΙRΙ) on the liver depends on its
substrate, the percentage of liver ischemic tissue subjected
to IRI and the ischemia time. The consequences of IRI are
more evident in pathologic liver substrates, such as steatotic
livers. This review is the result of an extended bibliographic
PubMed search focused on the last 20 years. It highlights
basic differences encountered during IRI in lean and
steatotic livers based on studies using rodent experimental
models. Conclusion: The main difference in cell death
between lean and steatotic livers is the prevalence of
apoptosis in the former and necrosis in the latter. There are
also major changes in the effect of intracellular mediators,
such as TNFα and IL-1β. Further experimental studies are
needed in order to increase current knowledge of IRI effects
and relevant mechanisms in both lean and steatotic livers,
so that new preventive and therapeutic strategies maybe
developed.

Fatty liver disease represents a very common disorder with a
global prevalence of 25%, and a rate of 20-30% in developed
countries and up to 95% among the obese population. The
existence of hepatic steatosis is a critical factor for liver
surgery and transplantation and has aggravating effects when
associated with ischemia-reperfusion injury (IRI) (1-7).
Hepatic steatosis is associated with an operative mortality
higher than 14% after extended liver resection, in contrast to
2% in patients with lean livers (8-11).

IRI refers to the enhanced cellular damage inflicted on a
hypoxic liver following blood flow restoration observed in
major liver resections and transplantation. Ischemia-
reperfusion (IR) maneuver, which is applied to minimize
blood loss during surgery, has detrimental effects on the liver
due to ischemia (12-15). IR phenomena are present after
restoration of reduced blood flow as a result of shock,
hypotension, hypoxemia and secondary low blood flow due,
for instance, to congestive heart failure (16-18). The liver
substrate, the percentage of liver tissue undergoing ischemia
and the duration of ischemia are critical for the viability of
the hepatic tissue. 

Pathophysiological Changes

The different reaction of the fatty liver to IRI is linked to its
decreased ability to restore adenosine triphosphate (ATP)
levels after IR stress, and its increased sensitivity to
proinflammatory factors (19). Liver becomes steatotic via
chronic overfeeding, triglycerides’ excess, gradual increase in
the deposition of adipose tissue and adipocyte hypertrophy,
as well as endoplasmic reticulum stress. The activation of
apoptotic and inflammatory pathways results in increased
concentration of hepatic stellate cells (HSCs) and Kupffer
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cells (KCs), which differentiate to myofibroblasts and lead to
fibrosis (20). Selzner et al. have claimed that the augmented
sensitivity of fatty liver is due to changes in the onset of
apoptotic cell death and the types of cell death. Specifically,
the main type of cell death in lean ischemic liver is rapid
apoptosis, while its onset is delayed in fatty ischemic liver
(10). Apoptosis requires adenosine triphosphate (ATP) and
when ATP is depleted, apoptosis switches to necrosis (21).
Apoptosis remains the main type of cell death in lean liver
where necrosis is minimal (18%). On the other hand, fatty
liver is characterized by moderate apoptosis and massive
necrosis (73%). The difference between these livers has also
been confirmed in experimental rat studies by evaluation of
intracellular mediators of apoptosis; when the livers were
subjected to 60 minutes of total hepatic ischemia, the rats
with fatty livers died within 3 days, whereas those with
normal livers survived 30 days (8, 10, 22).

Tiriveedhi et al. have demonstrated that even the proteome
profiles of livers with steatosis subjected to IRI, are
significantly different compared to lean livers (23).

During the ischemia phase, oxygen, glycogen and ATP are
depleted, resulting in intracellular metabolic changes and the
so-called “pH paradox”. In the early phase, due to the initiation
of necrosis, intracellular pH drops so that hepatocytes are
protected. Normalization of intracellular pH upon reperfusion,
however, accelerates hepatocytes’ death. The supremacy of
pro-oxidants characterizes the intermediate phase, while
inflammatory and adhesion molecules the late phase (24, 25).

In the first two hours of reperfusion, oxidative stress is
dominant. Activated endothelial cells of microvessels
generate additional reactive oxygen species (ROS) and less
nitric oxide (NO), causing immediate cellular injury (24-26).
The subsequent imbalance between superoxide and NO in
endothelial cells leads to an increase in pro-inflammatory
factors (25). During the following 6-48 hours of reperfusion,
activated neutrophils injure hepatocytes via inflammatory
mechanisms mediating the release of ROS, elastase, cathepsin
G, heparinase, collagenase and hydrolytic enzymes (24, 26).

Frequently encountered pathophysiological changes and
differences between lean and steatotic livers regarding
mainly IRI, are described below. The main parameters that
increase are listed in Table I.

Mitochondrial injury generally leads to cell necrosis and
apoptosis in IRI. i. Mitochondria uncoupling protein-2
(UCP2) expression is normally cytoprotective when
augmented by mitochondrial superoxide production.
Nevertheless, during IR, UCP2 expression promotes
hepatocyte injury. This is more evident in steatotic
hepatocytes that contain higher levels of superoxide and
H2O2. UCP2 higher levels in steatotic hepatocytes are also
related to ATP depletion and to IRI (26-31). Evans ZP and
his coworkers have concluded that UCP2 renders steatotic

livers more sensitive to IRI through the regulation of hepatic
ATP levels (31-36). ii. Mitochondrial permeability transition
(MPT) is promoted by IR’s oxidative stress, increased
mitochondrial calcium and inorganic phosphate in lean
livers. When a certain amount of calcium accumulates,
mitochondria start to swell (36). The permeability of the
inner mitochondrial membrane increases, the mitochondrial
membrane potential collapses, oxidative phosphorylation is
inhibited, ATP is depleted, and apoptosis-induced factors are
released. In fatty livers, MPT induction is increased due to
the decreased mitochondrial membrane potential (38, 39).

ROS. ROS are of great importance both in hepatoprotective
mechanisms and during IRI. Recently, endoplasmic
reticulum stress has been associated with the production and
accumulation of intracellular ROS, which are important
mediators of inflammation (40). In the liver, the production
of ROS is greater when excessive fat is present, as
hepatocytes seem more susceptible to lipid peroxidation and
mitochondrial function is disrupted (22, 41-44). According
to Prieto I. and Monsalve M., the inability of the steatotic
liver to react to ROS is linked to decreased levels of
antioxidants, mitochondrial injury, hepatocyte cell death, and
the stimulation of mediators of the immune system and pro-
fibrosis (45).

Nitric oxide (NO). NO is a diffusible mediator that originates
from oxygen and L-arginine through the activity of NO
synthase (NOS); it has vasodilating properties that prevent
microcirculatory changes imposed by reperfusion, which are
more profound in a steatotic liver (46-48). Generally, NO’s
impact on IRI depends on its concentration, duration and site
of production/isoform of NOS that generates it (46, 49, 50).
A small quantity of NO is considered to decrease tumor cell
growth and prostaglandin E2 and F2 alpha (proinflammatory
products) levels, while it increases protein synthesis and
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Table I. Parameters considerably increased in rodent models of steatotic
liver after IRI.

Parameters References

Mitochondria uncoupling protein-2 27-36
Mitochondrial permeability transition 37-39
Reactive oxygen species 22, 40-45
iNOS gene expression 46, 53-62
Endoplasmic reticulum stress 71-76
Selectins 79, 80
Kupffer cells 109-114
Caspases 10, 115-118
Malondialdehyde 119, 120
Myeloperoxidase 119, 122
Alanine transaminase 39, 86, 123, 124



DNA-repair enzymes (51). Specifically, endothelial nitric
oxide synthase (eNOS), which functions in the control of
vascular tone, increases blood perfusion and therefore
protects hepatocytes from IRI (46, 52). In contrast, limited
quantities of inducible nitric oxide synthase (iNOS) may
increase ROS thereby injuring hepatocytes (46, 53-56).
Koeppel et al. have shown increased iNOS gene expression
after IRI in steatotic liver which was more evident in
hepatocytes with fatty degeneration (57). Due to the different
actions of iNOS, its expression is regulated by the
cooperation of cytokine-inducible transcription factors.
Taylor et al. have shown that three cytokines, tumor necrosis
factor alpha (TNFα), interleukin-1beta (IL-1β), and
interferon-gamma (INFγ), are needed to attain a significant
augmentation of iNOS in human hepatocytes (58).
Transcription nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) also relates to iNOS production,
in both rodent macrophages and human liver, along with
signal transducer and activator of transcription factor 1α
(STAT1) (41, 59-62). Interestingly, Koeppel et al. have noted
that CCl4-mediated liver injury led to the activation of
transcription factors (NF-kB, STAT1), resulting in further
aggravation upon reperfusion (57).

Glutathione (GSH). Endogenous GSH concentrates
intracellularly and is oxidized during reperfusion, forming
glutathione disulfide (GSSG) (63, 64). In lean organs, GSH
administration following 60, 90, or 120 minutes of ischemia
or liver transplantation, attenuates rodent IRI (65, 66).
Pratchke et al. have shown that intravenous administration
of GSH, in order to achieve supraphysiological levels in
hepatocytes, ameliorated IRI in both lean and steatotic livers.
They postulated that most of the GSH reacted with ROS,
therefore, GSSG was also found to be increased after GSH
administration (44, 67). This is related to improved
sinusoidal perfusion, decreased leukocyte adhesion and
reduction of sinus endothelial cell injury in lean organs (66,
68, 69). Glycine, a product of GSH metabolism, has also
hepatoprotective properties (70). 

Endoplasmic reticulum (ER). ER function consists mainly in
protein synthesis, oxidative folding and transportation,
calcium storage and cellular stress detection. The accurate
folding of proteins requires energy. The use of molecular
oxygen produces ROS and oxidized glutathione, resulting in
oxidative stress. In general, a disturbance in the redox
homeostasis of the ER produces ER stress and ROS (70, 71).
ROS are also increased through ER-released calcium which
concentrates in the matrix of the mitochondria, depolarizes
the inner mitochondrial membrane and disrupts electron
transport (73). Mitochondrial ROS may further sensitize ER
calcium-releasing channels. Aside from ROS and the release
of calcium, the ER relates to inflammation through the

unfolded-protein response (UPR) and other signaling
pathways, involving the activation of NF-ĸB, JUN N-
terminal kinase (JNK) and the initiation of an acute-phase
response to inflammation. Conditions such as obesity,
contribute to alterations in liver architecture, increased
protein synthesis and different cellular energy pathways,
which increase the demands on the ER (74, 75). Therefore,
ER stress is related to the emergence of hepatic steatosis,
hepatocellular injury and fibrosis. Nonetheless, when Henkel
et al. used chemical chaperons to reduce ER stress in
methionine- and choline-deficient (MCD) diet, they found
that ER stress does not have a primary role in the
pathogenesis of steatohepatitis (76).

Chaperonins. They are small molecules, belonging to the
large class of chaperones, which contribute to protein folding
and structure and therefore stabilize the unfolded proteins
(75, 77). IRI disrupts cellular homeostasis and, as a result,
unfolded proteins accumulate. A proteomic study performed
by Tiriveedhi et al. has shown significant down-regulation
of multiple chaperones upon IRI in steatotic liver, which may
contribute to the augmented levels of ER stress and,
subsequently, in apoptosis and necrosis observed in livers
with steatosis, in contrast to lean ones (78). However, Henkel
et al., have shown that chemical chaperones inhibit the ER
stress response without reducing hepatic steatosis in MCD
diet-fed mice (76).

Selectins. They are a family of lectin-like glycoproteins and
adhesion molecules that initiate the rolling and attachment
of leukocytes to the vascular intima. During early IRI, P- and
E-selectins are produced by activated endothelial cells, while
L-selectin is expressed by all classes of leukocytes. On this
basis, Amersi et al. introduced the application of soluble
recombinant selectin glycoprotein ligands to fatty livers as a
new method against IRI (79, 79). In lean livers, application
of a soluble recombinant form of P-selectin glycoprotein
ligand-1 (PSGL-1) impedes the interaction of P-selectin with
membrane-associated PSGL-1, leading to reduced
polymorphonuclear leukocytes (PMN) penetration, improved
liver survival and hepatocyte injury.

Interleukins. i. IL-1 promotes the inflammatory processes by
up-regulating ROS production (22, 81, 82). Impediment of
IL-1 has been found to reduce IRI in non-steatotic livers (22,
81, 83-85). Specifically, Serafin et al. have found that IL-1α
probably does not contribute to hepatic IRI, because IL-1α
levels were similar in lean and steatotic livers, at 6 hours of
reperfusion when 70% of the liver had subjected to 60 min
of ischemia. Conversely, IL-1β’s values were two-fold higher
in the fatty livers compared to lean livers. ii. IL-6 is a
multifunctional cytokine which is increased in the plasma
and peripheral blood monocytes in cases of obesity. It is
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correlated both with the development and the severity of
hepatic diseases, as increasing evidence indicates IL-6’s
importance in promoting liver regeneration and therefore
protecting against injury in lean liver (86-101). Liver
regeneration depends upon IL-6 activity; reduction of this
cytokine may result in graft failure, in both lean and steatotic
livers (79, 102). Hong et al. have found that long term
treatment with IL-6 alleviates steatosis, and IRI and
normalizes serum aminotransferase activity. They concluded
that the in vivo effect of IL-6 on hepatic triglycerides is
mediated by indirect mechanisms, such as down-regulation
of hepatic TNFa expression, reduction in serum TNFa levels
or upregulation of hepatic peroxisome proliferator-activated
receptor. Tacchine et al. have suggested that the study of
transcription factors that trigger the production of IL-6, could
lead to the identification of possible molecular events that
may impair its protective effect on IRI in fatty livers (102).
Similarly, Jimenez-Castro et al. have considered the use of
adipocytokines (IL-6, leptin etc.) as indicators of steatosis’
grading and liver injury; they proposed i.e. that
adipocytokines could help recognize marginal steatotic livers
and assess postoperative liver injury (104). iii. IL-10 is
hepatoprotective and augments allograft survival following
liver transplantation (22, 105-107). This quality has been
confirmed for endogenous IL-10 in lean livers, but the
effects of exogenous IL-10 depend on its dosage. Serafin et
al. have related hepatoprotection seen by high doses of
exogenous IL-10 to the decreased release of IL-1β (22).
Also, they have found that exogenous IL-10 was not
accumulated in fatty livers, concluding that the observed
imbalance of pro- and anti-inflammatory ILs in IRI of
steatotic livers could be involved in their decreased
tolerance. The above IL changes are listed in Table II.

Kupffer cells (KCs). KCs are activated liver macrophages
found in liver’s sinusoids, and the major source of ROS and
pro-inflammatory mediators (109, 110). To better understand
their function, Mustafa SB and Olson MS treated rat KCs
with lipopolysaccharide. They showed that rat KCs produced
great quantities of nitrite and nitrate, synthesized and
released several cytokines, which stimulated neighboring
hepatocytes to produce NO resulting in degenerative changes
(111-112). In total IR, KCs reduced hepatic IRI and
inflammation. In lean livers, KCs may maintain a
homeostatic level of inflammation through the production of
IL-10 (114). Dysregulated inflammatory responses are even
more important for IRI in steatotic livers. Phagocytically
active KCs seem to be hepatoprotective in livers with
steatosis. Sutter et al. pretreated lean and genetically obese
mice with IL-10 or the liposomally-encapsulated
bisphosphonate clodronate, which depletes KCs, before total
IR. They found that KCs’ depletion sensitizes steatotic livers
to IRI through non-IL-10-dependent mechanisms.

Caspases. They are a family of proteases essential for
inflammation and programmed cell death. In the extrinsic
signaling pathway of apoptosis, TNFa and Fas ligand
promote the binding of procaspase 8, and activate caspase
8 and procaspase 3 leading to apoptosis (115, 116). In the
intrinsic pathway, MPT causes cytochrome c release,
activation of caspase 9 and subsequently of caspase 3 (116-
118). Suzuki et al. have found that caspase 8 did not differ
between lean and fatty livers. On the contrary, caspases 9
and 3 were further increased in fatty livers after IRI,
indicating the importance of MPT. Furthermore, it is known
that the intrinsic pathway occurs in hepatocytes and induces
apoptosis faster than the extrinsic pathway. When the
caspase cascade is inhibited, lean liver is significantly
protected and IRI is reduced, while apoptosis in fatty liver
is also reduced, with no change in the degree of necrosis
(10). In a study by Jiang et al., significant differences were
observed in malondialdehyde (MDA), superoxide dismutase
(SOD) and myeloperoxidase (MPO) concentrations between
lean and fatty rat liver groups (119). MDA is known to
result from free radical lipid peroxidation and thus is a
marker of ROS (120). SOD participates in the balance
between oxidants and antioxidants, so it represents tissues’
ability to discharge free radicals (121). Instead, MPO is
mainly expressed in neutrophil granulocytes, so its activity
indicates the quantity of neutrophils (122). The increase of
MDA and MPO levels and the decrease in SOD in the fatty
liver group, concur with a more severe IRI in the steatotic
liver, and its hepatocytes are more sensitive to lipid
peroxidation and ROS (119).

Following IRI in lean and fatty livers, higher serum alanine
transaminase (ALT) levels are observed in fatty livers,
representing more severe liver IRI, even when different
methods of implementing fatty livers are chosen (39, 86, 123).
According to Kostakis et al. there is a steady augmentation of
ALT and aspartate transaminase (AST) serum levels after
hepatic ischemia in both lean and steatotic livers during the
first 24 postoperative hours. Transaminases’ levels remain
significantly higher at 24 hours in steatotic livers (124). 
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Table II. Interleukin changes in rodent models of lean and steatotic liver
after IRI.

Interleukins Liver References

Lean Steatotic

IL-1α Same levels 81-83
IL-1β Increased Doubled 22, 81-85
IL-6 Normal Decreased 86-104
IL-10 Increased Non-significant 22, 105-108

Increase



Microcirculatory Disorders

Microcirculatory blood flow disorders after IR significantly
affect the extent of liver injury and the prognosis of its
function (57, 125). In normal livers, control of local
sinusoidal blood flow is moderated by sinusoidal constriction
in reply to inflammatory mediators, e.g. endothelin (ET-1),
NO and carbon monoxide, which are generated within the
sinusoids (126, 127). Alterations in the regulation and
synthesis of these vasoactive mediators may result in
intracellular deposits of fatty droplets in pericentral
hepatocytes, which contribute to significant iNOS protein
expression. The swollen hepatocytes in steatotic livers can
induce chronic hypoxia, ATP depletion and increased
leukocyte adhesion, resulting in decreased sinusoidal blood
flow (43, 44, 128-132).

During reperfusion, regional L-arginine depletion causes
reduced local NO synthesis which counteracts the effect of
endothelins on liver microcirculation, resulting in hepatic
sinusoidal reperfusion failure (133, 134). ET-1 is a peptide
whose levels increase in both sinusoidal endothelial and
hepatic stellate cells upon reperfusion, when TNF-α and

other inflammatory cytokines are released by KCs and attach
to hepatic endothelial cells (57, 135). The resulting extreme
sinusoidal vasoconstriction may cause microcirculatory
damage to the hepatic parenchyma, heterogeneous perfusion
and local hypoxia that results in hepatic failure (136-140).
In a study by Koeppel et al., IR induced an additional
augmentation in ET-1 gene expression in most reperfused
steatotic livers. As a result, it was considered that the
disturbance in the sinusoidal perfusion caused by ET-1 is
likely to contribute to steatotic liver IRI (57). Additionally,
injection of an anti-intercellular adhesion molecule-1
monoclonal antibody, to prevent sinusoidal congestion,
ameliorated only the survival rates of rodents with fatty
livers (122, 141).

Histopathological Findings

The liver is considered fatty when its cells are steatotic in a
low magnification view (119, 142). Specifically, hepatic
steatosis of less than 30% is considered mild, 30%- 60%
moderate, and more than 60% severe (119, 143, 144). Hepatic
inflammation and fibrosis differentiate steatohepatitis from
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Table III. Main histopathological changes in lean and steatotic liver regarding IRI.

Phase Change Liver

Lean Fatty

Control conditions Macrovesicular fatty change Minor Mainly pericentral
Microvesicular fatty change - Predominant

Hepatocyte swelling - �
Nuclei density Significantly lower

Sinusoidal density Significantly lower
End of ischemic period Vacuolization or ballooning Small foci of hepatocyte necrosis
Soon after reperfusion • Vacuolar abnormalities

• Endothelial lining separation
• Moderate sinusoidal congestion
• Lobular architecture maintained

Nuclei density Not statistically significant
Later in reperfusion • Sinusoidal congestion resolved • Pyknotic or karyorrhectic nuclei 

• Sinusoidal lining maintained all over the lobule
• Sinusoids dilated significantly 
• Red blood cells in fat globules-
extravagation
• Sinusoidal architecture failure
(periportal)

Sinusoidal density • Progressive decrease-statistically significant after 30 min of reperfusion
• Not significant between lean-fatty liver

Leukocyte infiltration • Modest inflammatory-neutrophil • Increased multifocal infiltration
infiltration throughout the parenchyma of neutrophils and lymphocytes
• 3-fold • 4-fold

Not statistically significant
Leukocyte adherence increases with time after reperfusion

IRI necrosis Minor coagulative or large acute Diffuse hemorrhagic-confluent areas of 
necrotic areas around central veins coagulative necrosis-occasionally focal



plain steatosis. Following MCD, rats’ livers exhibit massive
fatty infiltration, which is mainly macrovescicular. Fat
accumulation in the cytoplasm of the hepatocytes increases
cell volume, leading to various degrees of obstruction of liver
sinusoids (4, 134, 145). Therefore, sinusoids appear narrow
and irregularly shaped due to compression by the fat-loaded
hepatocytes. Single-cell necrosis is not often, whereas there
is no inflammation and/or fibrosis.

In normal livers, IRI presents moderate early hepatocyte
necrosis, minor coagulative necrosis with neutrophil
infiltration, haphazardly spread throughout the liver
parenchyma (22). At the end of the ischemic period, some
hepatocytes are spotted with vacuolization or ballooning,
while at the same time in fatty livers there are small foci
of hepatocyte necrosis. In a higher magnification view,
normal livers after IRI exhibit modest inflammatory
infiltration in the hepatic lobule and the portal area in
comparison to fatty livers. Furthermore, fatty livers present
increased infiltration of neutrophils and lymphocytes. Soon
after reperfusion in normal livers, focal points of necrosis,
regions of vacuolar abnormalities, separation of the
endothelial lining, moderate sinusoidal congestion and
maintenance of the lobular architecture are observed. At
this moment, the degree of sinusoidal congestion is the
main histopathological difference between lean and fatty
livers.

Later in reperfusion, most normal livers resolve the
sinusoidal congestion, maintain their sinusoidal lining and
present tiny regions of necrosis. In contrast, hepatocytes with
pyknotic or karyorrhectic nuclei are dispersed all over the
lobule in fatty livers, and the sinusoids dilate significantly
without preserving their lining. Red blood cells are located
in fat globules and diffuse hemorrhagic necrosis is present.
Subsequent to sinusoidal architecture failure, red cells
extravasate within large areas of the parenchyma. The
alterations noted are spotty hemorrhage, hepatocyte necrosis,
decreased sinusoidal density and blood flow, which lead to
decreased oxygen delivery and energy metabolism (57, 131,
146). After IRI, all livers show predominantly single cell
necrosis/apoptosis, with numerous great, acute necrotic
regions, mainly around the central veins, which are
significantly increased in fatty livers.

Table III summarizes the main histopathological
differences between lean and fatty livers before ischemia and
during IRI.

Fasting Effect

Pre-ischemic fasting does not seem to have any significant
effect on animal survival when the liver is normal. Even
though the degree of the hepatic damage is more severe in
lean livers of fasted animals, the histological findings are
similar to the non-fasted ones (145).

On the contrary, pre-ischemic fasting reduces survival of
rats with fatty liver tremendously. Fasting and fatty
degeneration act synergistically to exacerbate hepatic IRI.
Mitochondrial injury is the main characteristic of
ultrastructural hepatocyte damage in fasted rodents with fatty
livers. Clinically, rats with fatty liver that were fasted, took
longer to recover from anesthesia, and their majority
developed labored respiration and finally succumbed the
following hours after reperfusion (123).

Conclusion

Ischemia-reperfusion injury consists a significant problem in
liver surgery and transplantation which is aggravated by the
increased prevalence of hepatic steatosis. Steatotic livers are
more sensitive to IRI compared to lean livers, leading to
increased postoperative graft failure, morbidity, and mortality.
Moreover, the constant growth in the demand for liver donors
has already led to accepting livers with moderate steatosis for
transplantation, introducing potentially more postoperative
complications. Therefore, additional research on IRI
underlying mechanisms is needed, so that new preventive and
therapeutic strategies will emerge through pharmaceutical
agents, surgical interventions or gene therapy.
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