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DNA Methylation in Human Breast Cancer
Cell Lines Adapted to High Nitric Oxide
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Abstract. Background: Nitric oxide (NO) exposure has been
suggested to cause alterations in DNA methylation in breast
cancer. We investigated the effect of NO on DNA methylation
of promoters in cell lines of breast cancer. Material and
Methods: The methylation status of the promoters of breast
cancer 1 (BRCAI), deleted in colon cancer (DCC), Ras-
association domain family 1A (RASSFIA), O%-methylguanine-
DNA methyltransferase (MGMT), and secreted frizzled
related protein 1 (SFRP1) were analyzed in the parental and
high nitric oxide-adapted cell lines of breast cancer using
Hllumina MiSequencing. Results: Methylation of RASSFIA
promoter in BT-20-HNO (74.7%) was significantly higher
than that in BT-20 cells (72%) (p<0.05), whereas in MCF-7-
HNO cells, methylation of MGMT promoter was found to
have significantly decreased as compared to its parental cell
line (45.1% versus 50.1%; p<0.0001). Promoter methylation
of SFRP and DCC was elevated in T-47D-HNO relative to its
parent cell line (p<0.05). Conclusion: Similarly to the
double-edged effects of NO on tumorigenesis, its epigenetic
effects through DNA methylation are diverse and
contradictory in breast cancer.

Breast cancer is the most prevalent malignancy and second
most common cause of cancer deaths among females (1-3). It
affects approximately 1.5 million women worldwide each year
(1). Patients with breast cancer with morphologically identical
tumors exhibit different clinical courses. This may be the
result of variations in the tumor microenvironment. It has been
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proposed that the tumor microenvironment has a crucial role
in tumor initiation as well as progression and metastasis. The
free radical nitric oxide ("NO) is believed to be a factor at play
in the tumor microenvironment (4-7). It has multiple effects
on tumor biology. Depending on the dose and duration of
exposure, NO exhibits its biological effects by either inhibiting
or stimulating cell proliferation, migration and apoptosis (8).
NO is reported to cause harm in the adipogenic environment
of the breast, and thus initiates and promotes tumor
development. Reactive oxygen species (ROS) and NO
originating in the tumor microenvironment produce oxidative
stress and inflammatory factors. Therefore, they change the
microenvironment of the breast and create an environment for
the transformation of breast cancer cells (9). NO is produced
by nitric oxide synthase (NOS) which has three isoforms,
neuronal, endothelial (eNOS) and inducible (iNOS) (5).
Increased expression of NOS has been identified in human
tumors including breast cancer (4, 5, 8, 9). iNOS is a
proinflammatory enzyme involved in chronic inflammation. It
has been shown that in patients with triple-negative breast
tumors, iNOS expression is associated with worse prognosis
and poor survival (5, 8, 9).

Epigenetic mechanisms have appeared as essential players
in the development and progression of breast cancer (1). DNA
methylation is one of these mechanisms that regulate the
differential expression of genes (10-12). It occurs at cytosines
contained  within  cytosine-phosphate-guanine  (CpG)
dinucleotides. They are converted to 5-methylcytosine by
incorporation of a methyl (CH3) group to the fifth carbon of
the pyrimidine ring of cytosine. DNA methyltransferases
(DNMTs) are the main enzymes which regulate DNA
methylation (1, 10). Abnormal DNA methylation of promoter
CpG islands is often correlated with reduced transcriptional
activity in cancer (12, 13).

Epigenetic silencing via promoter hypermethylation of
more than 100 genes has been reported in breast cancer.
These silenced genes are involved in cell-cycle regulation,
DNA repair, tissue invasion, apoptosis and metastasis (1).
Most of these mechanisms are also modulated by NO as

169



in vivo 34: 169-176 (2020)

explained above. This suggests that NO exposure might cause
alterations in DNA methylation. NO has been already
reported to be an epigenetic factor due to its impact on DNA
methylation, microRNA and histone modification in normal
as well as tumor tissues (14, 15). However, to our knowledge,
the epigenetic effects of NO in terms of DNA methylation of
promoters have never been investigated in breast cancer. To
fully understand the influence of NO on DNA methylation in
breast cancer, we utilized a model cell line system which was
previously designed by our laboratory utilizing some of the
breast cancer cell lines that were adapted to NO (16-23).
These cells were progressively adapted to high concentrations
of NO over a period of 2 months (4). At the end of the
adaptation process, two significant results were obtained.
Firstly, the untreated cell lines which we called ‘parental’
cells adapted to the high NO (HNO) level. Secondly, HNO-
adapted cell lines expanded more quickly and aggressively
than each parental cell line. It was observed that HNO-
adapted cells continued to grow in the same way even when
they were later grown without NO treatment (4, 5).

In this study, we investigated and compared the
methylation status of promoter regions of breast cancer 1
(BRCAI), deleted in colon cancer (DCC), Ras-association
domain family 1A (RASSFIA), 06—methy1guanine—DNA
methyltransferase (MGMT), and secreted frizzled related
protein 1 (SFRPI) tumor-suppressor genes between parental
breast cancer cell lines and their HNO-adapted derivatives.6

Materials and Methods

Cell lines and cell adaptation. Three human breast adenocarcinoma cell
lines were utilized for this study: BT-20, MCF-7, and T-47D. These cell
lines were obtained from the American Type Culture Collection
(Manassas, VA, USA). T-47D was cultured in RPMI-1640 media.
MCF-7 and BT-20 were each cultured in Minimum Essential Medium
(MEM). How these three cell lineswere adapted to grow in
comparatively high levels of NO has been reported (4). Briefly, the cell
adaptation process was conducted over several months by exposing the
parental cell lines to an NO donor, (Z)-1-[2-(2-aminoethyl)-N-(2-
amminoethyl) amino] diazen-1-ium-1,2-diolate (Sigma Life Sciences,
St. Louis, MO, USA), at an initial concentration of 50 uM. The
concentration was raised in increments of 25 uM up to a point which
was lethal to the parental cell line (a concentration of 600 uM) every
few days. The newly adapted HNO cell lines were designated as BT-
20-HNO, MCF-7-HNO, and T-47D-HNO, respectively. Each media
type was supplemented with 10% fetal calf serum (which was
inactivated at 56°C for 30 min prior to use), 100 pg/ml streptomycin,
2 mM L-glutamine, 2.5 pg/ml amphotericin B solution, and 100 U/ml
penicillin. In addition, MEM was supplemented with 1 mM sodium
pyruvate and 100 mM nonessential amino acids (CellGro, Inc.
Manassas, VA, USA). All cell lines were maintained in a humidified
incubator at 37°C and a concentration CO, of 5%.

Extraction and sodium bisulfite modification of genomic DNA.

Genomic DNA was isolated from cultured human breast tumor cell
lines by Qiagen Blood and Cell Culture DNA kit (Qiagen, Inc.,
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Valencia, VA, USA) and stored at —20°C before use. Isolated
genomic DNA samples were treated with bisulfite deamination
reaction using Qiagen EpiTect Bisulfite kit (Qiagen, Inc., Valencia,
VA, USA) based on the manufacturer’s instructions. Briefly, 500 ng
of DNA was used from each sample. The required amount of DNA
was mixed with 85 ul of bisulfite mix solution and 35 pl of DNA
preservation buffer in 200 pl polymerase chain reaction (PCR)
tubes. Samples were then incubated in a thermal cycler device
(BioRad, Hercules, CA, USA) for 5 hours and in changing
temperatures (95°C for 5 min, 60°C for 25 min, 95°C for 5 min,
60°C for 85 min, 95°C for 5 min, and 60°C for 175 min,
respectively). Samples were transferred to the Epitect spin columns
(Qiagen, Inc., Valencia, VA, USA) after incubation, and
desulfonation and washing buffers were added and centrifuged
accordingly. Finally, bisulfite-treated DNA samples were purified in
20 pl of elution buffer. One microliter of bisulfite-converted
genomic DNA solution was used in subsequent PCR reactions.

PCR amplification and sequencing of BRCAI, DCC, RASSFIA,
MGMT, SFRPI1. PCR reactions were performed using bisulfite-
converted genomic DNA using primers listed in Table I. PCR
reactions were carried out via Qiagen HotStarTaq DNA polymerase
and supplied 1X PCR buffer supplemented with 0.1 mmol/l dNTPs,
2.5 mmol/l MgCl,, and 0.5 pmol/l each of forward and reverse
primers and bisulfite-converted genomic DNA. The thermal cycler
(BioRad, USA) was set up for initial activation step for 15 min at
95°C, and followed by 45 cycling steps of 94°C 30 s, optimized
primer specific annealing temperature for 30 s, and 72°C 30 s. The
PCR reaction was complete after the final elongation step applied
at 72°C for 10 min. Following amplification, the PCR products were
loaded onto 10% polyacrylamide gels and visualized using ethidium
bromide. Human placental genomic DNA (Biochain Institute,
Hayward, CA, USA) was used as positive and negative control. This
genomic DNA was either methylated in vitro with SssI methylase
(NEB, Ipswich, MA, USA) or not methylated prior to bisulfite
conversion as outlined previously (24). The PCR reactions were
then analyzed by sequencing (control DNA was used for validation
as described above).

Samples were then prepared for sequencing by ligation of
barcoded sequencing adapters using a PrepX kit implemented on an
Apollo 324 robotic system (IntegenX Inc., Pleasanton, CA, USA).
Barcoded adapters were NEXTflex 6nt barcodes (Bio Scientific,
Phoenix, AZ, USA). Sequencing was conducted on an Illumina
MiSeq instrument (Illumina, San Diego, CA, USA) employing V3
chemistry (600 cycles). Library preparation and pooling of samples
was performed by the University of Illinois at Chicago Sequencing
Core Facility. Sequencing was carried out at the W.M. Keck Center
for Comparative and Functional Genomics at the University of
Illinois at Urbana-Champaign.

Raw sequence data were processed within the software package
CLC genomics workbench (Qiagen, Redwood City, CA, USA). For
each sample, from 450,303 to 827,542 clusters were acquired.
Quality trimming (Q20, no ambiguous nucleotides allowed) was
performed on all samples, and trimmed reads were mapped against
reference ‘converted’ sequences for each gene (i.e. C positions were
converted to T). Subsequently, variant calling was performed using
the default CLC variant caller. Variant calling tables for each sample
were exported, and for each nucleotide position, the number of
sequences generating each base were counted. Wilcoxon matched-
pairs signed-rank test was employed to compare the differences in
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Table 1. Sequencing primers (amplification and sequencing).

Gene name Encoded protein Primer sequence (5° = 3°) Orientation Annealing Thermo- Product
temp (°C) cycles size (bp)
BRCAI Breast cancer 1 GGGATAAGTGGTAAGAGTTAATTTTTTT F 58 45 189
CACCCCTAACTAACCCAAACTACT
GTGGTAAGAGTTAATTTTTTT Seq*
DcC Deleted in colon cancer GAAATTAATAGGGAATGGTATATTAAT F 58 45 273
TCTCTCTATCTCTAACCAAAAAAAA R
TAGGGAATGGTATATTAAT Seq*
RASSFIA Ras-association domain GTAGTTTAATGAGTTTAGGTTTTTT F 59 45 188
family 1A CTACACCCAAATTTCCATTAC
TAATGAGTTTAGGTTTTTT Seq*
MGMT 0%-Methylguanine-DNA GGTTTGGGGGTTTTTGATTAG F 57.5 45 198
methyltransferase CCTTTTCCTATCACAAAAATAATCC
GGGGGTTTTTGATTAG Seq*
SFRP1 Secreted frizzled GGGGAATTTGTTATATTTAAGTATTT F 58 45 192
related protein 1 ATACCCCTACTCAACAAAAACTACC R
TTGTTATATTTAAGTATTT Seq*

Seq*: Sequencing primer.

methylation between the parental and HNO-adapted cell lines, and
Graphpad prism v6 (GraphPad Software, San Diego, CA, USA)
program was used to conduct the statistical analysis.

Results

Comparison of promoter CpG methylation levels of BRCAI,
DCC, RASSFIA, MGMT and SFRPI between the parental
and HNO-adapted cell lines by Illumina Mi-Sequencing. The
tumor-suppressor genes we studied (BRCAI, DCC,
RASSFIA, MGMT and SFRPI) have been shown to be
epigenetically silenced to various extents by promoter DNA
hypermethylation in breast cancer (25-30).

To perform PCR and sequencing analysis, we designed
primers using an on-line primer design program
(www.methprimer.org), which is publically available. The
primer sets of PCR and MiSeq analysis were designed to
determine DNA methylation levels near to the transcriptional
start site of the tumor-suppressor genes because this region
is most likely to be exposed to dense methylation during
epigenetic silencing (31). By utilizing unmethylated and
methylated human placental genomic DNA as negative and
positive controls, respectively, we validated our results of
sequencing analysis for the five genes (BRCAI, DCC,
RASSFIA, MGMT and SFRPI) studied in this report (Figure
1). Based on the sequencing protocol, the libraries from
different samples were quantified and pooled together. After
sequencing, the Illumina reads were post-processed and
aligned to the human reference regions.

For all five genes, we detected promoter hypermethylation
to various extents in the parental cell lines (BT-20, MCF-7,
and T-47D) which was consistent with previous reports.

We first examined the sequencing results of BRCAI by
Illumina reads. The primers designed to amplify the BRCAI
gene sequence yielded a 189-bp amplicon and included 10
CpG dinucleotides. The results indicated that methylation of
BRCAI did not significantly change in response to NO
treatment in any of the cell lines (Figure 1).

A 188-bp segment from the CpG island of the RASSF1A
promoter was amplified by PCR and used for MiSeq.
Illumina MiSeq assay for the RASSFIA gene scores
methylation of 16 CpG dinucleotides within the amplified
region of the CpG island within the 5’ end of the gene. Based
on the sequencing results, we observed that methylation level
of RASSFIA in BT-20-HNO (74.7%) cell was significantly
(p<0.05) higher than that of the parental line (72%) but there
was no difference between the other parental and HNO-
adapted cell lines.

MGMT was another tumor-suppressor gene whose promoter
methylation status (198-bp segment including 21 CpG) which
was analyzed by sequencing following PCR amplification. The
MCEF-7-HNO cell line (45.1%) was found to have a significantly
(p<0.0001) reduced methylation of MGMT as compared to its
parental cell line (50.1%). However, HNO-adapted BT-20 and
T-47D cell lines had similar methylation levels when compared
to their corresponding parental lines.

SFRP (192-bp segment with eighteen CpG) sequencing
results demonstrated that SFRP methylation was elevated in
the T-47D-HNO (56.2%) cell line relative to its parental cell
line (55.0%) (p<0.05), while no significant change was
observed between other cell lines.

Sequence analysis of DCC tumor-suppressor gene (273-
bp segment amplified with twenty CpG prior to MiSeq)
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Figure 1. A: DNA methylation in control samples of placental DNA treated with SssI (+) and untreated (—). DNA methylation of promoters for genes
in parental and high nitric oxide (HNO)-adapted cell lines: Deleted in colon cancer (DCC) in T47-D cells (B); Ras-association domain family 1A
(RASSF1A) in BT20 cells (C); OS-methylguanine-DNA methyltransferase (MGMT) in MCF7 cells (D); secreted frizzled related protein 1 (SFRPI)
in T47-D cells (E); and breast cancer 1 (BRCAI) in BT-20, MCF-7 and T-47D cells (F). Data are presented as meanzstandard deviation.
Significantly different at: *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001.
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showed that the level of methylation in T-47D-HNO (30.7%)
cells was significantly (p<0.05) higher than in the parental
cel line (29.7%). No difference was detected between the
parental and HNO cell line pairs for BT-20, and MCF-7
(Figure 1).

Discussion

NO is an unstable, reactive, free radical, and also an essential
signal molecule in sustaining cellular homeostasis. It plays
a critical role in physiological as well as pathological
processes such as inflammation and cancer (32, 33). It has
been shown that NO levels are higher in breast cancer as
compared to that in benign breast epithelium (8, 9). Our
previous studies characterized some molecular and cellular
alterations induced by high NO concentration in human
breast cancer using a model cell line system which was
developed by our laboratory.

In order to make the role of NO clear epigenetically, we
detected the level of methylation of a panel of five tumor-
suppressor genes in the same model system of breast cancer
cell lines in the current study. The tumor-suppressor genes
BRCAI, DCC, RASSFIA, MGMT and SFRPI were chosen
since they have been shown to be subjected to epigenetic
silencing by promoter hypermethylation in primary breast
cancer (25-30). We used Illumina MiSequncing to quantify
methylation of these genes in parental and HNO-adapted
breast cancer cell lines and observed diverse results in
response to NO treatment. Placental gDNA sequencing
acted as our negative and positive controls (-Sss/ and
+Sssl) (Figure 1).

BRCAI is a classic tumor-suppressor gene and is
associated with the regulation of gene transcription, DNA
repair, apoptosis, cell-cycle checkpoint control and
remodeling of chromosomes (34, 35). Inherited germline
mutations in BRCAI result in the formation of aggressive
breast tumors. In addition, it has been reported that DNA
methylation was the major cause of BRCAI gene silencing,
ranging from 10-30% in sporadic breast cancer (36-39).
Our findings on BRCAI promoter methylation of BT-20,
MCF-7, and T-47D were consistent with previous studies.
However, treatment of these cell lines with NO did not
significantly change the level of methylation of BRCAI
gene promoter (Figure 1).

RASSFIA is involved in microtubule stability, cell-cycle
progression and apoptosis (40). Promoter hypermethylation
of RASSFIA has been observed in breast cancer in recent
studies (41-44). We found a significantly elevated level of
methylation of RASSF1A promoter only in the BT-20-derived
cell line out of four HNO-adapted breast cancer cell lines. In
penwork from our laboratory, it was observed that iNOS and
eNOS expression was significantly up-regulated in BT-20
HNO cells compared to the parental cell line (5), which was

in agreement with the literature reporting the link of high
NOS expression and NO levels with breast cancer (8, 9).

We subsequently demonstrated the relationship between
promoter methylation levels of DCC and SFRPI genes in the
T47D cell line and high NO concentrations. SFRPI is a
member of the frizzle protein family and negatively regulates
the Wnt signalling pathway (45-47). DCC is involved in cell
progression, migration and adhesion (48). Both SFRP1 (30)
and DCC (29) have been shown to be epigenetically silenced
by DNA hypermethylation in breast cancer. In the current
study, these genes had significantly higher levels of
methylation in T47D-HNO cells than in the parental cell
line. Unlike up-regulation of iNOS and eNOS expression in
BT-20-HNO cells as stated above, expression of both
isoforms in T-47D-HNO cells was reduced compared to the
parental cell line (5).

Another tumor-suppressor gene we studied was MGMT,
which functions in DNA repair (49), and whose aberrant
promoter hypermethylation has been shown in one-third of
breast cancer cases (28). Contrary to the elevatin of
methylation of RASSFIA, SFRPI and DCC promoter in at
least one HNO-adapted breast cancer cell line, we observed
that methylation of MGMT promoter was significantly
reduced in MCF-7-HNO cells compared to the parental cell
line. Western blot analysis demonstrated that iNOS
expression was also lower in MCF-7-HNO cells than the
parental cells, while eNOS expression was higher (5).

Taken together, our findings suggest that much like the
double-edged effects of NO on tumorigenesis, its epigenetic
impacts through DNA methylation are diverse and
contradictory. To the best of our knowledge, there are no
reports about the effects of NO on promoter DNA
methylation in breast cancer. However, studies performed in
various types of cancer and diseases in order to understand
the epigenetic role of NO have yielded conflicting results.
While some reported that NO induced a global decrease in
methylcytosine, others found CpG hypermethylation and
subsequent transcriptional silencing. For example, Hmadcha
et al. observed that direct application of NO donors to
several cell types induced promoter methylation of fragile X
mental retardation gene (FMRI), which led to the
suppression of the expression of this gene (50). Another
study using a murine squamous cell carcinoma model
demonstrated that NO overexpression resulted in a global
decrease in DNA methyltransferase 1 (DNMTI1) and
DNMT3a activity, and in 5-methylcytosine level (51).

Huang et al. showed that treatment of gastric cancer cells
with Helicobacler pylori stimulated an increase in NO level,
DNMT activity and DNA methylation (52). In addition,
Huang et al. (52) and Katayama et al. (53) found that NO
induced promoter DNA methylation of E-cadherin and Runt-
related transcription factor 3 (RUNX3) respectively, in
gastric cancer.
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The findings outlined above suggest that it is difficult to
establish a direct connection between NO and DNA
methylation. New approaches toward understanding the
influence of NO on epigenetic mechanisms, including the
interactions of NO with iron and its effect in the
modulation of iron homeostasis, have been proposed by
some researchers. Cellular iron is essential for the activity
of a wide range of diverse enzymes (54). A number of
epigenetic-regulatory enzymes are iron-dependent, such as
histone demethylases, which NO inhibits by binding to the
catalytic iron (55, 56). Another iron-dependent epigenetic
regulatory enzyme is ten-eleven translocation (TET) which
catalyzes DNA demethylation in a process that removes or
modifies the methyl group from 5-methylcytosine. TET
enzyme uses iron, a-ketoglutarate and oxygen to convert 5-
methylcytosine to 5-hydroxymethylcytosine, which is
associated with active gene transcription (55-57). It has
been proposed that inhibition of TET activity by NO might
alter the expression of specific genes due to the
accumulation of 5-methylcytosine in the genome (55, 56).
Thus, NO might result in epigenetic silencing of spesific
tumor-suppressor genes by inducing DNA
hypermethylation.

NO has three sources in the body, namely dietary,
pharmacological and endogenous enzymatic synthesis.
However, which sources of NO are more susceptible to
epigenetic regulation is unknown (10). For this reason, future
investigations to reveal epigenetic effects of NO should take
into consideration this point.

In conclusion, NO-induced epigenetic modifications may
positively or negatively regulate gene expression. As most
epigenetic modifications are reversible, targeting NO might
restore epigenetic modifications in tumorigenesis, hence
proving to be an efficient therapeutic strategy. Further studies
are needed to completely elucidate NO-induced epigenetic
mechanisms and develop new epigenetic treatment options
in breast cancer.
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