
Abstract. Aim: To develop a population-based statistical
model in order to find a spatial pattern of dose distribution
which is related to lower urinary tract symptoms (LUTS) after
iodine-125 (125I) seed implantation for prostate cancer.
Patients and Methods: A total of 75 patients underwent 125I
seed implantation for prostate cancer. Principal component
analysis was applied to the standardized dose array and for
each patient dose distribution was uniquely characterized by a
combination of weighted eigenvectors. The correlation between
eigenvectors and the severity of LUTS was investigated with
linear regression analysis. Results: Eight eigenvectors were
identified as being significantly associated with the severity of
LUTS (p<0.05). Multivariate regression model identified that
intraprostatic parameters, which were positively associated
with the severity of LUTS, were distributed around a portion
of the urethral base and a peripheral region of the prostate.
Conclusion: We established a population-based statistical
model that may indicate a significant dose pattern associated
with the severity of radiation toxicity. 

Iodine-125 (125I) seed implantation is a common treatment
modality for localized prostate cancer. Whether brachytherapy

is used as definitive monotherapy or as a boost combined
with external beam radiotherapy (EBRT), it results in
excellent tumor control rate (1-3) and is generally well
tolerated (4, 5). Nevertheless, most patients develop either
irritative or obstructive lower urinary tract symptoms (LUTS)
to some degree. Although these symptoms eventually
disappear from 12 to 18 months after the implantation (6-9),
prolonged symptom and late symptom flare have also been
reported (10-12). The risk of urinary toxicity is related to
various factors, such as trauma caused by the procedure,
prostate volume, pre-treatment International Prostate
Symptom Score (IPSS) score or use of neoadjuvant hormonal
therapy (13-16).

It is essential to optimize the dose distribution of
brachytherapy in order to avoid adverse effects, however, the
anatomical structures most critical in contributing to the
development of LUTS remain to be elucidated. Recent
evidence has suggested that the dose to specific subvolumes
within the prostate might be more important than the dose to
the whole prostate gland. Although the lower urinary tract
segment (17, 18) and the urethral base/bladder neck (19-22)
have been considered significant regions for urinary toxicity,
there are some inconsistencies among studies (23). This is
partly because current approaches to exploring the dose
effect to organs at risk depends on the dose–volume
histogram (DVH), which generally reduces the 3D dose
distribution of the 2D histogram. Thus, if radiation toxicity
is related not only to volumetric aspects of the dose, but also
to the pattern of dose distribution, it is difficult for a DVH-
based approach to detect it.

Finding a spatial pattern which predicts toxicity following
radiotherapy is challenging because of different morphologies
between patients (24). One remarkable application of image-
processing for aligning radiation dose distributions was
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proposed by Liang et al. (25). Using an optical flow-based
deformable registration method, they remapped each patient’s
dose distribution to a template structure and revealed a
subregion of the bone marrow critical for acute hematological
and radiation toxicity. More recently, Jiang et al. combined
deformable registration for the structural information of
salivary glands and machine learning techniques to identify
the spatial pattern of the dose associated with the severity of
post-radiation xerostomia (26). These methods have great
potential in identifying vulnerable subregions with a spatial
consideration, therefore, we tried to extend the framework for
cases with prostate cancer treated by 125I seed implantation.

In order to identify a spatial pattern associated with the
development of LUTS after brachytherapy, we developed an
in-house method with contour-based non-rigid deformable
registration (27, 28). Firstly, we created a population-based
average shape of the prostate as a reference frame. Each
patient’s dose grid was mapped to the coordinate space of
the reference frame, resulting in a standardized dose array
with 25,950 variables. Because each row in the dose array
corresponded to a specific voxel in the common reference
frame, the standardized array allowed us to compare each
patient’s spatial dose distribution. Further, principal
component analysis (PCA) was applied to the data set. PCA
is a technique for reducing the dimensionality of a data set.
In the present study, PCA generated 75 eigenvectors with
descending order of explained variance ratio for the
variability of the severity of LUTS. Because each individual
dose array was summarized by a linear combination of
weighted eigenvectors, it was possible to evaluate their
correlation with the severity of LUTS by regression analysis.
Finally, 3D parameterization of the sum of eigenvectors
weighted by the regression coefficients was analyzed in
order to identify a subvolume critical for the development of
LUTS after 125I seed implantation. 

Patients and Methods

Patient and treatment. From May 2009 to December 2013, 80
consecutive patients underwent 125I seed implantation with a
prescribed dose of 160 Gy at our Institution. Our treatment protocol
and technique for localized prostate cancer is described in detail
elsewhere (29). Of the 80 patients, five patients were excluded
because of the insufficient data of IPSS scores before or after the
brachytherapy. Clinical characteristics of the 75 patients were
summarized in Table I. The median age was 71 years (range=52-86
years). The follow-up time was a minimum of 12 months.
According to the National Comprehensive Cancer Network risk
classification (30), the majority of patients (n=51, 68.0%) were in
the intermediate-risk group. Seventy-four patients (98.6%) received
an α-blocker for as long as urinary symptoms persisted. The dose
distribution was calculated based on computed tomographic scan 1
month after the brachytherapy.

For scoring of LUTS, the IPSS questionnaire was used. Patients’
IPSS scores were obtained before brachytherapy and repeated at

each follow-up visit after the treatment. Patients were evaluated
every 3 months for the first year. The maximum increase of IPSS
from the pretreatment score during the first year after the treatment
was calculated for each patient. IPSS scores and toxicity data were
collected retrospectively from the database.

Image processing framework. The analysis was performed using in-
house developed software which was written in Python using
VTK/ITK library and a module of robust point set registration based
on Gaussian mixture model (GMM) whose efficacy and validity
were proven by Jian and Vemuri (31). 

Firstly, we created a reference frame for the dose analysis. Based
on contour data from the Digital Imaging and Communications in
Medicine (DICOM) exported by Variseed (Varian Medical Systems,
Palo Alto, CA, USA), the generated surface mesh consisted of both
prostate and an intraprostatic urethra for each patient. Of 75
prostates, we selected one prostate whose volume was the closest
to the average volume of the 75 prostates as a template for
subsequent registration. After adjusting each coordinate origin to
each center of mass of the prostate, non-rigid registration based on
GMM was performed to find a transformation function between the
template mesh and the remaining 74 meshes. When applying the

in vivo 33: 2103-2111 (2019)

2104

Table I. Patient characteristics (n=75). 

Characteristic                                                                Value

Age, years
  Median (range)                                                       71 (52-86)
T-Stage, n (%)*
  T1c                                                                          48 (64.0%)
  T2a                                                                          19 (25.3%)
  T2b                                                                            2 (2.6%)
  T2c                                                                            3 (4.0%)
  T3a                                                                            1 (1.3%)
  T3b                                                                            1 (1.3%)
  Unknown                                                                  1 (1.3%)
N-Stage, n (%)*
  N0                                                                           74 (98.6%)
  N1                                                                             1 (1.3%)
M-Stage, n (%)*
  M0                                                                           75 (100.0%)
PSA
  Median (range)                                                          6.25 (1.3-93)
  ≤10 ng/ml, n (%)                                                    15 (20.0%)
  >10 ng/ml, n (%)                                                    60 (80.0%)
Gleason score
  Median (range)                                                         7 (5-9)
  ≤7, n (%)                                                                53 (70.6%)
  >7, n (%)                                                                22 (29.3%)
NCCN risk classification, n (%)
  High                                                                          6 (8.0%)
  Intermediate                                                            51 (68.0%)
  Low                                                                         18 (24.0%)
Hormone therapy, n (%)
  Neoadjuvant                                                           15 (20.0%)
  Adjuvant                                                                   3 (4.0%)

PSA: Prostate-specific antigen; NCCN: National Comprehensive Cancer
Network: Prostate Cancer (Version 4.2018) (30).



module published by Jian and Vemuri (31), control points were
created so as to be distributed on the surface mesh at a regular
interval of 2 mm. The number of iterative optimizations was set to
2. The scale factor was 0.4 and 0.16 in the first and second
annealing step, respectively. The surface distance error (32), which
is defined by a mean distance between the transformed surface
points and the target surface, was less than 1 mm in all the cases.
Consequently, the transformation function computed vectors
connecting points on the template mesh to the surface of the
remaining 74 meshes. We referred to these vectors as residue
displacement vectors (33). By adding mean displacement vectors at
each control point of the template structure, we created a
population-based average shape of the prostate with the
intraprostatic urethra. Hereafter, we considered the average shape
of the prostate with intraprostatic urethra the reference frame.

Next, we tried to compare the spatial dose distribution among
patients by using the reference frame. Our contour-based
registration process consisted of two steps: (i) Surface registration
based on GMM, and (ii) inner point set transformation by using
thin-plate spline function. Firstly, non-rigid deformable registration
based on GMM of the reference frame to each patient’s prostate
with intraprostatic urethra was performed. The parameters of the
registration module were the same as described above.
Subsequently, inner points were set as 1.0×1.0×1.0 mm3, resulting
in 25,950 voxels inside the reference frame. Internal voxels were
remapped to each patient’s original coordinate based on a vector
field computed by a thin-plate spline function. A parameter to
control the rigidity of the transformation was tuned and visually
inspected. Consequently, radiation doses of the patients were
standardized to the voxels in the reference frame (Figure 1).
Because each row in the dose array corresponded to a specific voxel
in the reference frame, the standardized array allowed us to compare
each patient’s spatial dose distribution. 

Detecting heterogeneous intraprostatic radiosensitivity. Our
approach for detecting heterogeneous intraprostatic radiosensitivity
was inspired by previous studies (25, 34).

PCA is a statistical technique useful for reducing the dimension
of data with a large number of variables. Firstly, each patient’s dose
distribution remapped on the reference frame was sampled from left
to right, from anterior to posterior, and from inferior to superior.
Sampled doses were concatenated to form a row vector di with
25,950 variables for the ith patient. Next, stacking 75 row vectors
of all patients (d1,…,d75) resulted in an N×M matrix, here
75×25,950 matrix D as a high-dimensional data set. PCA was
applied to the covariance matrix of D using singular value
decomposition and generated 75 eigenvectors (e1,…e75) with 25,950
variables arranged in descending order of the explained variance
ratio of the data set. The dose array of the ith patient was then
uniquely represented by a linear combination of eigenvectors and
weighted parameters θi, which was termed the principal component
score:

To find a spatial pattern associated with the development of LUTS,
univariate linear regression analysis was applied to an objective
variable y, as the maximum increase of IPSS after the treatment, for
each principal component score (θ1,…θ75) as a predictor variable.

Statistical significance was set at a two-sided p-value of less than
0.10. Significant eigenvectors obtained by the univariate model
were subsequently incorporated into multivariate linear regression
analysis. The multivariate analysis identified a few significant
eigenvectors (ek)k∈I associated with the development of LUTS, with
statistical significance at p<0.05. Thus, we formulated a model to
predict the clinical outcome using the subset of significant
eigenvectors and regression coefficients βk as follows:

Because the ith principal component score can be obtained by the
inner product between ei and di (θik=ek di), the above formula can
be transformed:

By defining the parameter function v as the sum of the significant
eigenvectors weighted by the regression coefficients (v=∑k∈Iβk ek),
a new patient’s maximum increase of IPSS can be predicted using
the patient’s dose vector d as follows

y=vd

Importantly, the proposed model is based on the assumption that
urinary toxicity is given by the sum of all the individual
contributions of intraprostatic subvolumes. The estimated parameter
function v provides information about the volume effects of each
voxel in the development of LUTS. The spatial representation of the
parameters of v indicates heterogeneous intraprostatic sensitivity to
radiation. 

Statistical analysis. For the linear regression analysis, JMP version
10.0 (SAS Institute, Cary, NC, USA) was used. PCA was performed
by the in-house developed software written in Python.

Results
PCA of the dose array. The result of PCA of the standardized
dose array generated a set of 75 eigenvectors. The first three
eigenvectors of the covariance matrix are shown in Figure 2,
indicating the three largest modes of variation of the dose
distribution and intensity. The patterns showed that the major
directions of variance were the whole prostate gland
(eigenvector 1), followed by the superior/inferior
(eigenvector 2) and central/peripheral (eigenvector 3) regions
of the prostate. 

Regression analysis of eigenvectors for IPSS increase. Eight
eigenvectors (27th, 28th, 38th, 41th, 47th, 70th, 71th, and
74th) were identified that were significantly associated with
the maximum increase in IPSS using the linear regression
model (Table II). The ratios of the explained variance of the
original data demonstrated by these eight eigenvectors were
1.07×10−2, 1.03×10−2, 0.78×10−2, 0.71×10−2, 0.63×10−2,
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0.3×10−2, 0.33×10−2 and 0.27×10−2, respectively. The
regression model had an R2 value of 41.6%, indicating that
it accounted for 41.6% of the variation in the maximum
increase of IPSS score. The adjusted R2 value of the model
was 34.5%. 

Heterogeneous intraprostatic radiosensitivity. The
summation of significant eigenvectors (27th, 28th, 38th,
41th, 47th, 70th, 71th, and 74th) weighted by each regression
coefficient (β27, β28, β38, β41, β47, β70, β71 and β74)
represented the parameter function v. Because a new
patient’s maximum increase of IPSS after the treatment can
be estimated by y=vd, the 3D representation of v indicates
heterogeneous intraprostatic sensitivity to radiation (Figure
3A). Furthermore, in order to compare with the parameter
function v, we divided the patients into two groups
aaccording to maximum increase in IPSS: those with a
maximum increase of 20 (75th percentile) or less (n=58), and
those with a maximum increase of more than 20 (n=17). By
directly subtracting the average dose of the latter group from
that of the former, the difference in radiation dose between
the two groups was represented in the reference frame
(Figure 3B). 

In order to help understand the spatial patterns of
parameter distribution in the reference frame, a projected
diagram according to the distance from the urethra was
created (Figure 4). In the diagram, each voxel was stratified
by its distance from the urethra at a regular interval of 1 mm

in each axial plane, and an average value of each stratified
group was represented as a function of both the distance
from the urethra and the distance from the prostate apex.
Like the axial plane, it was also sampled at a regular interval
of 1 mm.

The projected diagram of the parameter function v (Figure
5A) showed two hotspots in the prostate: one was located
surrounding the urethral base (Figure 5A, arrow), and the
other was at the peripheral site of the prostate (Figure 5A,
arrowhead). These two hotspots were also correspondingly
observed in a projected diagram of the dose difference model
(Figure 5B). 

Discussion

To the best of our knowledge, this is the first study to apply
contour-based non-rigid registration and PCA-based
regression with the aim of identifying specific intraprostatic
subvolumes sensitive to the development of LUTS after
prostate brachytherapy. The proposed method identified two
possible responsible regions; one surrounding the urethral
base (Figure 5A, arrow), and the other is at the peripheral
site of the prostate (Figure 5A, arrowhead). Since the
peripheral site is a relatively long distance from the urethra,
the interpretation for coefficients in the region is not clear
and there remains a possibility that these may be noise from
particular bias in the dataset from the viewpoint of
radiobiology. However, the result highlighted an apparent
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Figure 1. Example prostate (outer mesh) with the intraprostatic urethra (inner mesh) showing the remapped dose distribution after registration.
Each patient’s intraprostatic dose distribution was transformed by the contour-based non-rigid registration to the reference frame, which was the
average shape of the 75 patients’ prostate glands. 
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Figure 2. The first three eigenvectors of the covariance matrix, showing major modes of variation in the data set. The major tendency of variance
was the whole prostate gland (eigenvector 1), and the superior/inferior (eigenvector 2) and central/peripheral (eigenvector 3) regions.

Figure 3. Results of principal component analysis regression analysis. A: Linear combination of significant eigenvectors weighted by significant
regression coefficients represented a spatial parameter distribution associated with the development of lower urinary tract symptoms. B: Average
dose difference between patients with and without International Prostate Symptom Score increase >20. 

Table II. Significant results of principal component analysis multivariate regression.

Principal component                    Explained variance ratio                                            – β Value (95% CI)                                                 p-Value

Intercept                                                                                                                           14.44 (12.99-15.90)                                                 <0.0001
27th                                                          1.07×10−2                                          8.12×10−4 (1.01×10−4-15.24×10−4)                                      0.025
28th                                                          1.03×10−2                                      −9.66×10−4 (−16.90×10−4- −2.42×10−4)                                  0.009
38th                                                          0.78×10−2                                         10.19×10−4 (1.87×10−4-18.51×10−4)                                     0.017
41th                                                          0.71×10−2                                     −10.83×10−4 (−19.53×10−4- −2.13×10−4)                                 0.015
47th                                                          0.63×10−2                                      −10.32×10−4 (−19.60×10−4-−1.04×10−4)                                  0.029
70th                                                          0.34×10−2                                     −13.49×10−4 (−25.99×10−4- −0.99×10−4)                                 0.034
71th                                                          0.33×10−2                                         13.35×10−4 (0.59×10−4-26.12×10−4)                                     0.040
74th                                                          0.27×10−2                                      −20.7×10−4 (−34.72×10−4- −6.69×10−4)                                  0.004

CI: Confidence interval.



propensity alongside the urethra, as higher coefficients were
grouped at the outer peripheral side of the base rather than
the apex (Figure 5A). This is consistent with the dose
difference between the two groups with and without severe
LUTS characterized by a maximum increase of IPSS>20
(Figure 5B). Consequently, we consider dose accumulation
close to the urethral base may be associated with a higher
likelihood of the development of LUTS. 

LUTS is a frequent complication after 125I seed
implantation, however, the results of previous studies
focused on the critical structure for its development are not

consistent. Several prior studies suggested a correlation
between the urethral dose and urinary toxicity (18, 35-37),
whereas others have not supported this (22, 23, 38). This is
partly because the development of LUTS might be a
complicated phenomenon, which may be influenced by other
factors such as trauma and number of needles used for seed
implantation (13-15, 17, 39), pretreatment IPSS (16),
pretreatment urinary flow (8) and neoadjuvant hormone
therapy (40). Still, it is theoretically possible that the dose to
different segments of the prostate or urinary tract might
contribute to the substantial risk of LUTS. Williams et al.

in vivo 33: 2103-2111 (2019)

2108

Figure 5. Projected diagram of the data of Figure 3. A: The spatial parameter distribution showed that the prostate base (arrow) and the peripheral
portion of the mid-prostate (arrowhead) were positively correlated with the development of lower urinary tract symptoms. B: The dose-difference
model demonstrated these corresponding hotspots. 

Figure 4. Schematic representation of the projected diagram converted from the 3D representation of the reference frame. Each voxel was stratified
by its distance from the urethra at an interval of 1 mm on each axial plane, and an average value of each stratified group is represented as a
function of both distance from the urethra and distance from the prostate apex in the diagram.



reported a positive correlation between the number of seeds
above the prostate base and an increase of IPSS (8) and
discussed a possible effect on the bladder neck from seeds.
Pinkawa et al. suggested the dose to the seminal vesicle to
be closely related to the dose to the bladder neck and urethral
sphincter muscle, contributing to late urinary dysfunction
(41). Notably, Thomas et al. found that a higher urethral dose
to the prostate base was associated with higher maximum
IPSS scores, by eliminating all known factors predicting for
urinary morbidity (20). In addition, Pinkawa et al.
demonstrated that seeds implanted in close vicinity of the
urethra had a significant impact on urinary morbidity
irrespective of the urethral DVH (42). 

The contribution of our research is to add a new
observation to the line of evidence by using a modern image-
processing technique which does not need any manual
segmentation to divide the hypothetical segments for the
prostate and the urethra. Because the PCA-based approach is
able to extract the specific dose pattern responsible for the
development of LUTS in the dataset (Table II), we can
explain what kind of dose pattern has a particular weight for
the prediction by the model. This is quite important because
it enables us to quantitatively evaluate the intra-organ spatial
dependence associated with the occurrence or the severity of
radiation toxicity, leading to identification of the most critical
subvolume within the organ in an explicit manner. The
suggested region surrounding the urethral base (Figure 5A,
arrow) was consistent with the results of several previous
studies (8, 18, 20, 41), implying that the proposed method can
work at least as a screening technique. Moreover, because
there are many organs which do not have distinct boundaries
on imaging, our contour-based approach can easily be applied
to investigations of the spatial dose pattern for various
volumes of interest delineated in treatment planning systems.
Owing to the higher accuracy and feasibility of contour-based
deformable registration in comparison with an intensity-based
algorithm, the contour-based approach can be employed in
handling organs with large deformation, such as organs in the
pelvic region (28, 32).

There are several limitations to this study. The present study
included a relatively small number of patients and was
retrospectively designed so that some inherent biases might
exist. The contribution of the intraprostatic irradiation profile
to the development of LUTS was moderate, as shown by the
adjusted R2 value of 34.5% in the data set. The proposed
method did not exclude any confounding factors for the
relationship between the intraprostatic dose distribution and
LUTS. Thus, we considered that positive coefficients in the
peripheral site of the prostate (Figure 5A, arrowhead) might
reflect some bias or confounding effects, which may have
resulted from the procedure or other clinical factors. Further
investigation with an extended approach, which can incorporate
multivariate analysis, in a large cohort is necessary.

Conclusion

The region of the prostate surrounding the urethral base
might be associated with a maximum increase of IPSS after
125I seed implantation. Our heuristic framework without a
priori consideration of segmentation might have a wide
clinical application  intra-organ heterogeneous sensitivity to
radiation.
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