
Abstract. Background/Aim: Muscle-invasive bladder cancer
(MIBC) has long been recognized as a difficult to treat cancer
type, thus a new treatment strategy is needed. The major
purpose of the present study was to verify the anticancer effect
of hyperforin and the mechanism through which it affects
tumor cell growth and invasion in bladder cancer in vitro.
Materials and Methods: Bladder cancer TSGH-8301 cells were
treated with different concentrations of hyperforin for different
durations of time. The changes in cell viability, production of
calcium and reactive oxygen species (ROS), and anti-apoptotic
signaling were evaluated using MTT assay, flow cytometry, and
western blot analysis. The effect of hyperforin on the
expression of nuclear factor-kappaB (NF-ĸB) p65 (Ser276),
tumor progression-associated proteins, as well as on cell
invasion was investigated using western blotting and cell
invasion assay, respectively. Results: Hyperforin significantly
induces apoptosis, extrinsic/intrinsic apoptotic signaling,

accumulation of cytosol ROS, and calcium signalling.
Hyperforin also significantly diminishes the expression of NF-
ĸB p65 (Ser276), anti-apoptotic and tumor progression-
associated proteins, as well as the cell invasion ability of
TSGH-8301 cells. Conclusion: Our findings demonstrate that
hyperforin triggers apoptosis depending on extrinsic/intrinsic
pathways and suppresses NF-ĸB-mediated cell survival as well
as the invasive properties of bladder cancer in vitro.

Based on the depth of tumor invasion within the bladder
wall, bladder cancer is divided into two types: i) muscle
invasive bladder cancer (MIBC) and ii) non- muscle invasive
bladder cancer (NMIBC) (1). MIBC patients have a poor
survival compared to NMIBC patients. Patients with MIBC
do not respond to current treatment options and no more
effective treatment strategies have appeared in the past
decades (2, 3). The development of potential therapeutic
agents could offer benefits for MIBC patients.

Herbal medicines, compounds and composite formulas
extracted from natural plants, have been indicated as
preventive or therapeutic agents for bladder cancer. Dietary
intakes of flavonol and lignans, multifunctional compounds
of plants, have been presented to reduce bladder cancer risk
(4). Lee et al., have demonstrated the therapeutic efficacy of
herbal medicines in a 74-year-old Korean patient with
metastatic bladder cancer, where his pulmonary metastasis
was diminished following his herbal treatment (5).

Hyperforin, a bioactive compound extracted from
medicinal plant St. John’s wort (SJW), has been recognized
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as a conventional antidepressant by suppressing the uptake
of serotonin, norepinephrine dopamine, γ-aminobutyric acid
(GABA), and L-glutamate (6). In addition, hyperforin can
also inhibit tumor cell growth and invasion ability in
hepatocellular carcinoma (HCC) and lung cancer (7, 8).
However, whether hyperforin modulates inhibition of tumor
cell growth and invasive potential in bladder cancer is
ambiguous. Therefore, the aim of the present study was to
verify the anti-cancer effect and elucidate the mechanism of
hyperforin’s action on tumor cell growth and invasion in an
in vitro model of bladder cancer.

Materials and Methods

Reagents, commercial kits and antibodies. Hyperforin, dimethyl
sulfoxide (DMSO), Triton X and MTT (3-(4,5-Dimethylthiazol-2-
yl-2,5- Diphenyltetrazolium Bromide)) were obtained from
SigmaAldrich Corp. (St. Louis, MO, USA). RPMI 1640, fetal
bovine serum (FBS), L-glutamine and penicillin-streptomycin were
all obtained from GIBCO/Invitrogen Life Technologies (Carlsbad,
CA, USA). Flow cytometry related dyes were listed and purchased
from relative companies as followed. Propidium iodide (PI) (9),
CaspGLOW™ Fluorescein Active Caspase-3 Staining Kit, and
CaspGLOW™ Red Active Caspase-8 Staining Kit were acquired
from Biovision (Mountain View, CA, USA). RNase was bought
from Fermentas (St. Leon-Rot, Baden-Wurttemberg, Germany).
Annexin VFITC apoptosis detection kit was purchased from
Vazyme Biotech Co. Lt (Nanjing City, China). PE-conjugatedanti-
CD178 (FAS-L) antibody, FITC-conjugated anti-CD95 (FAS)
antibody and cleaved PARP1-FITC were all purchased from
BioLegend, (San Diego, CA, USA) and Thermo Fisher Scientific
(Fremont, CA, USA), respectively. Migration assay transwell (8-μm
pore size) were purchased from Corning Life Sciences (Tewksbury,
MA, USA). Western blot assay related primary antibodies: cellular
FLICE (FADD-like IL1β-converting enzyme)-inhibitory protein (C-
FLIP, Cell Signaling Technology, Inc., Danvers, MA, USA), X-
linked inhibitor of apoptosis protein (XIAP, Thermo Fisher
Scientific), myeloid leukemia cell differentiation protein (MCL1,
BioVision), matrix metallopeptidase 9 (MMP9, EMD Millipore,
Billerica, MA, USA), vascular endothelial growth factor (VEGF,
EMD Millipore), Cyclin D1 (Thermo Fisher Scientific),
Phosphop65 NF-ĸB (Ser276) (Signalway Antibody LLC, MD,
USA), p65 NF-ĸB antibody (Abcam, Canary Wharf, London, UK)
, β-actin (Santa Cruz, CA, USA) and TBP (Abcam). Secondary
antibodies were purchased from Jackson ImmunoResearch (West
Grove, PA, USA).

Cell culture. The TSGH-8301 human bladder carcinoma cell line
was kindly provided from Professor Jing-Gung Chung’s lab, China
Medical University. Cells were placed into 10 cm culture plate and
grown at 37˚C under a humidified 5% CO2 atmosphere in RPMI-
1640 medium with 2 mM L-glutamine, 10% FBS, 100 Units/ml
penicillin, and 100 μg/ml streptomycin (10). 

Cell viability assays. TSGH-8301 cells were seeded in a 96-well plate
at a density of 3×104 cells/well and were incubated overnight.
Subsequently, they were treated with hyperforin at 0, 5, 10, 20 and
30 μM for 24 or 48 h. Cells were stained using MTT 3-(4,5-

dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide for another 4
h following the treatment. Finally, the percentage of viable cells was
analyzed using by a spectrophotometer at 570 nm wavelength (Tecan
Group Ltd., Männedorf, Switzerland) as previously described (11).

Annexin-V/PI, cleaved caspase-3, subG1 accumulation staining.
First, 5×105 cells/well of TSGH-8301 cells in 6-well plates were
incubated with 0, 10 and 20 μM of hyperforin for 48 h. The cells
were then trypsinized, harvested, stained with Annexin V/PI or
cleaved caspase-3 dye in a dark room for 30 minutes at 37˚C and
were analyzed by flow cytometry for apoptotic cell population
determination, as described previously (10). For subG1 analysis,
cells were trypsinized, harvested, fixed by 75% ethanol overnight
at –20˚C, stained by PI solution (for cell cycle analysis, 40 μg/ml
PI, 100 μg/ml RNase and 1% Triton X-100 in PBS) for 30 min at
37˚C and analyzed by flow cytometry (8). The results of the staining
were measured using the FlowJo 7.6.1 software (FlowJo LLC,
Ashland, OR, USA).

Extrinsic apoptosis analysis. Approximately 5×105 cells/well of
TSGH-8301 cells in 6-well plates were incubated with 0, 10 and 20
μM of hyperforin for 48 h. The cells were trypsinized, harvested,
and stained with FAS, FASL and cleaved caspase-8, as described in
previous studies (12,13). The results of above staining were
measured using the FlowJo 7.6.1 software.

Intrinsic apoptosis analysis. Approximately 5×105 cells/well of
TSGH-8301 cells in 6-well plates were incubated with 0, 10 and 20
μM of hyperforin for 48 h. The cells were trypsinized, harvested,
and were stained with Fluo-3/AM (2.5 μg/ml) and 500 μL of DiOC6
(4 μmol/l) for 30 minutes to measure the changes of intracellular
Ca2+ level, and mitochondrial membrane potential (ΔΨm) levels,
respectively. The results of above staining were measured using the
FlowJo 7.6.1 software (13).

Measurements of reactive oxygen species (ROS). TSGH-8301 cells
(5×105 cells/well) were treated with 0, 10 and 20 μM of hyperforin
for 48 h. Following incubation, cells were harvested and re-
suspended in 500 μl of DCFH-DA (10 μM) for 1 h to measure the
changes of ROS. All samples were analyzed by flow cytometry and
measured using the FlowJo 7.6.1 software as described (14).

Western blotting. About 3×106 cells TSGH-8301 cells were
incubated in a 100-mm culture dishes overnight and were then
treated with 0, 10 and 20 μM of hyperforin for 48 h. Nuclear and
cytosol extracts were prepared using a Nuclear/Cytosol fractionation
kit (BioVision, Milpitas, CA, USA), according to the manufacturer’s
protocol. Briefly, appropriate buffers of the kit were used to extract
the cytosolic or nuclear fractions and separated by centrifugation.
Proteins extracted from cells were then separated by SDS
polyacrylamide gels, electrotransfered onto PVDF membrane (EMD
Millipore), incubated with primary antibodies, and followed by
secondary antibody incubation. The immunoreactive bands were
then visualized using the Immobilon Western Chemiluminescent
HRP Substrate kit (EMD Millipore) and were detected using a
chemiluminescent image system (ChemiDoc-It 515, UVP) (10, 13). 
Invasion assay. TSGH-8301 cells were seeded into 10 cm diameter
dishes at 3×106 cells, incubated overnight, and were then treated
with 0, 10 or 20 μM hyperforin for 48 h. Then, cells were collected
for transwell migration assay, as described in previous studies (15). 

in vivo 33: 1865-1877 (2019)

1866



Statistical analysis. We expressed all data as mean±standard
deviation. The difference between the 0 μM, and hyperforin 10 μM
or 20 μM were analyzed using the Student’s t-test, with a
probability of p<0.05 considered significant.

Results

Effects of hyperforin on viability of TSGH-8301 cells. In
order to examine the effects of hyperforin on the viable
TSGH-8301 cells, the latter were treated with various doses
of hyperforin (from 0-30 μM) for 24 and 48 h. The
percentage of viable cells was measured using the MTT
assay, as shown in Figure 1. The results indicate that
hyperforin-induced cytotoxicity occurs in a dose dependent
manner (Figure 1) and decreases the percentage of viable
cells by about 30-50% at a treatment between 10-20 μM of
hyperforin. These effects are both dose and time dependent.

Effects of hyperforin on apoptosis were examined by Annexin-
V/PI, cleaved caspase-3, subG1 accumulation staining and
anti-apoptosis factors levels in TSGH-8301 cells. When
compared to the control sample, hyperforin markedly induced
Annexin-V and PI population (Figure 2A). Also, cleaved
caspase-3 was activated by hyperforin in a dose dependent
manner in TSGH-8301 cells (Figure 2B). Flow cytometry
analysis showed that the sub-G1 population (Figure 2C)
present in TSGH-8301 cells following exposure to hyperforin
corresponded to Annexin-V and cleaved caspase-3 activation.
To confirm apoptotic cell death, we evaluated whether anti-
apoptosis related factors (C-FLIP, XIAP and MCL-1)
expression was also blocked by hyperforin (Figure 2D). Taken

together, we concluded that hyperforin decreased the
expression level of anti-apoptosis factors in TSGH-8301 cells
and increased the induction of apoptotic death. 

Effects of hyperforin on the activities of extrinsic apoptosis
pathway in TSGH-8301 cells. To investigate whether death
receptor-mediated apoptosis is involved in hyperforin-
induced apoptosis, the activity of FAS, FASL and cleaved
caspase-8 were detected using flow cytometry. The results
presented in Figure 3A-C indicate the hyperforin-induced a
rapid rise in FAS, FASL and cleaved caspase-8 activities.
Importantly, cleaved caspase-8 was required for the signaling
transduction of Fas-FasL mediated extrinsic apoptosis
pathway. As such, we suggest that hyperforin-provoked
apoptosis is achieved through at least one death receptor-
dependent extrinsic apoptosis pathway in TSGH-8301 cells.

Effects of hyperforin on the activities of intrinsic apoptosis
pathway in TSGH-8301 cells. In order to investigate whether
mitochondria-dependent apoptosis is involved in hyperforin-
induced cell death, the release of calcium iron (Ca2+) and the
change of mitochondrial membrane potential were measured
using flow cytometry. Results are shown in Figure 4A,
indicating a release of Ca2+ in hyperforin treated cells.
Additionally, hyperforin significantly decreased the ΔΨm in
TSGH-8301 cells (Figure 4B). Based on these observations,
the loss of ΔΨm involved intracellular Ca2+ following
exposure to hyperforin and it affects cell viability in TSGH-
8301 cells. Therefore, we suggested that intracellular Ca2+
might play a vital factor in hyperforin-induced intrinsic
apoptosis in TSGH-8301 cells.

Effects of hyperforin on the production of ROS and cleaved
PARP-1 in TSGH-8301 cells. In order to investigate whether
hyperforin-induced apoptosis is associated with ER stress-
induced cell death mechanisms we further investigated the
production of ROS using flow cytometry. As showed in
Figure 5A, the production of ROS increased in hyperforin-
treated TSGH-8301 cells. Furthermore, the cleaved PARP-1
mediated DNA damage was also triggered via the
accumulation of ROS in TSGH-8301 cells by hyperforin
(Figure 5B). Hyperforin induced the production of reactive
oxygen species (ROS) acted as a trigger point of further
apoptosis signal transduction.

Effects of hyperforin on the inhibition of invasion and tumor
progression in TSGH-8301 cells via blockage of NF-ĸB signal
transduction. To determine the degree of inhibition of
hyperforin on TSGH-8301 cells invasion, we performed a
transwell cell invasion. The number of invasion cells in the
transwell membranes were counted and photographed. We
found that hyperforin significantly inhibited cell invasion by
80%-90% on 10 and 20 μM hyperforin at 48 h as compared
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Figure 1. Hyperforin reduces the percentage of total viable TSGH-8301
cells. TSGH-8301 cells were treated with 0-30 μM of hyperforin for 24
and 48 h. Cell viability was then assayed by the MTT assay (**p<0.01;
treatments versus 0 μM hyperforin).
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Figure 2. Hyperforin triggers apoptosis. TSGH-8301 cells were treated with 0, 10 and 20 μM of hyperforin for 48 h. Cells were then collected,
stained for (A-C), Annexin-V/PI cleaved caspase-3 and PI dye for apoptosis analysis, respectively, and were assayed by flow cytometry. (D) The
protein expression of C-FLIP, XIAP and MCL-1 was assayed by Western blot (*p<0.05, **p<0.01; treatments versus 0 μM hyperforin; #p<0.05,
##p<0.01; treatments versus 10 μM hyperforin).



in vivo 33: 1865-1877 (2019)

1870

Figure 3. Continued



to control cells (Figures 6A). Then, we investigated whether
hyperforin may also suppress the expression of other proteins
that may affect tumor invasion ability. As showed in Figure
6B, both matrix metallopeptidase 9 (MMP-9) and vascular
endothelial growth factor (VEGF) protein levels were reduced
following hyperforin treatment. Furthermore, the expression
of the tumor proliferation factor, cyclinD1, was also
suppressed by hyperforin (Figure 6B). Finally, we also found
that hyperforin may be involved in the dephosphorylation of
NF-ĸB (Figure 6C). Taken together, our data suggest that
hyperforin may suppress tumor progression via inactivation
of the NF-ĸB signal transduction pathway.

Discussion

Cyclin-D1, VEGF, and MMP-9 as tumor progression-
associated proteins promote tumor progression through
induction of cell proliferation, angiogenesis, and metastasis
(10, 16). Overexpression of cyclin-D1, VEGF, and MMP-9
are unfavorable prognostic markers that can contribute to

tumor recurrence and invasion and are correlated with poor
survival in patients with MIBC, whereas their inhibition
abolishes tumor cell growth and invasion ability in bladder
cancer (9, 17, 18). Our data showed that hyperforin
significantly suppresses the protein levels of Cyclin-D1,
VEGF, and MMP-9 in TSGH-8301 cells as well as their
invasive properties.

Apoptosis, programmed cell death, prevents tumor
formation, however, anti-apoptotic proteins present in tumor
cells disrupt extrinsic and intrinsic apoptotic pathways,
resulting in evasion of apoptosis and promotion of tumor cell
survival (19, 20). Cisplatin is an anticancer agent that induces
apoptosis by deoxyribonucleic acid (DNA) damage and is
used for the treatment of bladder cancer (21). Anti-apoptotic
proteins mediate an acquired resistance to cisplatin in bladder
cancer (21, 22). In our results presented here, hyperforin
significantly suppressed the expression of anti-apoptotic
proteins C-FLIP, XIAP, and MCL-1 in TSGH-8301 cells.

Expression of tumor suppressor proteins that restrict cell
cycle progression and cell survival is inhibited in bladder
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Figure 3. Hyperforin activates extrinsic FAS, FASL and cleaved caspase-8 signaling in TSGH-8301 cells. TSGH-8301 cells were treated with 0, 10
and 20 μM of hyperforin for 48 h (A-C). Cells were then collected, stained for FAS, FASL and cleaved caspase-3, respectively, and were assayed
by flow cytometry (**p<0.01; treatments versus 0 μM hyperforin; ##p< 0.01; treatments versus 10 μM hyperforin).
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Figure 4. Hyperforin induces the release of calcium iron (Ca2+) and the loss of mitochondrial membrane potential (ΔΨm) in TSGH-8301 cells. TSGH-8301
cells were treated with 0, 10 and 20 μM of hyperforin for 48 h. Cells were then collected, stained for (A) Ca2+ and (B) DIOC6 for mitochondrial membrane
potential, respectively, and were assayed by flow cytometry (**p<0.01; treatments versus 0 μM hyperforin; ##p<0.01 treatments versus 10 μM hyperforin).
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Figure 5. Hyperforin induces the production of ROS and cleaved PARP-1 in TSGH-8301 cells. TSGH-8301 cells were treated with 0, 10 and 20 μM
of hyperforin for 48 h. Cells were subsequently collected, stained for (A) ROS and (B) cleaved PARP-1, respectively, and were assayed by flow
cytometry (**p<0.01; treatments versus 0 μM hyperforin; ##p<0.01; treatments versus 10 μM hyperforin).
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cancers (23). In addition, reduced expression of apoptotic
proteins, such as Fas and Caspase-3 is linked to poor outcome
in patients with bladder cancer (24, 25). In our results we
demonstrate that hyperforin significantly induces apoptosis
and extrinsic/intrinsic apoptotic signaling (increases of active-
Fas, FasL, Caspase-8 and loss of mitochondrial membrane
potential) in TSGH-8301. It also increases the amount of
reactive oxygen species (ROS) and calcium in cytoplasm and
triggers apoptosis through DNA damage and endoplasmic
reticulum (ER)-related stress (26, 27). We also found that
hyperforin significantly induces accumulation of ROS and
calcium in TSGH-8301 cells.

The oncogenic transcription factor NF-ĸB p50/p65,
mediates tumor cell growth, survival, and invasion by
inducing the expression of oncogenic proteins encoded by NF-
ĸB p65-dependent genes (28, 29). High expression of NF-ĸB
p65 is observed and associated with poor prognosis in patients
with MIBC (30). Protein levels of cyclin-D1, VEGF, MMP-9,
XIAP, C-FLIP, and MCL-1 have been shown to be
significantly decreased by specific NF-ĸB inhibitors in liver,
lung, and bladder cancers (10, 11, 13). In our results we
showed that hyperforin significantly decreases the protein
levels of NF-ĸB p65 (Ser 276) in TSGH-8301 cells.

In conclusion, hyperforin triggers apoptosis depending
on the activation of extrinsic/intrinsic pathways and

suppresses NF-ĸB-mediated cell survival and invasion in
our bladder in vitro cancer model. We suggest that
hyperforin may be recognized as a potential anticancer
agent for the treatment of bladder cancer. Additionally,
future in vivo experiments may also need to be further
investigated for the efficacy of hyperforin as part of a
treatment regime in living objects.
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Figure 6. Hyperforin suppresses NF-ĸB mediated invasion ability and associated proteins expression of TSGH-8301 cells. TSGH-8301 cells were
treated with 0, 10 and 20 μM of hyperforin for 48 h, and (A) cells were subsequently assayed by a transwell invasion assay. (B-C) The protein
expression of MMP-9, VEGF, CyclinD1, phosphorylation and total P-65 NF-ĸB was assayed by western blot (**p<0.01; treatments versus 0 μM
hyperforin; ##p<0.01; treatments versus 10 μM hyperforin). Scale bars: 200 μm.
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