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Abstract. Amyotrophic lateral sclerosis (ALS) is a fatal
adult-onset neurodegenerative disorder. There are several
genetic mutations that lead to ALS development, such as
chromosome 9 hexanucleotide repeat 72 (C9ORF72),
transactive response DNA-binding protein (TARDBP),
superoxide dismutase 1 (SODI1) and fused in sarcoma (FUS).
ALS is associated with disrupted gene homeostasis causing
aberrant RNA processing or toxic pathology. Several animal
models of ALS disease have been developed to understand
whether TARDBP-mediated neurodegeneration results from
a gain or a loss of function of the protein, however, none
exactly mimic the pathophysiology and the phenotype of
human ALS. Here, the pathophysiology of specific ALS-
linked gene mutations is discussed. Furthermore, some of the
generated mouse models, as well as the similarities and
differences between these models, are comprehensively
reviewed. Further refinement of mouse models will likely aid
the development of a better form of model that mimics
human ALS. However, disrupted gene homeostasis that
causes mutation can result in an ALS-like syndrome,
increasing concerns about whether neurodegeneration and
other effects in these models are due to the mutation or to
gene overexpression. Research on the pleiotropic role of
different proteins present in motor neurons is also
summarized. The development of better mouse models that
closely mimic human ALS will help identify potential
therapeutic targets for this disease.
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Amyotrophic lateral sclerosis is a devastating adult
neurodegenerative disorder characterized by motor neuron
degeneration and death approximately 3 years after onset.
Riluzole is currently the only treatment available, but only
offers a slight survival benefit (1). The etiology of ALS is
complex and is associated with several genes, making it
difficult to study the etiopathogenesis of this disease (2)
(Figure 1).

During the past decade, significant advances have been
made in understanding this disease, from linkage analysis to
isolation of defective genes and identification of their protein
product (3). The development of animal models for the study
of this disease, in particular, mouse models for ALS (1), has
now made it possible to understand the molecular basis of
this disease and has demonstrated the feasibility of using the
whole affected gene, which is found in all patients with ALS,
as a means of treating this disorder.

The most common form of ALS is sporadic ALS, which is
an age-associated disease characterized by cytoskeletal
abnormalities and the death of motor neurons (4). The familial
form of ALS (FALS) is an inherited autosomal dominant
disease linked to mutations in superoxide dismutase 1 (SODI)
gene, which manifest as inclusions and degeneration of motor
neurons. It has been reported that 5-10% of all patients with
ALS have the inherited form of ALS (5, 6).

A non-coding hexanucleotide CY9ORF72 gene repeat
expansion is the most common mutation associated with
frontotemporal dementia (FTD) and FALS (7). Transgenic
ALS mouse models that express SOD1 have been critical in
furthering our understanding of the disease (8). Transactive
response DNA-binding protein 43 (TDP43) ubiquitinated
inclusions are a hallmark of ALS and FTD with ubiquitin-
positive inclusions. However, mutations in the gene encoding
these inclusions (TARDBP) are associated with only 3% of
sporadic and FALS (8, 9). Moreover, mutations in the gene
encoding the RNA-binding protein fused in sarcoma (FUS)
can cause FALS but rarely FTD (10).
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Experimental models of ALS are important for clarifying
the complex functions of different proteins and the
pathology of ALS (11). In order to examine the mechanisms
underlying ALS, investigators have used a variety of animal
models, including experimentally produced, spontaneously
occurring, or genetically-engineered disease models. While
these models have provided important insight into the
underlying mechanisms of ALS, they are not without their
limitations in that they allow study of different aspects of
the disease.

This review discusses the major neuropathological
features and mechanisms of ALS-associated mutations, as
well as behavioral/neuropathophysiological features of
recently developed mouse models, and the results of their
biochemical mechanisms with the aim of potentially using
these models to test new therapies for ALS.

The C9ORF72 Mutation

Since its discovery in November 2011, the C9ORF72
mutation has been reported as the most frequent mutation
associated with ALS and FTD in Western countries (12, 13).
The C9ORF72 gene has a high penetrance, and most persons
with the C9 expansion die due to a neurodegenerative
disorder. Although some patients who carry this mutation
develop a range of FTD disorders, others exhibit ALS
symptoms; some patients have a mixture of both FTD and
ALS at presentation (14). A number of important questions
regarding this mutation remain unanswered, especially those
pertaining to selective vulnerability and why ALS develops
in one member of a family whereas another family member
dies from FTD.

The discovery of C9ORF?72 repeat expansions has helped
scientists  understand the mechanism underlying
neurodegeneration in ALS, which appears to be related to
dysfunctional RNA processing (15). The repeat has been
identified on a non-coding region of C9ORF72, which
encodes a protein with no identified function that is
expressed at high concentrations in the brain (15, 16). RNA
aggregates are formed within the nucleus due to the very
long hexanucleotide repeat, which is thought to range
between 700 and 1,600 units (16). It is also thought that the
long hexanucleotide repeat suppresses gene expression
through abnormal RNA splicing. Another hypothesis that has
been proposed to explain the mechanism of the disease is
C90ORF72 protein function loss (17). It will be challenging
to develop therapies for C9ORF72 and this might necessitate
the development of new therapeutic strategies that involve
suppressing the expression of the C9 repeat (17). The
development of robust animal models and use of well-
defined patient cohorts are crucial to understanding how the
disease develops and help in discovering potential
therapeutic targets (17, 18).
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Mouse models. Besides inclusion formation, evidence
suggests that patients with G4C2 repeat expansion have
increased repressive histone hypermethylation at the
C90ORF72 repeat expansion locus (16). Scientists developed
C90ORF?72 knockout cell and mouse models to understand the
underlying mechanism in C9ORF72-associated ALS/FTD
pathogenesis.

A decrease in C9ORF72 transcript expression in animal
models has been associated with neurodegenerative and
behavioral deficits (17, 18).

Experiments on animal models have shown that a decrease
in C9ORF72 led to decrease in RNA foci and dipeptide
repeat proteins (DPR), contrary to findings in patients with
CY90ORF72-associated ALS/FTD (19, 20). Nevertheless, in
other models that do not support the loss of function (LOF)
argument, the administration of antisense oligonucleotides
against C9ORF72 transcript did not cause adult mice to
develop behavioral or neurodegenerative disorder (20). On
the contrary, it reduced symptomatology (21). Moreover,
patients with C9ORF72-associated ALS/FTD did not show a
mutation in the coding region of the gene. Inclusions were,
however, documented (22). Consequently, while abnormal
C90ORF72 repeat expansions may be implicated in the
etiopathogenesis of ALS, there is no strong
clinicopathological evidence that LOF leads to
neurodegeneration in C9ORF72-associated ALS/FTD.

Given the difficulty in cloning GGGGCC (G4C2)
expansions and the instability of these expansions in somatic
cells, investigators face challenges in developing transgenic
mouse models (23). However, much research has been
ongoing in this area to assess the pathological functions of
G4C2 expansion on in vitro and in vivo model systems. It
was not until recently that scientists were able to develop
transgenic mouse models that recapitulate the pathology and
symptoms of human ALS/FTD (22).

Some investigators (23, 24) used bacterial artificial
chromosome (BAC) to develop the first transgenic mice.
These mice carried the G4C2 expansion and expressed
approximately 500 and 1,000 repeats of the human C9 gene
at moderate levels, respectively (23, 24). Although models
exhibited histological phenotypes similar to human
C90ORF72-associated ALS/FTD, the mice had normal
phenotypes. Histological investigations demonstrated the
production and deposition of RNA foci and poly-(glycine-
proline) peptides in the brain and spinal cord (25). Other
researchers used a virus-mediated gene-delivery system to
develop transgenic mice harboring 66 repeats of G4C2 motifs
or dipeptide repeat (DPR) proteins (26, 27). The mice
expressed high levels of synthetic C9-RNA and DPR, and
showed histopathological features and phenotypical
neurodegenerative defects comparable to those observed in
patients with ALS and FTD (26, 27). Of note, transgenic mice
overexpressed synthetic peptides at levels exceeding the
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Figure 1. Pathogenesis of C9OR72-, TARDBP-, SODI-, and FUS-associated amyotrophic lateral sclerosis (ALS). A: Chromosome 9 hexanucleotide
repeat72 (C9ORF72) 2 mutation acts through a gain-of-function (GOF) mechanism. GGGGCC[G4C2] is translocated to the cytosol and then either
translated to form aggregates of poly-(GP) dipeptide-repeat proteins (DPR) or misfolded to form aggregates of ubiquitinated (U) RNA foci associated
with TDP43 or FUS proteins, which both mediate neuronal toxicity. B: transactive response DNA-binding protein (TARDBP) mutation acts through
both loss of function (LOF) and GOF mechanisms. Normal TDP43 function is lost due to mutant (mt) TDP43 proteins inhibiting normal TDP43
from binding to pre-mRNA. C: superoxide dismutase 1 (SOD1) mutation acts through a GOF mechanism. Mutant SODI dimers in the cytosol
accumulate as SODI inclusions within mitochondria and Lewy-body-like hyaline (LBLH) inclusions in the cytosol where they can trigger
mitochondrial reactive oxygen species (ROS) generation later, causing mitochondrial destruction. D: fused in sarcoma (FUS) mutation acts through
both LOF and GOF mechanisms. Mutant FUS proteins cause LOF by inhibiting normal FUS from binding to pre-mRNA. E: Cytosol vacuolization

is caused by all the above-mentioned mutations.

normal physiological levels noted in patients. Conversely,
other investigators used BAC transgenic mice and
successfully reproduced the histopathological, molecular and
clinical features of the disease (28, 29). In the latter two
studies, the investigators found that the number of RNA foci,
DPR aggregates and neuronal loss were proportional to repeat
length. Nevertheless Liu et al., found that only symptomatic
mice with acute end-stage disease presented cytoplasmic and
nuclear TDP43 inclusions in the entirety of the denervated
brain, hippocampus, and motor cortex (28, 29). The other

group contended that mice expressing up to 450 C9ORF72
RNAs (C9*0 mice) did not display TDP43 mislocalization
or aggregation, although higher levels of phosphorylated
TDP43 were observed (28). Liu et al. reported a dramatic
decrease in survival among mice from the C9-500/32 (two
transgene copies, one with ~500 and the other with 32
repeats) and C9-500 (one copy with ~500 repeats), lines
compared to non-transgenic controls (28, 29). Although the
results of Jiang et al.’s study provide deep insight into critical
drivers of disease pathogenesis and an understanding of the
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molecular mechanisms of ALS and FTD (28), further
research is warranted to elucidate the molecular basis of sex-
specific differences. In addition, the data do not explain
differences observed between the four C9ORF72 BAC lines
that were selected for analyses (28, 29). Put together, there is
no solid basis to assume that the full-length gene construct is
not obligatory for neurodegeneration since investigators used
different constructs and observed dissimilar results. Jiang et
al. (28), and Liu et al. (28, 29) for example, reported
neurodegenerative disorders despite using part of the gene in
their construct, whereas Rourke et al. did not observe
behavioral abnormalities or neurodegeneration even at
advanced ages (23).

The discrepancies in disease manifestation between the
developed mouse models prompted the identification of
models that closely mimic human ALS (Table I). A set of
criteria were used to select these mouse models, including
late-onset ALS, low expression of a misfolded protein,
occurrence of gliosis or paralysis, and presence of cytosolic
inclusions at presentation.

In most cases, C9ORF72 models support the toxic gain of
function (GOF) mechanism, which is evidenced by the
accumulation of abnormal protein aggregates. On the other
hand, no significant replication of ALS has been reported in
knockdown models. Currently, research acknowledges the
potential of the use of antisense oligonucleotides as a
therapeutic approach for C9ORF72-related disease since they
can target genes such as SODI and C9ORF72, and alleviate
toxicity due to G4C2 repeat while maintaining the normal
function of C9ORF72 (23).

The SOD1 Mutation

In 1994, a breakthrough was achieved with the discovery of
genetic mutations in the SODI gene that were linked to
FALS (30). SODI mutations remained the only known cause
of ‘classical’ ALS until causative mutations in the TARDBP
gene were found (30, 31). During the subsequent two
decades, more than 180 SODI mutations have been
identified, with most being missense point mutations, mainly
substitution. However, insertion and deletion point mutations
have also been identified (32).

Recent research on ALS genetics support the role of
proteins in RNA metabolism and cytoskeletal organization,
typically in the central nervous system (33). On the contrary,
SODI1 is expressed in several tissues, and is not limited to
the spinal cord and motor neurons (34, 35). In addition, the
level of SODI in tissues is not developmentally regulated
(36). The SOD1 enzyme has a well-defined catalytic
function, whereby it detoxifies the superoxide species in
cells (36). Scientists quickly ruled-out deficient SODI1
enzymatic activity in their quest to identify the possible
underlying mechanism for ALS since mutations preserving
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or abolishing SOD1 activity were found to cause ALS
disease (37). These factors by themselves suggest that there
is no outright explanation for the involvement of SODI1 in
adult-onset neurodegenerative disease.

Here focus is placed on a few of the varied yet organized
motor neuron toxicity due to the formation of aggregates
caused by the instability of the SOD1 protein (36). Among
these are excitotoxicity, deficient axonal transport, and
mitochondrial dysfunction (36). Like in all ALS-associated
mutations, there is cytoplasmic accumulation of misfolded
SODI1 in the form of inclusions, namely Lewy-body-like
hyaline inclusions (LBHI), which are the most frequent
inclusions in SOD1 mutants. These inclusions are located on
mitochondrial neurons and astrocytes, and as a result, these
suffer morphological damage (38, 39). LBHI is made up of
several components, including mutated and wild-type SOD1,
granule-coated fibrils, as well as ubiquitin (40). A disruption
of Ca2* intracellular reservoirs results from mitochondrial
dysfunction, and, consequently, excess Ca?* is stored in the
mitochondria. This results in motor neurons becoming very
sensitive to glutamate (excitatory neurotransmitter), causing
excitotoxicity (39, 41). In TDP43 pathogenesis, it has been
suggested that axonal transport disruption is attributed to
damaged axonal cytoskeleton (42).

A growing body of evidence suggests that dysfunctional
axonal transport plays a role in the pathogenesis of ALS (43).
Defects in both anterograde and retrograde axonal transport
have been described in Sodl9%A transgenic mice (43).
Previous research has demonstrated that one of the first axonal
pathologies in Sodl G934 transgenic mice was the block of
axonal retrograde transport (43). This suggests that ineffective
axonal transport is a major pathogenic driver of ALS.
Furthermore, some investigators demonstrated impairment of
both fast and slow axonal transport in transgenic mice that
exhibited low levels of mutant SOD1 (44). Severe defects in
axonal transport have been observed in mice overexpressing
human neurofilament heavy-subunit gene (45). Patients with
sporadic ALS or FALS present point mutations of the p150
subunit of dynactin (46), which can cause a decrease in
retrograde transport; however, the disease progresses at a
slower rate than ALS in transgenic mice (47). Conversely,
mutations in cytoplasmic dynein can cause pure sensory
neuropathy or a sensory neuropathy with motor neuron
involvement (48). It is thought that the progression of SOD1-
associated ALS is caused by non-cell autonomous toxicity.
Misfolded mutant SODI1 is secreted in association with
components of neurosecretory vesicles by motor neurons or
glial cells (49). The secreted mutant SOD1 will, in turn, affect
other motor neurons and glial cells, especially astrocytes and
microglia (50), causing the development of motor neuronal
damage and, consequently, disease progression.

Contrary to health astrocytes, which have the capacity to
block Ca2* from entering motor neurons, mutant astrocytes
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Table 1. Mouse models for chromosome 9 hexanucleotide repeat 72 (C9ORF72)-related amyotrophic lateral sclerosis.

C9ORF'72 Mutation (Ref)

Clinicopathological feature (23) (24)
No. of C9 repeats 100-1,000 500
Promoter BAC! BAC!
Age of disease onset (months) ND ND
Cognitive deficit No No
Cortical MNL No No
Hippocampal MNL No No
Cerebral MNL No No
Spinal cord MNL No No
Gliosis No No
Paralysis No No
Mechanism ND ND
Cytoplasmic inclusion DPR (poly-GP),  DPR (poly-GP),
RNA foci RNA foci

Age of death (months) ND ND

(26) @7 (28) (29)

NA 66 450 500
NA2 NA2 BAC! BAC!

6 6 13 4

Yes Yes Yes Yes

Yes Yes No Yes

Yes No Yes Yes

Yes Yes ND Yes

No No No Yes

No Yes No Yes

No No No Yes
GOF GOF GOF GOF

DPR, sparse DPR (poly-GP), DPR DPR, RNA foci,
phospho- RNA foci, and TDP43e,
TDP43 phospho-TDP43 RNA foci vacuolization

ND Unknown ND 5-10

GOF: Gain of function; MNL: motor neuron loss; NA: not applicable; (ND): not described; DPR: dipeptide-repeat proteins; BAC: bacterial artificial
chromosome. !This includes the promoter sequence of a human gene. 2Viral delivery.

lack the ability to regulate the GluR2 subunit, rendering
motor neurons vulnerable to excitotoxicity (23, 51, 52). A
site-specific recombinase technology (Cre-Lox system) has
been used to remove SODI mutants from astrocytes and
microglia (51-53). This system slowed disease progression
but did not prevent disease onset, although it has been
demonstrated that the removal of mutant SOD1 expression
from neurons prevented disease onset (53). Thus, it is
possible that astrocyte cell replacement therapy can improve
survival in patients with ALS (53). Mutant SODI causes
other forms of neuronal damage, including endoplasmic
reticulum stress, proteasome inhibition, and synaptic vesicle
defects (54), which will not be covered in this review.

Mouse models. Many transgenic mouse models have been
developed since the discovery of mutant SODI1-induced
ALS. These models have helped scientists to understand the
mechanism underlying ALS. It has now been established that
SOD1I gain and LOF can complement each other in the
pathogenesis of AMS (55). In some models, Sodl™'~
knockout mice did not develop the ALS phenotype. Rather,
these mice had signs of decreased fertility, axonal repair
difficulties, higher oxidative stress, weakness, and in severe
cases, early post-natal mortality without expressing any
phenotypes of ALS up to 6 months of age (56-58).
Conversely, overexpression of human wild-type SOD1 did
not result in the development of symptoms typical of ALS.
Thus, some mice showed late deficient hindlimb splaying at
8 months of age, whereas mutant SODI transgenic mice
exhibited the ALS phenotype at an earlier age (30, 35). Most

models in the literature were created by the administration
of a 12-kb fragment of human genomic DNA that contains
all regulatory elements as the transgene vector (59).
Researchers have introduced the following mutant SODI
genes into mice: A4V, G93A, G37R, D90A, and G85R. Mice
with these gene variants had phenotypes that mimicked
several features of ALS (Table II).

Furthermore, these phenotypes depend on the patient’s
genetic profile, gender, mutation type, and accumulation of
mutant SOD1 protein. It was demonstrated that contrary to
mice, patients with the A4V mutation had rapid disease
progression and death within 1 year of symptom
manifestation (60). Conversely, investigators noted that the
disease was slowly progressive in both mice and humans
who had D90A mutation (60). Furthermore, slow disease
progression and prolonged survival were common among
female mice (61). Similar observations were noted in
humans (62). The mouse models most widely used by ALS
researchers are those expressing approximately 25 copies of
the transgene Sodl/©%34 under the influence of a human
SODI1 promoter (3). These are ideal for studying the
pathogenesis of ALS because they closely mimic the disease
in patients with SODI-related ALS. LBHI accumulation,
neuronal loss in the ventral horns of the spinal cord, and
reactive gliosis have been described in patients with SOD1-
related ALS (62). Nevertheless, some features such as CNS
vacuolization have only been observed in mutant Sod/ mice
and infrequently in humans (62). It is thought that these are
due to the accumulation of remnants of damaged
mitochondria. Sod19%4 mice can live for approximately
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Table III. Mouse models for fused in sarcoma (FUS)-related amyotrophic lateral sclerosis.

Clinicopathological features

Mutation (Ref)

hFUSWt hFUSWt ThFUswt 2FysRS2IC 1FUSR521C 2FysP525L LFUSR521G
(71,75,85) (71,75.,85) (71,75,86) (72,73,82) (72,73,82) (71) (72,73,82)

Promoter mPrp tau CAG tau hamPrp tau CAG

Age of disease onset (months) 1.0 ND Approximately 0.1 20 1.0 1.0 Approximately 0.5

Cognitive deficit NA ND NA ND ND ND Y (only mice
that survived)

Cortical MNL No No No ND Yes ND No

Hippocampal MNL No ND ND ND ND ND ND

Spinal cord MNL Yes No No Yes Yes Yes No

Gliosis Yes No Yes Yes Yes Yes Yes

Paralysis Yes No Yes Yes Yes Yes Yes

Mechanism GOF ND LOF GOF LOF GOF GOF and LOF

Cytoplasmic inclusion Diffused and  None None Diffused Low Highly None

intense FUS, FUS FUS diffused
perinuclear aggregates FUS
inclusions and
ubiquitin

Age of death (months) 3 ND <1 12 2-2.5 12 <1 (70% of mice)

hFUS: Human FUS; GOF: gain of function; LOF: loss of function; MNL: motor neuron loss; NA: not applicable; ND; not described. lHemizygotes.

2Heterozygotes.

4 months after developing signs of motor neuron (Y526C) (72). FUS proteins play a role in controlling

degeneration and paralysis. In previous reports, investigators
have observed other signs such as muscle denervation at the
neuromuscular junction (NMJ), microgliosis, and extensive
inflammation of the brain (55, 57). Of note, motor neuron
degeneration did not improve after eliminating microglia
expressing mutant Sodl G934 \whereas a decrease of mutant
Sod1937R in astrocytes led to a significant prolongation of
survival in transgenic mice (52, 63). Although significant
progress has been made in identifying the mechanism
underlying motor neuron degeneration in SODI-related ALS,
further study is warranted to understand disease progression
among the different variants (64).

The FUS Mutation

The FUS mutation is the second most frequent mutation
associated with ALS (64-66), accounting for 5% of cases in
patients with FALS (64). Mutations in the FUS protein have
been identified in patients with FALS, sporadic ALS, FTD,
and frontotemporal lobar degeneration without motor
impairment (64, 67). Clinically, the disease is aggressive and
has been associated with young age (68, 69).

In most cases, mutations have been identified clustered in
the C-terminal portion of the FUS protein, which consists of
several domains, including the RNA-recognition motif,
C-terminus, and nuclear localization signal (NLS) (70, 71).
Researchers identified a new mutation that triggers juvenile
FUS-associated ALS, located in the C-terminal amino acid

transcription, processing RNA, and repairing DNA (73) FUS
proteins can translocate intracellularly between the nucleus
and the cytoplasm similar to TDP43 (74).

In patients with FUS mutation, an impairment of DNA-
repair pathways and RNA splicing can cause physiological
defects such as dendritic growth retardation, NMJ denervation,
and neuron dysfunction (75). However, it is believed that the
impairment of DNA-repair mechanisms is not due to the
binding of mutant FUS to the DNA foci but rather due to the
interaction with histone deacetylase 1 (76-78) Juvenile ALS
with basophilic inclusions is pathologically and genetically
different from the classic form of sporadic ALS. Basophilic
inclusions are positive for FUS protein; however, these are
negative for TDP43 (78). Moreover, the intensity of basophilic
inclusions, especially in the horn of the spinal cord and
cortical neurons, is a reflection of disease severity (79).

The administration of rosiglitazone in FUS transgenic rats
prevented neuronal loss by inhibiting the development of
abnormal dendrites, thus preserving their spatial memory
(80). This suggests that neuronal loss is downstream of
dendritic disruption, and this might also be the case in NMJ
denervation. The use of FUS transgenic rats can potentially
help understand the mechanism underlying cortical dementia
in frontotemporal lobar degeneration (80).

Mouse models. A mutation in the FUS gene can cause ALS

by both LOF and toxic GOF, contrary to other forms of ALS
(Table IIT).
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In one report, antisense morpholino oligonucleotide was
used to knock-down fus gene in zebrafish (81). Neurological
disorders such as NMJ denervation associated with abnormal
synaptic activity and motor neuronal excitotoxicity were
observed in this model (81). Of note, the investigators also
observed symptoms that mimicked ALS in another group of
zebrafish overexpressing mutant FUS (17). These observations
demonstrate that LOF is the key pathogenic mechanism in
FUS-related ALS. Nevertheless, there was no evidence to
exclude toxicity due to GOF. In a more recent study,
investigators developed a transgenic mouse model expressing
FUSR2IC mutation driven by the Syrian hamster prion
promoter (82). While significant and progressive neuronal loss
were observed in these mice, no cytoplasmic inclusions were
noted. Conversely, in most cases, endogenous FUS was not
able to function properly (83). Overall, by identifying defects
in transcription and RNA splicing in knockdown mouse
models, investigators have demonstrated that LOF should be
considered as a mechanism of action in FUS-induced ALS
(83). Nevertheless, additional research is warranted, as
controversy continues to surround this hypothesis.

Other researchers hold that toxic GOF is involved in the
development of FUS-related ALS (84). It was shown that
homozygous mice overexpressing human wild-type FUS under
the mouse prion promoter had progressive and lethal
neurodegenerative disease despite having FUS protein levels
only 1.7-fold higher than non-transgenic mice (85). Mice with
FUS mutation developed tremors at 1 month of age and showed
signs of spinal cord neuronal loss and gliosis (86). Nevertheless,
researchers did not identify physiological alterations in the brain
(87). Furthermore, the accumulation of FUS inclusions was
observed in the cytoplasm of the anterior horn of the spinal cord
and brain, but did not co-localize with ubiquitin inclusions (88).
Of note, wild-type FUS is characteristic of FTD and not ALS,
although the mice displayed signs typical of ALS (71). These
observations support the hypothesis that the disease acts through
a GOF mechanism due to cytoplasmic accumulation of FUS
and the absence of inclusions in the nucleus (81). Other
investigators did not observe significant motor neuron loss or
NMIJ denervation in wild-type transgenic mice (75). In their
model, the mice expressed a single copy of human wild-type
FUS using Cre-LoxP recombinant at the microtubule-associated
protein tau (MAPT) locus (75). The investigators utilized the
same promoter to develop transgenic mice overexpressing
human mutant FUSR?2/C and FUSP525L, which have been
reported to cause late-and early-onset disease in humans,
respectively (71). Contrary to the healthy wild-type model,
FUSR?IC and FUSP?L mice exhibited denervated NMJ and
progressive neurodegeneration at 2 and 1 month of age,
respectively (71). This indicates that the FUS 325L mutation
causes more aggressive disease than the F US®21C mutation. In
one report, the investigators found that mutant FUS, besides
being more pathogenic, was more stable than human wild-type

FUS (72). In both mutant models, diffused condensed
inclusions of human wild-type FUS were observed. In
addition, researchers documented an abnormal accumulation
of FUS in the cytosol rather than in the nucleus (72, 73, 82).
FUSP?L mice demonstrated more cytoplasmic FUS than
FUSR?IC, indicating that the frequency of FUS accumulation
is directly related to the severity of ALS (82). Furthermore, to
support their argument that the disease acts through a GOF
toxicity mechanism in these models, the investigators
developed a conditional FUS knockout model to overcome the
prenatal lethality of consecutive FUS knockouts (75).The
investigators concluded that the toxicity observed in FUS-
related ALS does not involve an excess of human FUS or
require the interaction of the mutant gene and wild-type forms.
Rather, it is thought that toxicity is only due to accumulation
of mutant FUS (17, 73, 75).

Lastly, there is evidence that the disease acts through a GOF
or LOF mechanism depending on the type of mutation (89).
Investigators developed human wild-type FUS or F USR321G
mice models by utilizing a Cre-inducible transgenic approach.
Mortality rates were approximately 70% and 100% in mice
expressing F USR21G and human wild-type FUS, respectively
(82, 85). In both groups, mortality was due to loss of motor
function, which occurred before the mice were 1 month old.
FUSR?IG tat mice (Tat transgenic mice that express Tat
protein; a number of studies have documented its neurotoxic
property and its association with neurological diseases)
survived and exhibited impaired motor function and mild
behavioral disorders compared to their littermates (82, 85).
Most mice expressing human wild-type FUS and F USR321G
developed hindlimb clasping, NMJ denervation, and muscle
atrophy prior to motor loss (82, 85). This finding contradicts
those of previous researches that demonstrated that wild-type
FUS was less severe than mutant FUS. Similarly to the model
generated by Qiu et al. (82), cytoplasmic FUS proteins were
not detected in these models. Nevertheless, both mutants were
distinct in terms of their gene-expression profile and synaptic
homeostasis. Mice that expressed human wild-type FUS
exhibited low gene expression, implying that endogenous FUS
was non-functional. Thus, the expression of human wild-type
FUS was through the LOF mechanism. Mice that expressed
FUSR?IG, contrary to transgenic mice that expressed human
wild-type FUS, showed disrupted branching of dendrites,
which was thought to be caused by toxic GOF. Nevertheless,
it is worth mentioning that F USR?IG
low gene expression, a finding that is in line with that reported
by Qiu et al. (82). This supports the hypothesis that FUS-
related ALS acts through a partial LOF and GOF.

mice also demonstrated

The TARDBP Mutation

TDP43 has been identified as the main component of
cytoplasmic and intracellular inclusions in neurons and glia
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of patients with sporadic and FALS (90). Over 30 distinct
mutations in the gene encoding TDP43, TARDBP, have been
identified, and 3-4% occurred in patients with FALS (91,
92). While FUS and TDP43 proteins share similar structures
and functions, suggesting that they probably have the same
disease mechanisms, their functions of both proteins, for the
most part, uncharacterized.

More than 50 missense mutations in the TARDBP gene
have been identified, and these are related to polymorphism
or substitution. Mutations in the TARDBP gene cause TDP43
hyper-phosphorylation and ubiquitin aggregation (93). Of
note, TDP43 inclusions are found in most patients with ALS
and ALS-associated FTD, except for those who have
mutations associated with SODI. For example, TDP43
inclusions have been described in progranulin (GRN) gene,
valosin-containing protein (VCP), and C9ORF72 mutations
(94). The presence of TDP43 inclusions can lead to a variety
of proteinopathies, including axonopathy, mitochondrial
degeneration, and abnormal RNA regulation (95). Under
normal circumstances, TDP43 proteins help transport target
mRNAs from the soma to distal axonal compartments as well
as the NMJ (95). A deficiency of TDP43 causes retrograde
movement of mRNA granules in Drosophila motor neurons
and mouse cortical neurons (65).

Oxidative stress accumulation is also common in
neurodegenerative diseases caused by protein mutation.
Glutathione depletion triggers the formation of TDP43
inclusions (96), suggesting a relationship between reactive
oxygen species and TDP43 impairment. Other investigators
further demonstrated that TDP43 aggregates trigger oxidative
stress and cause the formation of stress granules that recruit
more TDP43, leading to the formation of large protein
inclusions (97). These, then ubiquitinate mRNA molecules,
including HDAC6 and fission factors, causing the
degradation of mitochondria and  subsequently,
neurodegeneration (98, 99). Nevertheless, mitochondrial
aggregation following the attachment of TDP43 did not
require fission protein (100). Rather, this involved
dysfunction of tau protein, which facilitates axonal transport
of neurotransmitters (101). While these findings point
towards a possible role of TDP43 inclusions in
proteinopathies, researchers still have to determine whether
these inclusions can cause neurodegeneration or are just a
downstream consequence.

Mouse models. TDP43 affects many biological processes,
including embryogenesis and neuronal development (102,
103). Cell dysfunction results if TDP43 does not function
properly (104). That said, it was challenging for researchers
to develop mouse models to study a single disease.

While some researchers successfully generated TDP43
models (105), the experiments had shortcomings in the sense
that none could recapitulate the classical TDP43-associated
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ALS-like phenotype. To understand whether TARDBP-
related ALS acts through LOF, researchers generated
knockout mouse models. They found that embryogenesis
was impaired in homozygous knockout mice, suggesting that
TDP43 played a part in disease pathogenesis (106).
Conversely, there was evidence that TDP43 synthesis was
autoregulated, as heterozygous knockout mice did not have
symptoms of neuromuscular disease and had normal protein
expression (106-108). Symptoms typical of ALS were not
exhibited in any of the generated knockout models. Overall,
it can be deduced that TDP43 aggregation is likely the main
cause of ALS/FTLD through a GOF rather than LOF (109).

Furthermore, in order to study the nature of GOF toxicity
in ALS and the nature of GOF toxicity in ALS in which high
levels of TARDBP mRNA and protein in defected neurons
have been reported, researchers generated transgenic mice
overexpressing human wild-type TDP43 carried by
exogenous promoters such as Cre, Thyl.2, Prp and Camklla
(108, 110). The mice in this model exhibited phenotypes
similar to those observed in Camklla mice. These include the
presence of fragmented and phosphorylated TDP43 inclusions
in the cytosol, early neuronal loss, gliosis, axonopathy,
intestinal dysfunction, progressive paralysis, and death.
However, these signs are not pathognomonic for ALS and
may be observed in different types of TDP43 proteinopathies
(66, 111, 112). These findings raise concerns regarding the
reliability of these mouse models in the study of ALS
pathogenesis.

Researchers have also attempted to understand the role of
the structural compartments of TDP43 by generating
transgenic mice models overexpressing only C-terminal
fragments or containing defective NLS human TDP43 (37,
72, 113). Investigators observed only cognitive dysfunction
and mild motor neurodegeneration in C-terminal fragments
and defective NLS mice, respectively. This suggests that
these domains may be involved in ALS (114), although they
did not exactly mimic ALS.

Given that ALS-TDP43 cytoplasmic inclusions are typical
in ALS, it is necessary to study these mutations, especially
A315T, M337V, G348C, and A382T, reported to occur
frequently (115-119). This review delves into the significance
of these mutations in some transgenic lines (Table IV).

Some investigators generated human wild-type
TARDBPA315 T and TARDBPG348C transgenic mouse models
by injecting DNA fragments, encompassing its human
endogenous promoter subcloned from TARDBP-BAC into
mice (116). In all three models studied, TDP43
overexpression was about three-fold compared to endogenous
levels. All the models under investigation, contrary to those
with higher expression that used exogenous promoters (112,
119, 120), exhibited late disease onset at age 10 months. Of
note, transgenic mice expressing TARDBPS3#8C had more
aggressive disease than mice with TARDBPA3T and wild-
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type TARDBP (120). For example, aggregates containing
peripherin proteins, pathognomonic of ALS, were identified
in high amounts in the hippocampus and the cortex of
TARDBPY38C mice compared with TARDBPA33T and wild-
type TARDBP mice. Similarly, investigators found that
microgliosis and astrogliosis were prominent in
TARDBPS3#5C than in TARDBP3!5T and wild-type TARDBP
mice. Other researchers generated knock-in mouse models
expressing heterozygous human TARDBPA382T  or
TARDBPG348C mutations, and found that disease onset was
late in these mice (121). This indicated that the use of an
endogenous promoter can be better to recapitulate signs and
symptoms characteristic of ALS. In addition, the researchers
reported that the levels of mutant mRNA and proteins in
astrocytes were higher in TARDBPA3%2T than TARDBPY3#5C
mice. In other TARDBP transgenic mouse models carrying the
endogenous promoter, late disease onset was documented in
mice with mutant TARDBPM337V and TARDBPO33!K
expressing exogenous promoters (118, 122). Janssens et al.
demonstrated hindlimb clasping at less than 1 month of age
in mice with mutant TARDBPM337V driven by a Thy-1.2
promoter (118), whereas Wang et al. described cortical
neuronal loss driven by a prion promoter in transgenic mice
at 12 months of age (122). According to some investigators,
the level of TDP43"337V in hemizygous TARDBPM337V mice
was not enough to reach the minimum level required to cause
motor neuron death (in the spinal cord), which is a typical
feature necessary for the onset of ALS-like phenotypes such
as muscle weakness and paralysis (122). However, this
hypothesis should be further investigated. Conversely, other
researchers described motor deficits at 3 and 10 months of
age in TARDBPZ33!K and TARDBPM337V mice, respectively;
these were under the control of mouse prion promoter (110).
The mice in this model did not exhibit cytoplasmic TDP43
aggregations and on the contrary, TDP43 proteins were
localized in the nucleus. Nevertheless, aberrant splicing
events were observed in some RNA targets and enhanced in
others. Thus, it can be presumed that mutations in TDP43
cause ALS through LOF and GOF in the absence of toxicity.
In yet another study, investigators used the Cre recombinase
system to reduce TDP439331K expression in neurons and
discovered that disease onset was delayed; however, this did
not stop it from progressing (123).

Overall, it can be deduced from the findings above that
overexpression of TDP43 at very high levels, especially in mice
with A315T mutation, can cause premature death, most likely
due to gastrointestinal complications (124, 125). In addition, the
use of either low protein expression or endogenous promoter
correlates with late-onset motor dysfunction. Therefore, mice in
these models develop signs that are reminiscent of TDP43-
related ALS. Regarding the mechanism underlying neuronal
toxicity, the subject remains a controversial issue, and further
studies are warranted in this domain.

Conclusion

Much has been achieved in the field of genetic research,
especially in understanding the pathogenesis of neurodegene-
rative diseases such as ALS. It was not until recently that
researchers understood why it was important to determine
the underlying mechanism of LOF and GOF. Despite
advances in our knowledge of the mechanisms underlying
the development of ALS, the disease remains fatal.
Researchers have only been able to develop mouse models
that closely mimic ALS in humans; however, none of these
models mimic the exact pathophysiology of the disease in
humans, and current treatments can only relieve symptoms,
not provide a cure. This review provides a deep insight into
the best mouse models that have been generated to date.
These models can serve as a basis for further research into
developing better models that can potentially help in
identifying an effective therapy against ALS.
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