
Abstract. Background/Aim: Laminarin, mainly found in the
fronds of Laminaria, has antimicrobial characteristics and
induces immune responses. However, there are no available
information to show the laminarin effect on glutamic
oxaloacetic transaminase (GOT) and glutamic pyruvic
transaminase (GPT) levels in mice with leukemia in vivo.
Materials and Methods: Fifty normal BALB/c mice were
separated randomly into five groups. Group I mice received
normal diet as control. Leukemia was generated in groups II-

V using WEHI-3 cells: Group II mice received normal diet as
positive control; group III, IV and V mice received laminarin
at 1, 2.5 and 5 mg/ml with ddH2O, respectively, by oral gavage
every 2 days for 14 days (total of seven times). All mice were
weighed during the treatment. After treatment, mice were
sacrificed, blood was collected for determination of cell
markers, liver and spleen samples were weighed, and spleens
were used for phagocytosis and natural killer (NK) cell activity
and cell proliferation using flow cytometric assay. Results:
Laminarin did not affect animal appearances, but increased
the body weight at all doses. It reduced the weight of liver at
2.5 and 5 mg/ml and of spleen at 5 mg/ml. Laminarin increased
CD3 (2.5 mg/ml) and CD19 (1 and 5 mg/ml) cell populations
but reduced CD11b (5 mg/ml) cell populations, however, these
did not affect Mac-3 marker level. Laminarin at 1 mg/ml
increased phagocytosis by macrophages from peripheral blood
mononuclear cell, but did not affect those from the peritoneal
cavity. Laminarin increased NK cell cytotoxic activity at all
doses and at a target ratio of 25:1 and 50:1. Laminarin did not
affect B-cell proliferation, but at 5 mg/ml significantly reduced
T-cell proliferation. Laminarin restored glutamate oxaloacetate
transaminase (2.5 and 5 mg/ml) and glutamate pyruvate
transaminase (2.5 mg/ml) levels. Based on these results, we
suggest that laminarin can promote immune responses and
protect against liver injury.
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Acute myeloid leukemia (AML) is an aggressive form of
cancer of the bone marrow and blood which is characterized
by an accumulation of immature myeloid blasts in the bone
marrow (1) and is the most common acute leukemia in adults
(2). However, progress in understanding AML and novel
treatment concepts are inadequate (3). The two standard
treatments for patients with AML are chemotherapy and
hematopoietic stem cell transplantation, however, the 5-year
survival rate remains below 50% due to chemoresistance or
toxicity from these treatments (4-6). Numerous studies have
focused on finding or developing novel therapeutic strategies
or agents for such patients. Improving immune responses to
mediate protection against leukemia (7, 8) is needed. There
is also focus on finding and improving immune responses
from natural products.

Laminarin, beta-1,3-glucan, a typical component of fungal
cell walls (9), found mainly in the fronds of Laminaria, has
antimicrobial properties (10). It also induces defense-related
events against Tobacco mosaic virus in tobacco and grapevine
(11-13). Injections of laminarin to both adult and larval locusts
lead to stimulate the immune responses (14, 15). Laminarin has
also been shown to inhibit heparanase activity and tumor
metastasis (16), and can boost the immune system, reduce
cholesterol level and lower systolic blood pressure (17). It was
reported that the pro-inflammatory chemokines such as
interleukin-8 (IL8) and monocyte chemoattractant protein-1
(CCL2) are secreted in human intestinal epithelial cells after
exposure to laminarin (18). Laminarin influenced the adherence
and the translocation of bacteria across the epithelial wall (in
jejunum, ileum, caecum and colon) of Wistar rat (Rattus
norvegicus). (19). In fish, laminarin increased the expression
of immune response genes IL1β, IL8, and toll-like receptor 2
(TLR2), therefore, it was suggested that laminarin modulates
the immune response and stimulates growth of fish (20). Based
on these observations, laminarin extracts have great potential
as a supplement in functional food.

Herein, we investigated the effects of laminarin on
immune responses in leukemic BALB/c mice in vivo. 

Materials and Methods
Materials and reagents. Laminarin and dimethyl sulfoxide (DMSO)
were purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA).
Iscove’s modified Dulbecco’s medium (IMDM), Roswell Park
Memorial Institute (RPMI)-1640 media, L-glutamine, penicillin-
streptomycin and fetal bovine serum (FBS) were purchased from
Gibco Life Technologies (Carlsbad, CA, USA). Antibodies against
CD3, CD11b, CD19 and lysosomal-associated membrane protein 2
(Mac-3) were purchased from BD Biosciences Pharmingen Inc.
(San Diego, CA, USA). Laminarin was dissolved in double-distilled
water (ddH2O) and stored at room temperature for 1 h before use.

WEHI-3 cells. Murine acute myelomonocytic leukemia WEHI-3 cell
line was obtained from the Food Industry Research and Development
Institute (Hsinchu, Taiwan, ROC). Cells were cultured with IMDM

supplemented with 10% FBS, 2 mM L-glutamine and antibiotics
(100 units/ml penicillin, 100 μg/ml streptomycin) in 75 cm2 tissue
culture flasks and placed at 37˚C in a humidified atmosphere of 5%
CO2 (21). 

Male BALB/c mice. Fifty male BALB/c mice around 20-23 g at 4
weeks old were obtained from the National Laboratory Animal
Center (Taipei, Taiwan, ROC). All mice were kept in stainless steel
mesh-bottomed cages and were maintained with specified pathogen-
free conditions at the animal center of China Medical University
(Taichung, Taiwan, ROC). For all mice, the institutional guidelines
for animal welfare of China Medical University were followed and
the study was approved by the Institutional Animal Care and Use
Committee of China Medical University (Taichung, Taiwan)
(approval ID: 104-11-B). 

Treatment of animals with laminarin. Fifty BALB/c mice were
randomly separated into five groups (N=10): Group I were normal
animals with normal diet as control; groups II-V were given a
peritoneal injection with 8×104 WEHI-3 leukemia cells. Group II
mice received normal diet as positive control; group III, IV and V
mice received laminarin at 1, 2.5 and 5 mg/ml with ddH2O,
respectively, by oral gavage every 2 days for 14 days (total of seven
times). All animals were individually weighed during the oral
treatment, and at the end of treatment, all mice were weighed and
sacrificed as described previously (21).

Measurements of cell populations. At the end of treatment, all mice
were individually weighed, and the blood sample, liver and spleen
organs were individually collected. A sample of 1 ml blood/mouse
was lysed with 1X Pharm Lyse™ lysing buffer (BD Biosciences
Pharmingen Inc., San Diego, CA, USA) for destroying the red blood
cells as per the guideline from BD Biosciences. Leukocytes were
collected and stained with phycoerythrin (PE)-labeled anti-mouse
CD3 and CD19, and fluorescein isothiocyanate (FITC)-labeled anti-
mouse CD11b and Mac-3 antibodies (BD Biosciences Pharmingen
Inc.) for 30 min. All samples were washed with phosphate-buffered
saline (PBS) and cell markers (populations) were analyzed by flow
cytometry as previously described (21, 22). 

Measurements of macrophage phagocytosis. All macrophages were
isolated from peripheral blood mononuclear cells (PBMCs) and
peritoneum as described previously (21, 22). All macrophages were
placed in plates containing 50 μl of target FITC-labelled Escherichia
coli and were mixed and then were analyzed for phagocytosis by
using flow cytometery following the PHAGOTEST® kit
manufacturer’s instructions (ORPEGEN Pharma Gesellschaft für
biotechnologische, Heidelberg, Germany). Quantifying phagocytosis
was performed by CellQuest software (Becton Dickinson) as
described previously (22).

Measurements of natural killer (NK) cell cytotoxic activity. Isolated
splenocytes were maintained in 96-well plate (2.5-5×105 cells/well)
with 100 μl of RPMI-1640 medium. Target YAC-1 cells (1×104 cells)
and PKH-67/Dil.C buffer were added to each well (Sigma-Aldrich
Corp.) for 2 min at 25˚C. Two milliliters of PBS was added to each
well for 1 min, then 4 ml medium was also added to the well and
plates were incubated for 10 min. After incubation, all samples were
centrifuged at 290 × g for 2 min. NK cell cytotoxic activity was
measured by flow cytometry as described elsewhere (22).

in vivo 32: 783-790 (2018)

784



Shang et al: Laminarin Stimulates Immune Responses in Leukemic Mice

785

Figure 1. Laminarin affected the body, liver and spleen weights of leukemic BALB/c mice. Fifty mice were randomly separated into five groups
(N=10): Group I were normal animals with normal diet as control; groups II-V were given a peritoneal injection with 8×104 WEHI-3 leukemia
cells. Group II mice received normal diet as positive control; group III, IV and V mice received laminarin at 1, 2.5 and 5 mg/ml with ddH2O,
respectively, by oral gavage every 2 days for 14 days (total of seven times). A: Body weight during the experiment. B: Final animal appearance
and weight. C: Representative examples of liver and weight. D: Representative examples of spleen and weight. Significantly different at p<0.05 vs.
*normal control (NC) group and #leukemic control (WC) group.



Measurements of T-and B-cell proliferation. Isolated splenocytes
(100 μl, 1×105 cells/well) were added to a plate with 96 wells which
each contained 100 μl of RPMI-1640 medium. Concanavalin A (5
μg/ml) was added to stimulate the cells for 5 days in order to
measure T-cell proliferation. Lipopolysaccharide (LPS, 5 μg/ml)
was added to stimulate the cells for 3 days in order to measure B-
cell proliferation. All samples were measured for cell proliferation
using CellTiter 96 AQueous One Solution Cell Proliferation Assay
kit (Promega, Madison, WI, USA) as previously described (22).

Measurement of blood glutamic oxaloacetic transaminase (GOT)
and glutamic pyruvic transaminase (GPT). Blood samples were used
for measurement of the levels of GOT and GTP by using liquiUV
Test (aspartate aminotransferase) for GOT, and liquiUV Test (alanine
aminotransferase) for GPT from Human Gesellschaft fur Biochemica
und Diagnosica mbH (Wiesbaden, Germany) (22-24). 

Statistical analysis. Data are expressed as mean±standard deviation
(SD). Comparisons differences between groups were analyzed by

one-way analysis of variance and Tukey test for multiple
comparisons (SigmaPlot for Windows version 12.0; Systat Software,
Inc., San Jose, CA, USA). Values of p<0.05 were considered to
indicate a statistically significant difference.

Results
Laminarin affected the weights of body, liver and spleen from
leukemic BALB/c mice. Representative animal body weights,
liver and spleen samples and weights are present in Figure
1. An increase in weight gained by laminarin-treated groups
when compared with positive control group was observed
(Figure 1A). Laminarin did not significantly affect animal
appearance but increased final body weight when compared
with the positive control group (Figure 1B). When compared
with the positive control group, laminarin significantly
reduced liver weight at 2.5 and 5 mg/ml treatment (Figure
1C) and spleen weight (Figure 1D) at 5 mg/ml treatment. 
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Figure 2. Laminarin affected the levels of cell markers in white blood cells from leukemic BALB/c mice. Blood was collected from all mice and was
analyzed for cell markers by flow cytometry as described in the Materials and Methods. A: CD3. B: CD19. C: CD11b and D: Mac-3. Significantly
different at p<0.05 vs. *normal control (NC) group and #leukemic control (WC) group.



Laminarin affected white blood cell markers from leukemic
BALB/c mice. Blood samples were assayed for the levels of
cell markers CD3, CD19, CD11b and Mac-3 by flow
cytometry. The results indicate that laminarin promoted
expression of CD3 at 2.5 mg/ml (Figure 2A) and CD19 at 1
and 5 mg/ml (Figure 2B), and reduced that of CD11b at 5
mg/ml treatment (Figure 2C) but did not significantly affect
that of Mac-3 (Figure 2D) when compared with the positive
control group. 

Laminarin affected phagocytosis by macrophages from
PBMCs and peritoneal cavity of leukemic BALB/c mice.
Macrophages were isolated from PBMCs and peritoneal
cavity to measure the percentage of phagocytosis. Laminarin
treatment at 1 mg/ml significantly increased phagocytosis
from macrophages from PBMCs (Figure 3A), however, none
of the three doses of laminarin affected phagocytosis from
macrophages of the peritoneal cavity when compared with
the positive control group (Figure 3B).

Laminarin affected the cytotoxic activity of NK cells from
leukemic BALB/c mice. For measuring the NK cell activity,
YAC-1 cells were used as targets and were assayed by flow
cytometry. The results indicate that laminarin significantly
increased NK cell cytotoxic activity at all laminarin doses
and both target ratios (25:1 and 50:1) when compared to the
positive control group (Figure 4).

Laminarin affected proliferation of T-and B-cells from
leukemic BALB/c mice. Isolated splenocytes were assayed for

T-and B-cell proliferation. The results indicate that laminarin
at 5 mg/ml significantly reduced T-cell proliferation (Figure
5A), however, none of the treatments significantly affected
B-cell proliferation (Figure 5B) when compared with the
positive control group.
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Figure 3. Laminarin affected phagocytosis by macrophages from peripheral blood mononuclear cells (PBMCs) and peritoneal cavity of leukemic
BALB/c mice. Blood samples were collected from mice and macrophages were isolated from PBMCs (A) and peritoneum (B) of each mouse.
Phagocytosis was measured by flow cytometery and quantified by CellQuest as described in the Materials and Methods. Significantly different at
p<0.05 vs. *normal control (NC) group and #leukemic control (WC) group.

Figure 4. Laminarin affected the cytotoxic activity of natural killer (NK)
cells in leukemic BALB/c mice. Isolated splenocytes were placed in 1 ml
of RPMI 1640 medium in 96-well plates. Target YAC-1 cells with serum-
free RPMI 1640 medium and PKH-67/Dil.C buffer was added to the cells
and NK cell cytotoxic activity was measured by flow cytometry as
described in the Materials and Methods. Significantly different at p<0.05
vs. *normal control (NC) group and #leukemic control (WC) group.



Laminarin affect the blood GOT and GPT levels of leukemic
BALB/c mice. Blood sample were collected for measuring
the levels of GOT and GTP. GOT and GTP levels were
significantly elevated in untreated leukemic mice (positive
control) compared with the healthy mice of the negative
control group. Treatment with laminarin at 2.5 and 5 mg/ml
restored GOT to a relatively normal level (Figure 6A) and at
2.5 mg/ml restored the GPT level (Figure 6B) when
compared with the positive control. 

Discussion

It has been reported that the binding of laminarin to an
amino-terminal β-1,3-glucan binding domain (N-βGRP)
from Plodia interpunctella (Pi-N-βGRP) can induce the
formation of a protein–carbohydrate macrocomplex
containing multiple Pi-N-βGRP molecules; it was suggested
that this complex is an initiation signal for activation of
serine protease cascades that promote immune responses
(10). Our earlier studies, we showed that laminarin promotes
immune responses and reduces lactate dehydrogenase but
increases GPT in hormal mice in vivo (25). However, the
exact immune response to laminarin treatment in leukemic
mice was not clear. To our knowledge, this is the first study
evaluating the effect of laminarin on immune responses in
leukemic mice in vivo. 

Cell population assay from blood samples of treated mice
indicated that laminarin elevated the expression of CD3
(Figure 2A) and CD19 (Figure 2B), but reduced that of
CD11b (Figure 2C). It is well known that T-cells (CD3+), B-
cells (CD19+) and monocytes (CD11b+) play critical roles in
immune responses (26). Immune responses can be divided into
innate and adaptive immune responses; during viral infection,
viral replication is initially controlled by innate immunity
before adaptive immune responses (T-cell and B-cell) for host
recovery (27). Mac-3 is a marker of macrophages (28).
Herein, results did not show that laminarin significantly
increased the Mac-3 level when compared to control groups.
Laminarin reduced the CD11b+ number, thus reducing the
population of monocytes. In order to further investigate the
effects of laminarin on the activities of macrophage, we used
the E. coli target cells. These cells were added to the
macrophages from PBMCs and peritoneum. Laminarin
increased phagocytosis from macrophages from PBMCs
(Figure 3A). It is well known that one of the factors for
pathogen clearance by macrophages is a high level of ROS
production when they are in contact with pathogen (29-32).

Laminarin significantly increased NK cell cytotoxic effect
in leukemic mice (Figure 4), reduced T-cell proliferation at
5 mg/ml treatment after stimulation (Figure 5A), but did not
significantly affect B-cell proliferation after stimulation
(Figure 5B). B-Cells play an important role in producing
antibody against antigens. NK cells are also important

immune cells in innate immunity, herein, we used targeting
of YAC-1 cells for measuring NK cell cytotoxic activity
which is a well-documented protocol.

Laminarin restored GOT and GPT levels although at
different doses. In serum, the levels of GPT and GOT
activity are higher than normal levels, that may reflect
hepatic cell destruction (33). 
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Figure 5. Laminarin affected T- and B-cell proliferation in leukemic
BALB/c mice. Isolated cells were stimulated with concanavalin A(Con
A) for proliferation of T-cells (A) and with lipopolysaccharide (LPS) for
B-cells (B), and then were analyzed by flow cytometry as described in
the Materials and Methods. Significantly different at p<0.05 vs.
*normal control (NC) group and #leukemic control (WC) group.



Taken together, based on these findings, we suggest that
laminarin may modulate immune responses through
promoting T- and B-cell, and macrophage populations. 
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