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Evaluation of Biological Activity of Mastic Extracts
Based on Chemotherapeutic Indices
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Abstract. Background: Most previous mastic investigators
have not considered its potent cytotoxicity that may
significantly affect the interpretation of obtained data. In the
present study, we re-evaluated several biological activities of
mastic extracts, based on chemotherapeutic indexes. Materials
and Methods: Pulverized mastic gum was extracted with n-
hexane and then with ethyl acetate or independently with
methanol or n-butanol. Tumor specificity (TS) of the extracts
was determined by their cytotoxicity against human malignant
and non-malignant cells. Antibacterial activity was determined
by their cytotoxicity against bacteria and normal oral cells.
Antiviral activity was determined by their protection of viral
infection and cytotoxic activity. Cytochrome P-450 (CYP) 3A4
activity was measured by [-hydroxylation of testosterone.
Results: Ethyl acetate extract showed slightly higher tumor
specificity (TS=2.6) and one order higher antibacterial
activity (selectivity index (SI)=0.813) than other extracts
(TS=14-2.5; SI=0.030-0.063). All extracts showed no anti-
human immunodeficiency virus (HIV) activity, but some anti-
herpes simplex virus (HSV) activity, which was masked by
potent cytotoxicity. They showed strong inhibitory activity
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against CYP3A4. Conclusion: Ethyl acetate extraction
following the removal of cytotoxic and CYP3A4 inhibitory
substances by n-hexane can enhance antitumor and
antibacterial activity of mastic.

Mastic is the extract of sap from Pistacia lentiscus, grown
only in the Chios island of Greece. Due to its unique shape
and diverse efficacy, mastic has been called “the tear drop of
Christ”. Mastic extracts have been reported to show
antitumor activity (including the enhancement of anticancer
drugs’ action and induction of apoptosis via oxidative stress)
(1, 2), antioxidant activity (that correlated with phenolic and
flavonoid contents) (3-8), antibacterial activity (9-11),
modulating activity of drug-metabolizing enzymes (12, 13)
and antiviral activity (14-17). However, most previous
investigators did not describe the chemotherapeutic index of
these activities (that is the ratio of the biological activity to
cytoxicity), even though there is a cautionary note that
mastic extracts showed potent cytotoxicity (18).

In the present study, we separated the crude mastic extract
into 5 different fractions using organic solvents and, then, re-
examined the biological activity of unfractionated and
fractioned extracts, based on chemotherapeutic indexes.

Materials and Methods

Materials. The following chemicals and reagents were obtained from
the indicated companies: Dulbecco’s modified Eagle’s medium
(DMEM) (Gibco BRL, Grand Island, NY, USA); fetal bovine serum
(FBS), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT), RPMI 1640 medium, doxorubicin, azidothymidine (AZT),
2’,3’-dideoxycytidine (ddC) (Sigma-Aldrich Inc., St. Louis, MO,
USA); dimethyl sulfoxide (DMSO) (Wako Pure Chemical Ind., Ltd.,
Osaka, Japan), curdlan sulfate (CRDS) (79 kDa; Ajinomoto Co. Inc.,
Tokyo, Japan). Culture plastic dishes and plates (96-well) were
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purchased from Becton Dickinson (Franklin Lakes, NJ, USA).
Mastic was kindly provided by Sunsho Pharmaceutical CO., Ltd.,
Shizuoka, Japan.

Fractionation of mastic by organic solvent extraction. Pulverized
mastic gum (5 g) was infused with n-hexane (50 ml) at room
temperature for 24 h to give n-hexane soluble fraction. Subsequently,
the residue was re-extracted with ethyl acetate (50 ml) by the same way
to afford ethyl acetate soluble portion. Quite separate from this,
pulverized mastic gum (5 and 10 g) had been prepared and was infused
with methanol (macerated) and n-butanol for 24 h at room temperature,
independently. Furthermore, pulverized mastic gum (10 g) was
extracted with methanol in reflux to prepare methanolic extract. The
organic solvent of each soluble portion was evaporated under reduced
pressure affording corresponding extract (n-hexane extract, 2.1g; ethyl
acetate extract, 2.4 g; methanol extract (macerated), 3.6 g; methanol
extract (refluxed), 6.4 g; and n-butanol extract, 9.0 g).

Assay for cytotoxic activity. Human squamous cell carcinoma cell lines
(Ca9-22, derived from gingiva and HSC-2, HSC-3, HSC-4 derived
from tongue, all purchased from Riken Cell Bank, Tsukuba, Japan, and
human normal oral cells [gingival fibroblast (HGF), periodontal
ligament fibroblast (HPLF) and pulp cell (HPC)], established from the
first premolar tooth extracted from the lower jaw of a 12-year-old girl
(19), were inoculated at 2.5x103 cells/0.1 ml in a 96-microwell plate.
After 48 h, the medium was replaced with 0.1 ml of fresh medium
containing different concentrations of each sample. Cells were
incubated further for 48 h and the relative viable cell number was then
determined by the MTT method (20). The relative viable cell number
was determined by the absorbance of the cell lysate at 562 nm, using
a microplate reader (Infinite FSOR, TECAN, Kawasaki, Kanagawa,
Japan). Control cells were treated with the same amounts of DMSO
and the cell damage induced by DMSO was subtracted from that
induced by test agents. The concentration of compound that reduced
the viable cell number by 50% (CCs) was determined from the dose-
response curve and the mean value of CCy for each cell type was
calculated from triplicate assays.

Tumor specificity index (TS) was calculated using the following
equation: TS=mean CCj, against normal cells/mean CCjs, against
tumor cells ((D/B) in Table I). Since Ca9-22 cells, as well as HGF
cells, were derived from gingival tissue (21), the relative sensitivity
of these cells was also compared ((C/A) in Table I).

Assay for antibacterial activity. Streptococcus mutans ATCC 25175,
Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC
25923 (all from American Type Culture Collection (ATCC),
Manassas, VA, USA) were grown in Brain Heart Infusion (BHI)
medium under aerobic conditions. Porphyromonas gingivalis 381
and Fusobacterium nucleatum ATCC 31647 were grown in Gifu
Anaerobic Medium (GAM) containing 5 ug/ml hemin and 1 pg/ml
menadione under anaerobic conditions with mixed gas of nitrogen
(83%), hydrogen (7%) and CO, (10%). Aerobic and anaerobic
bacteria strains (1x106 colony-forming units (CFUs)/ml) were
incubated at 37°C for 24 or 48 h, respectively, in culture medium
containing serially diluted mastic fractions or vehicle (DMSO), with
the absorbance of the bacterial suspension being measured at 595
nm. From the dose-response curve, the 50% inhibitory concentration
of bacterial growth (IC;,) was determined. The selectivity index
(SI) was determined by the ratio of ICs, to CCsy against human
normal oral cells (D in Table I).

592

Assay for anti-human immunodeficiency virus (HIV) activity. The
human T-cell leukemia virus I (HTLV-I)-bearing, CD4-positive,
human T-cell line MT-4, established by Dr. Miyoshi (22), was
cultured in RPMI-1640 medium supplemented with 10% FBS and
infected with HIV-1;;g at a multiplicity of infection (MOI) of 0.01.
HIV- and mock-infected MT-4 cells (3x104 cells/96-microwell) were
incubated for 5 days with different concentrations of extracts and the
relative viable cell number was determined by MTT assay. The
concentration that reduced the viable cell number of the uninfected
cells by 50% (CCs) and the concentration that increased the viable
cell number of the HIV-infected cells to 50% that of control (mock-
infected, untreated) cells (ECsq) were determined from the dose-
response curve with mock-infected and HIV-infected cells,
respectively. The anti-HIV activity was evaluated by the SI, which
was calculated using the following equation: SI=CC5y/ECs (23).

Assay for anti-herpes simplex virus (HSV) activity. We performed the
MTT assay to quantitate the anti-HSV activity of samples, as described
previously (24). African green monkey kidney Vero cells (10,000 cells)
were inoculated to a 96 well-plate (NUNC Labware Product-Sigma
Aldrich Inc, Tokyo, Japan). After 24 h, the cells were infected with
HSV-1 (supplied by National Institute of Infectious Disease, Shinjuku-
ku, Tokyo, Japan) (strain F) (MOI=0.01). HSV-1 and samples were
pretreated for 20 min before added to the cells. After incubation for 4
days in 100 pl MEM-10% fecal calf serum, the cells were washed
once with PBS, replaced with fresh culture medium that contained the
MTT reagent (BioAssay Systems, Hayward, CA, USA) and then
incubated for 4 h. Cells were dissolved with 10% SDS in 0.01 M HCl
and the absorbance was measured at 595 nm. The anti-HSV activity
was evaluated by the SI, which was calculated using the following
equation: SI=CCsy/ECs,. CCs, was determined with mock-infected
cells. ECs5y was defined as the concentration where the viability
returned to the 50% that of mock-infected cells.

Measurement of CYP3A4 activity. CYP3A4 activity was measured by
[-hydroxylation of testosterone in human recombinant CYP3A4
(Cypex Ltd., Dundee, UK). The reaction mixture, containing 200 mM
potassium phosphate buffer (pH 7.4), NADPH regenerating system
(1.3 mM NADPH, 1.3 mM glucose-6-phosphate, 0.2 U/ml glucose-6-
phosphate dehydrogenase and 3.3 mM MgCl,) and the human
recombinant CYP3A4 (16.5 pmol/ml) along with 0, 1, 3, 11, 33 and
100 pg/ml of mastic (dissolved in DMSO), was pre-incubated at 37°C
for 5 min. The reaction was started by the addition of 300 pM
testosterone substrates. The final volume of the reaction mixture was
250 wl with a final DMSO concentration of 2%. The reaction was
stopped by the addition of 500 ul ethyl acetate after 15 min. After
centrifugation (15,000 x g for 5 min), 400 pl of supernatant was
collected, dried and re-suspended in 100 ul of methanol. Analyses of
the metabolites were performed by high-performance liquid
chromatography (HPLC) (JASCO PU2089, AS2057, UV2075
ChromNAV) equipped with a TSK gel ODS-120A, 4.6 mm IDx25 cm,
5 pm column (TOSOH, Tokyo, Japan). The mobile phase consisted of
70% methanol and 30% water. The metabolites were separated using
an isocratic method at a flow rate of 1.0 ml/min. Quantification of the
metabolites was performed by comparing the HPLC peak area at
254 nm to that of 1la-progesterone, the internal standard. The
retention times for 6f3-hydroxytestosterone and 11a-progesterone were
approximately 5.0 and 6.7 min, respectively. The concentration that
inhibited the CYP3A4 activity by 50% (ICs,) was determined from
the dose-response curve.
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Figure 1. Antibacterial spectra of mastic extracts. A. Antibacterial activity of unfractionated (O), n-hexane extract (L), ethyl acetate (EtOAc) extract
(®), n-butanol (BuOH) extract (<), methanol (MeOH) extract (maceration (/\), reflux(x)) against Streptococcus mutans. B. Antibacterial activity
of ethyl acetate (EtOAc) extract of mastic against Porphyromonas gingivalis (@), Streptococcus mutans (O), Staphylococcus aureus (LJ),
Fusobacterium nucleatum (/\) and Escherichia coli (). Each point represents mean from three independent assays. *Significant reduction of viable

bacterial number (p<0.05).

Statistical treatment. Experimental values are expressed as the
meanzstandard deviation (SD). Statistical analysis was performed
by using Student’s z-test. A p-value <0.05 was considered to be
significant.

Results

Mastic components were separated by organic solvents into
n-hexane extract, ethyl acetate extract prepared following n-
hexane extraction, as well as with methanol extract and n-
butanol extract, either macerated or refluxed, as described in
Materials and Methods, and subjected to assay for various
biological activities.

Tumor specificity. All extracts showed higher cytotoxicity
against four human oral squamous cell carcinoma cell lines
(Ca%9-22, HSC-2, HSC-3, HSC-4) (CCs, ranged from 13.5 to
24 .4 ng/ml) as compared with three human normal oral cells
(HGF, HPLF, HPC) (ranged from 28.1 to 84.8 pg/ml), giving
TS indexes from 1.4 to 2.6 (determined by the ratio of D/B)
and from 1.3 to 2.3 (determined by the ratio of A/C) (Table
I). Among them, ethyl acetate extract showed the highest TS

values (TS=2.6), although its values were two-order lower
than that of doxorubicin (TS=244.7), which was used as
positive control.

Antibacterial activity. All extracts significantly (p<0.05)
reduced the viable cell number of Streptococcus mutans in
dose-dependent manners (Figure 1A). Ethyl acetate extract
showed approximately eight or nine times higher antibacterial
activity (IC5,=104 ug/ml), as compared with other fractions
(831-936 pg/ml). It should be noted that ethyl acetate extract
at 1,000 pg/ml completely eliminated the bacteria, while
treatment with unfractionated sample retained 27% of the
bacteria viable (Figure 1A). When IC4, value was divided by
mean CCs, value against three human normal oral cells, SI
values could be obtained (Table II). Ethyl acetate extract
showed the highest SI value of antibacterial activity (0.813),
followed by unfractionated (0.587) > methanol (reflux)
(0.063) > methanol (coolly immersed) (0.050) > n-butanol
(0.034) > n-hexane extractable fractions (0.030) (Table II).
The most sensitive bacterial strain was Porphyromonas
gingivalis (IC5(y=32.7 ug/ml), followed by Streptococcus mutans
(IC5(=104 pg/ml), Staphylococcus aureus (I1C5,=609 4 pg/ml),
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Figure 2. Anti-HIV activity of mastic extracts (A-F) and three popular anti-HIV agents (G-1). Mock- (O) or HIV- (@) infected MT-4 cells were
incubated for 5 days with the indicated concentrations of unfractionated (A) or n-haxane (B), ethyl acetate (C), n-butanol (D), methanol extract
(macerated, E; refluxed, F) extract of mastic or anti-HIV agents, AZT (G), ddC (H) or CRDS (1). Viable cell number was then determined by MTT
methods and expressed as absorbance at 560 nm. Each value represents mean+SD of triplicate assays. HIV, Human immunodeficiency virus; SI,

selectivity index; EtOAc, ethyl acetate; BuOH, butanol; MeOH, methanol.

Fusobacterium nucleatum (1C5,=759.6 ug/ml) and Escherichia
coli (IC5(,=907 4 ug/ml) (Figure 1B).

Antiviral activity. When HTLV-I-bearing CD4-positive
human T-cell line MT-4 cells were infected with HIV-1y;;p at
a MOI of 0.01, viability was reduced to 18.8+1.9% (n=9) of
mock-infected cells (calculated by the absorbance value of
control mock- and HIV-infected cells). All mastic extracts
did not prevent HIV-induced cytopathic effects (SI<1) (A-
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F), whereas three anti-HIV agents (AZT, ddC, CRDS)
showed excellent anti-HIV activity (SI=5,624, 3,868, 7,142)
(G-I) (Figure 2).

When Vero cells were infected with HSV-1 (MOI=0.01),
viability was reduced to 12.5+7.6% (n=6) of mock-infected
cells (Figure 3). All mastic extracts partially but significantly
(p<0.05) reduced the HSV-induced cytophatic effects,
recovering the cell viability up to 43.2+5.3% of mock-
infected cells. Lower recovery of cell viability (less than
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Figure 3. Anti-HSV activity of mastic extracts. Mock- (O) or HSV- (@) infected Vero cells were incubated for 4 days with the indicated concentrations
of unfractionated (A) or n-haxane (B), ethyl acetate (C), n-butanol (D), methanol extract (macerated, E; refluxed, F) extract of mastic. Viable cell
number was then determined by the MTT method and expressed as % of mock-infected control cells. Each value represents mean of triplicate assays.
*Significant recover of viable cell number (p<0.05). HSV, Herpes simplex virus; EtOAc, ethyl acetate; BuOH, butanol; MeOH, methanol.

50%) did not allow us to calculate the SI value. Higher
concentrations of extracts reduced the anti-HSV activity,
possibly due to the potent cytotoxicity of mastic (Figure 3).

CYP3A4 inhibitory activity. All mastic extracts were found
to be potent inhibitors of CYP3A4, as judged from [-
hydroxylation assay with testosterone (Figure 4). n-Hexane
extract (B) exhibited the highest CYP3A4-inhibitory activity
(IC5¢=3.1 pg/ml), followed by methanol extract (macerated)
(IC5p=4.1 pg/ml) (E), n-butanol extract (IC5y=12.1 pg/ml)
(D), unfractionated sample (IC5y=14.3 ug/ml) (A), ethyl
acetate extract (IC5y=14.8 pg/ml) (C) and, finally, methanol
extract (refluxed) (IC5,=24.4 ug/ml) (F).

Discussion

The present study demonstrated, for the first time, that ethyl
acetate extract of mastic prepared after n-hexane washing
showed slightly higher antitumor (TS=2.6) (Table I) and
antibacterial activity (SI=0.813) (Table II) compared to
unfractionated mastic (TS=2.0, S1=0.587) (Table II). This
may be due to the removal of cytotoxic substances by rinsing
with n-hexane (Tables I and II). However, antitumor activity
of all mastic extracts is much lower than that of anticancer

drugs (TS=4-2,961) (25). It has recently been reported that
the cytotoxic effect of antineoplastic drugs (cisplatin, 5-
fluorouracil and etoposide) against FTC-133 thyroid cancer
cells was enhanced by essential oils from the aerial parts
(leaves, twigs and berries) of Pistacia lentiscus (1). It, thus,
remains to be investigated whether ethyl acetate extract of
mastic and antitumor agents show such synergistic effect in
the tumor cells.

It is surprising that mastic extracts show very potent
CYP3A4 inhibitory activity. CYP3A4 is the most abundant
CYP family (26) and, therefore, inhibition of CYP3A4 by
mastic should increase the pharmacological action (in a good
way) or side-effects (in a bad way) of concomitantly
administered drugs. Washing out these CYP3A4 inhibitory
substances with n-hexane may reduce these pharmacological
action or side-effects of combined drugs.

We also found that ethyl acetate extract of mastic
selectively  killed Porphyromonas  gingivalis. This
microorganism has been reported to dominate the biofilm
community (27), colonize the microbial flora around dental
implants (28), be present into the saliva and pooled
subgingival plaque samples of aggressive periodontitis (29)
and Fanconi's anemia patients (30). Toothpaste that contains
of mastic is available in Japan. Ethyl acetate extract of
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Figure 4. Cytochrome P450 enzyme (CYP)3A4 inhibitory activity of mastic extracts. Each value represents the mean+SD of triplicate assays. EtOAc,
Ethyl acetate; BuOH, butanol; MeOH, methanol; IC s, half-maximal inhibitory concentration. *Significant inhibition of CYP3A4 activity (p<0.05).

Table 1. Cytotoxicity and tumor specificity of mastic extracts.

CCs (pg/ml)

Human oral squamous cell carcinoma cell

lines Human oral normal mesenchymal cells

(A) (B) ©) (D) TS
Ca922 HSC-2 HSC-3 HSC-4 mean SD HGF HPLF HPC mean SD (D/B) (C/A)
Unfractionated 24 269 168 270 233 48 439 228 764 477 2710 20 20
n-Haxane extract 215 186 222 180 201 21 286 245 312 281 34 14 13
EtOAc exract 348 261 277 409 324 68 737 879 927 848 99 26 2.1
n-BuOH extract 119 118 142 160 135 20 270 387 267 308 68 23 23
MeOH extract (Macerated) ~ 22.6 189 146 173 184 33 372 615 394 460 134 25 16
MeOH extract (Refluxed) 268 258 211 237 244 26 369 679 530 526 155 22 14
DXR 026 0.4 023 013 019 006 054 244 13747 4682 7851 2447 2.1

HGF, Human gingival fibroblast; HPC, human pulp cells; HPLF, human periodontal ligament fibroblast; CCs, 50% cytotoxic concentration; DXR,
doxorubicin; TS, tumor specificity; EtOAc, ethyl acetate; BuOH, butanol; MeOH, methanol; SD, standard deviation. Oral squamous cell carcinoma
cell lines: Ca9-22 (derived from gingival tissue), HSC-2, HSC-3 and HSC-4 (derived from tongue). Each value represents mean of triplicate assays.

mastic, which has higher antibacterial activity than
unfractionated mastic, may be appropriate for the treatment
of periodontal diseases.

We found that mastic has some anti-HSV activity, but not
anti-HIV activity, suggesting that the antiviral mechanism of
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mastic against these two viruses is different. Removal of
cytotoxic substances may further enhance the anti-HSV
activity, since anti-HSV activity seems to be masked by
cytotoxic substances (judging from the overlap of loss of
viability and that of anti-HSV activity; Figure 3). Further
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Table II. Antibacterial activity of mastic extracts.

Antibacterial ~ Cytotoxicity against ~ SI

activity normal oral cells
IC5¢ (ug/ml) CCsq (pg/ml)
Fractionation (A) (D) (D/A)
Unfractionated 81 47.7 0.587
n-Hexane 936 28.1 0.030
EtOAc 104 84.8 0.813
n-BuOH 900 30.8 0.034
MeOH (Macerated) 917 46.0 0.050
MeOH (Refluxed) 831 52.6 0.063

SI, Selectivity index; EtOAc, ethyl acetate; BuOH, butanol; MeOH,
methanol; CCsy, 50% cytotoxic concentration; ICsy, half-maximal
inhibitory concentration. Each value represents mean of triplicate assays.

studies are needed to elucidate the mechanism(s) of antiviral
action and investigate the possible synergistic effect(s) of
mastic with acyclovir.
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