
Abstract. Inherited optic neuropathies are a genetically
diverse group of disorders mainly characterized by visual loss
and optic atrophy. Since the first recognition of Leber’s
hereditary optic neuropathy, several genetic defects altering
primary mitochondrial respiration have been proposed to
contribute to the development of syndromic and non-
syndromic optic neuropathies. Moreover, the genomics and
imaging revolution in the past decade has increased
diagnostic efficiency and accuracy, allowing recognition of a
link between mitochondrial dynamics machinery and a broad
range of inherited neurodegenerative diseases involving the
optic nerve. Mutations of novel genes modifying mainly the
balance between mitochondrial fusion and fission have been
shown to lead to overlapping clinical phenotypes ranging from
isolated optic atrophy to severe, sometimes lethal multisystem
disorders, and are reviewed herein. Given the particular
vulnerability of retinal ganglion cells to mitochondrial
dysfunction, the accessibility of the eye as a part of the central
nervous system and improvements in technical imaging
concerning assessment of the retinal nerve fiber layer, optic
nerve evaluation becomes critical – even in asymptomatic
patients – for correct diagnosis, understanding and early
treatment of these complex and enigmatic clinical entities.

Mitochondria represent a tubular and branched membrane
system playing a fundamental role in several cellular processes
required for the development and maintenance of an organism,
such as metabolism, apoptosis, ion buffering and autophagy
(1-3). They reveal a high degree of interconnectivity and
plasticity, mainly dictated by metabolic status and
developmental stage (4) and, therefore, a constant state of
mitochondrial network flux is fundamental. This dynamic state
is achieved through mitochondrial dynamics, a complex
machinery of highly conserved mechanisms, including
mitochondrial fusion, fission, transport, interorganellar
communication and mitochondrial quality control (i.e.
mitophagy), tuned to a variety of signals and stimuli (5-7), and
well-orchestrated by specific intracellular proteins. 

The morphology and intracellular distribution of
mitochondria vary significantly between tissues and cell types,
being enriched in areas of increased metabolic demand, such
as neurons, especially the presynaptic and postsynaptic
terminals (8). Accordingly, it is not surprising that the
pathogenic mechanism of various neurodegenerative diseases
is established through an underlying deficiency of
mitochondrial energy metabolism (9). However, in recent
years it has been shown that impairment of mitochondrial
dynamics also leads to synaptic dysfunction, dendritic and
axonal degeneration and consequently to neurodegeneration
(10, 11). In this respect, restoration of mitochondrial function
has become, for some time now, the priority target of novel
neuroprotective strategies (12).

Mitochondrial membrane dynamics, and more specifically
fission and fusion, are indispensable for mitochondrial
distribution and homeostasis. Fusion, the physical merger of
two neighboring mitochondria, is necessary for the functional
complementation between individual mitochondria via
intermixing and exchanging proteins, respiratory complexes
and mitochondrial DNA (mtDNA) nucleoids (13, 14). It is
continuously counterbalanced by fission, a process necessary
for the appropriate distribution of mitochondria in dividing
cells, as well as their transportation and distribution throughout
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the length of neurons (15). Furthermore, fission is essential for
mitophagy, a quality-control mechanism that enables the
elimination of damaged mitochondria by autophagosomes, and
for the distribution of mtDNA nucleoids (16). 

The association and balance between mitochondrial fusion
and fission, and selective mitophagy, are intricate and tightly
coordinated (17, 18). By altering the delicate balance between
opposing fusional and fissional forces and modifying the
architecture of the organelle itself, in particular the cristae,
which house the protein complexes of the oxidative
phosphorylation system, the cell has been shown to regulate
cell proliferation (19) and energy metabolism (4, 20, 21). 

Four large guanosine-5’-triphosphate hydrolases (GTPases),
members of the dynamin superfamily located in the cytosol or
inner (IMM) and outer (OMM) mitochondrial membranes,
mediate mitochondrial fusion and fission. Specifically, optic
atrophy 1 (OPA1), and mitofusins 1 and 2 (MFN1 and -2)
mediate mitochondrial fusion (22), while dynamin-related
protein 1 (DRP1) is essential for fission (23).

Mitochondrial fusion is necessarily a multistep process, since
at least two distinct membrane fusion events occur. The OMM
and IMM, which delineate a mitochondrion, merge with the
corresponding membranes on another mitochondrion. These
events result in mixing of the membranes, the intermembrane
space (IMS), and the matrix. MFN1 and MFN2 are highly
conserved and have been identified as mediators of OMM
fusion (24). OPA1 on the other hand is involved in IMM fusion
and morphology of mitochondrial cristae (25-27). It is
synthesized within the cytoplasm as a pre-protein and once
transported into the mitochondria undergoes proteolytic
cleavage to generate long (L-OPA1) and short (S-OPA1)
isoforms of OPA1 (28). This OPA1 processing is reported to be
regulated by several mitochondrial proteases including
presenilin-associated rhomboid-like (PARL) (25), mitochondrial
ATPases associated with diverse cellular activities (m-AAA)
proteases (paraplegin and ATPase family gene 3-like protein 2-
AFG3L2) (29), the mitochondrial inner membrane AAA (i-
AAA) protease yeast mitochondrial escape (YME1)-like 1
ATPase (YME1L) and the membrane-bound metallopeptidase
with activities overlapping with the m-AAA protease (OMA1)
(30). Mutations in MFN2 and OPA1 gene were initially reported
as being responsible for the rare neurodegenerative diseases
Charcot-Marie-Tooth subtype 2A (CMT2A) and autosomal
dominant optic atrophy (DOA), respectively (31, 32). 

DRP1, the key player in fission, localizes primarily to the
cytosol, but upon activation of mitochondrial fission, it is
oligomerized and recruited by OMM-localized receptors,
mainly mitochondrial fission factor (MFF) (18, 33, 34),
mitochondrial division 49/51 (MiD49/51) (33), and less
apparently mitochondrial fission 1 (FIS1) (18, 33), to the OMM,
where it forms high-molecular-weight protein complexes
marking active or prospective fission sites (23). Mitochondrial
recruitment, assembly, activity and stability of DRP1 are

regulated by several post-translational modifications (35, 36). 
The recognition of all the implicated molecular players and

their exact role in fission/fusion has not been elucidated yet
and remains an area of intense investigation. Accumulative
evidence suggests that the role of mitochondrial dynamic
proteins regarding fusion and fission machinery is not that
distinguishable. Mitochondrial fusion proteins, such as OPA1,
can regulate mitochondrial fission (30), and DRP1-dependent
changes in mitochondrial morphology, on the other hand,
might control MFNs and OPA1 (37). Furthermore, recent
studies have pinpointed the importance of epigenetic and post-
translational modifications of the known key players DRP1,
MFNs and OPA1 in the regulation of their function (25, 35,
36, 38, 39). Remarkably, mutations in several of these
regulatory proteins (usually involved in protein processing)
have been identified lately as causal gene products of
syndromic or nonsyndromic inherited optic neuropathies.

Inherited optic neuropathies are a clinically and genetically
heterogenous group of disorders, characterized by typically
bilateral, symmetrical, irreversible reduced visual acuity, color
vision deficits, visual field defects and the clinical appearance
of optic atrophy (40). The clinical spectrum usually varies even
between the members of the same family and, in some cases,
individuals develop additional neurological complications
indicating a greater vulnerability of the central nervous system
(CNS) in susceptible mutation carriers (41). Therefore, besides
isolated optic neuropathies, optic atrophy is recognized as a
prominent feature in many neurodegenerative diseases caused
by primary mitochondrial dysfunction. However, because of
the heterogeneity and the highly variable phenotypes of these
disorders, their diagnosis becomes a challenging task.
Moreover genotype-phenotype correlations are usually highly
speculative, probably because of tissue-specific expression of
different isoforms of the affected protein, secondary
unrecognized genetic factors and insufficient knowledge
concerning the multi-factorial process of mitochondrial
dynamics. However, during the last few years there has been
an expansion of data concerning the phenotypic and genotypic
spectrum of these disorders because of improved diagnostic
imaging [magnetic resonance imaging (MRI), optical
coherence tomography (OCT)] and molecular technology
(DNA sequencing, transgenic animal models etc.). As a result,
a greater understanding of the complex molecular mechanisms
underpinning this broad range of neurodegenerative diseases is
expected in the near future. 

In light of this new evidence, the role of the main molecular
players of mitochondrial fusion/fission machinery in the
pathogenesis of inherited optic neuropathies is discussed in
this review. Particular emphasis is placed on novel
mitochondrial dynamic proteins, whose mutations were
recently identified as accounting for the development of
clinical entities involving the optic nerve only or in association
with extraocular manifestations.
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Mitochondrial Dynamic Proteins Related 
to the Pathogenesis of Optic Neuropathy

OPA1. The OPA1 gene, encodes a 960-amino-acid, dynamin-
like mitochondrial GTPase. OPA1 open reading frame (ORF)
comprises of 30 exons and 8 transcript variants (42), whose
expression is tissue-specific in humans (43-45), and which
arise from alternative splicing of three exons. OPA1 is
ubiquitously expressed, localized to the IMS and is firmly
anchored to the IMM via an N-terminal transmembrane
segment containing a mitochondrial targeting sequence (MTS)
(38, 46). It also displays a GTPase domain, a dynamin central
region and a coiled-coil C-terminal domain that correspond to
the dynamin GTPase effector domain (GED), involved in
oligomerization of this protein into cylindrical tubular
structures and catalytic activation (44, 47). The OPA1 protein
is synthesized as a precursor that undergoes complex
proteolytic processing within the mitochondria (38). Matrix
metalloproteases first remove the IMS during mitochondrial
import to give rise to IM-anchored L-OPA1, (38, 46), which
can undergo further proteolytic cleavage leading to the
production of S-OPA1 (28) (46). S-OPA1 interacts with
uncleaved forms of L-OPA1 at crista junctions and with
subunits of the mitochondrial contact site and cristae
organizing system (MICOS), which is involved in the
maintenance of crista structure (48-50). 

L-OPA1 is responsible for mitochondrial fusion, while S-
OPA1 was shown to be involved in IMM fission, when
accumulated (30, 51), indicating a highly regulated, dual role of
OPA1 in fusion and fission (30). The levels of L- and S-OPA1
can vary dramatically across tissues (30) and due to various
stress conditions. A drop in mitochondrial membrane potential
and induction of apoptosis, for instance, may induce massive
processing of L-OPA1 to S-OPA1 (28, 51). The balance
between the different isoforms of OPA1, dictated by the post-
translational maturational steps of OPA1, plays a fundamental
role in mitochondrial morphology, the regulation of
mitochondrial fusion and fission (25, 28, 51), the organization
of cristae, the maintenance of membrane potential, calcium
clearance and the assembly of respiratory chain supercomplexes
for achieving maximal respiratory efficiency (26, 27, 52, 53). It
was recently shown that OPA1 senses energy substrates in order
to regulate crista  structure, in a manner dependent on solute
carrier 25A (SLC25A) protein (54), while proteolytic activation
of OPA1 is sufficient to stimulate IMM fusion in a process that
is sensitive to oxidative phosphorylation (55). Moreover, a
direct role of OPA1 in mtDNA maintenance has been attributed
to a small IM-anchored OPA1-derived peptide (52) and loss of
mtDNA was recently observed upon loss or down-regulation of
OPA1 (52). Finally, OPA1 was reported to have independent
anti-apoptotic activity mediated by particular OPA1 splice
variants (44), oligomerized to complexes that control apoptotic
crista remodeling (48). 

OPA1 mutations are the most frequently found in patients
with non-syndromic DOA, and to date, more than 250
mutations of this gene have been identified (32). Isolated DOA
is characterized by a homogeneous phenotype including
progressive, bilateral visual impairment occurring during the
first two decades of life, temporal optic disc pallor, loss of the
central visual field and color vision defect (56, 57). This disease
affects primarily the retinal ganglion cells (RGCs), whose axons
form the optic nerve and the estimated prevalence is 1:10,000
to 1:50,000. OPA1 mutations were found in about 60-80% of
patients with DOA, with incomplete penetrance in 43-100% of
the cases (56). Cases with de novo mutation, sporadic cases, and
cases with unknown familial history, account together for 50%
of all patients (56). The visual impairment is irreversible,
usually moderate, but highly variable between and within
families, ranging from asymptomatic state to blindness. Up to
20% of OPA1-related disorders are syndromic (58) (called
DOA-plus syndrome). The extraocular involvement includes
sensorineural deafness, ataxia, myopathy, chronic progressive
external ophthalmoplegia and peripheral neuropathy, usually
presented after optic neuropathy during young adulthood. Visual
acuity and optic nerve damage is typically worse in DOA-plus
patients compared to ones with isolated optic neuropathy (59)
and deafness seems to be the most common extraocular
symptom just after optic neuropathy. Brain MRI also discloses
various cerebral abnormalities, including lactate peak, as well
as cerebellar and cortical atrophy, present even in non-
syndromic cases (60). Finally, DOA-plus form presented in
young adulthood has been distinguished further into typical
DOA-plus and to severe early-onset Behr-like syndromes (61). 

Since the spectrum of OPA1-related disorders is highly
variable regarding the age of onset, the severity of visual loss,
and the number, type and severity of extraocular symptoms, it
is still unclear if these various DOA phenotypes represent
different aspects of one clinical condition or constitute distinct
clinical entities (61). Interestingly, a recent report suggests that
OPA1 mutations may also be implicated in systemic
conditions, including spastic paraplegia, multiple sclerosis,
Parkinsonism or dementia (61). However, despite this large
clinical heterogeneity, most dysfunctions concern the central,
peripheral and autonomous nervous system.
OPA1 mutations are spread along the coding sequence of

the gene but most cluster in the GTPase domain and in the
dynamin central region. Single base-pair substitutions
represent the most common mutational subtype, followed by
deletions, and insertions (47, 62). In some cases, there are two
(different) missense mutations on different alleles which,
although recessive, lead to a stronger phenotype compared to
either of the single mutations (61, 63). Among the few
recurrent variants, some have been frequently reported, such
as a deletion in the GED at the C-terminus (61). Since OPA1
oligomerizes (48), mutations in the GED domain of one allele
can complement mutations in the GTPase domain of another
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allele (64). Genomic rearrangements in OPA1 gene, as well as
deletion of the entire one copy or part of the OPA1 gene have
been reported (63, 65, 66), indicating haploinsufficiency as the
main pathogenic mechanism. Overall, the majority of OPA1
mutations result in premature termination codons and unstable
truncated mRNAs, which are degraded by protective
surveillance mechanisms operating via nonsense-mediated
mRNA decay (63, 67, 68), providing further evidence for
haploinsufficiency. Missense OPA1 mutations affecting the
catalytic GTPase domain  in patients with DOA, on the other
hand, are more likely to exert a dominant-negative effect (47,
58, 69, 70) and these patients have a two-to three-fold
increased risk of developing syndromic DOA compared to
those with truncating mutation (58, 61, 71). Although these
syndromic DOA variants are characterized by significant
phenotypic variability, a worse visual prognosis as well as
thinner retinal nerve fiber layer evaluated by OCT (72)
suggest a deleterious gain-of-function effect of these
mutations. The different mutations in OPA1 are usually not
correlated with the severity of the disease (73). In this respect,
mtDNA instability, due to defective mitochondrial dynamics
caused by a dysfunction of the OPA1 gene, has been identified
in DOA-plus patients (70, 74) and could be responsible for the
multisystem phenotype through direct functional consequence
on the respiratory chain capacity (61, 70, 74, 75). It could also
explain the clinical overlap between syndromic DOA and
other related to mtDNA mutation-associated disorders.
However, mtDNA deletions are also present in patients with
isolated DOA (76). Secondary nuclear genes are also
suspected to control the severity of the disease in non-
syndromic patients (61, 77).

Impairments of mitochondrial morphology (78) and
functions, including increased autophagy or apoptosis (44),
generation of reactive oxygen species (75) and impaired
oxidative phosphorylation (4, 68, 74, 75), are evident in cells
derived from affected patients. Although defects in the
respiratory chain are less consistent in reports (75, 79), the
widespread deleterious consequences of OPA1 mutations on
RGCs, as well as other neuronal cell types and skeletal muscle
(61), are well documented.

m-AAA proteases: spastic paraplegia 7 (SPG7) and (AFG3L2).
SPG7 (paraplegin) and its close homolog AFG3L2 contain a
M41 metallopeptidase domain and an ATPase domain
characteristic of the AAA family of ATPases (m-AAA
proteases) (80). They form a hetero-oligomeric proteolytic
complex at the IMM, responsible for the proteolytic cleavage
of mitochondrial ribosomal protein L32 (MRLP32) and OPA1
(29). As a result, they regulate the equilibrium between pro-
fusion and pro-fission isoforms of OPA1 (81). Moreover,
AFG3L2 and SPG7 homo and hetero-polymeric hexameric
functional complexes (82) play essential roles in protein quality
control within mitochondria and have broad functional targets

including control of ribosome and respiratory chain subunits
assembly (83, 84) and degradation of misfolded proteins (85).

SPG7. Paraplegin is the product of the SPG7 gene. Recent
literature suggests that SPG7 also plays an essential role in the
regulation of the mitochondrial permeability transition pore
(86). Impaired axonal transport, ultrastructural mitochondrial
abnormalities, including aberrant cristae, as well as
hyperfragmentation of the mitochondrial network, have been
demonstrated in paraplegin-deficient mice (87), features
similar to those of cells isolated from OPA1-deficient patients.

Mutations of the SPG7 gene are responsible for both the
autosomal recessive form of hereditary spastic paraplegia
(HSP) (88) involving the optic nerve and autosomal dominant
non-syndromic optic neuropathy (89). 

HSPs are a group of similar neurodegenerative disorders
with a clinical presentation of weakness and spasticity in the
lower limbs (90). Mutations in SPG7 were initially reported
in three families, two with isolated spasticity and one with a
complex phenotype (91), characterized by age of onset
ranging from 10 to 45 years (92-95), cerebellar involvement
with/without mild cerebellar atrophy observed on MRI scans
(91, 93, 94, 96, 97), optic neuropathy (91, 92), ptosis (94, 95)
and supranuclear palsy (94). Optic neuropathy usually presents
as mild or subclinical visual impairment, revealed only by
OCT. SPG7-related DOA, on the other hand, is characterized
by progressive visual loss starting the first decade of life, with
final visual acuity of 1/10-3/10 in the second decade (89).

The mutational spectrum responsible for HSP ranges from
missense and nonsense mutations to large intragenic SPG7
deletions (90). Among them, strong evidence has been
provided regarding the pathogenic role of p.Ala510Val variant,
which leads to disturbed proteolytic function of the hetero-
oligomeric m-AAA protease (92, 93, 97-99). On the other
hand, Asp411Ala mutation, the first mutation segregating with
isolated autosomal dominant optic neuropathy, is located in
the AAA domain of the protein, downstream of the Walker B
motif (which with the upstream Walker A motif are implicated
in the fixation and hydrolysis of ATP) and causes impaired
proteolytic activity (89). 

Because paraplegin is closely related to AFG3L2 , is
incapable of self-assembling into homo-oligomers  and
requires AFG3L2 for its function, it has been suggested that
variants in AFG3L2 might also act as genetic modifiers
contributing to the clinical heterogeneity and the variable
severity of SPG7-related diseases. 

AFG3L2. Heterozygous missense mutations in the AFG3L2
gene have been shown to be responsible for autosomal-
dominant spinocerebellar ataxia type 28, characterized by
onset in young adulthood, slowly progressive gait and limb
ataxia, increased reflexes, dysarthria and ophthalmoparesis
(89, 100, 101). Patients harbouring homozygous AFG3L2
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mutations present with a more severe phenotype including
dystonia, oculomotor apraxia, and progressive myoclonic
epilepsy (102), but not optic neuropathy.  

However, a novel mutation p.Arg468Cysc in a highly
conserved arginine-finger motif in the AAA domain of
AFG3L2 was reported recently to account for the development
of DOA presenting as bilateral, symmetrical visual loss
starting in infancy accompanied by mild mental retardation
without signs of cerebellar impairment (103). 

i-AAA protease YME1L. YME1L1 belongs to the AAA family
of ATPases and it is a nuclear genome-encoded ATP-
dependent metalloprotease. YME1L1 is embedded in the
IMM, while its protease domain faces the IMS (i-AAA
protease) (104-106). YME1L1 contains a MTS, which is
cleaved-off by mitochondrial processing peptidase once it is
imported into mitochondria (107). The mature protein then
assembles into a homo-oligomeric complex within the IM
(104, 108). YME1L1 degrades both IMS and IM proteins,
such as lipid transfer proteins (109), components of protein
translocases of the IM (110, 111), and OPA1 at S2 site (30,
111, 112). Depletion of YME1L1 was shown to cause
increased mitochondrial fission and mitochondrial network
fragmentation through acceleration of OMA1-dependent L-
OPA1 cleavage, which leads to S-OPA1 accumulation (30,
113), or through a mechanism involving DRP1 and MFF
(114). Finally, loss of YME1L1 perturbs crista morphogenesis,
and renders cells susceptible to apoptosis (115). 
YME1L1 mutations were recently recognized as accounting

for infantile-onset developmental delay, muscle weakness,
ataxia, and optic nerve atrophy. Homozygous missense
mutation (c.616C<T) located in a highly conserved region in
the mitochondrial pre-sequence of YME1L1 leads to inhibition
of its cleavage by the mitochondrial processing peptidase and
the subsequent rapid degradation of YME1L1 precursor
protein. The abnormal processing of OPA1, due to impaired
YME1L1 function, was shown to cause proliferation defect
and mitochondrial network fragmentation (116) and seems to
be the main molecular mechanism underlying the pathogenesis
of this YME1L1 mutation.

MFN1 and 2. MFN 1 and -2 are two homolog GTP-binding
proteins of the dynamin-superfamily involved in OMM fusion
(117) and expressed ubiquitously but differently in various
tissues (117, 118). They share an N-terminal GTPase domain
followed by a first coiled-coiled heptad repeat region (HR1),
two adjacent small transmembrane domains and a C-terminal
second coiled-coiled heptad repeat region (HR2). MFN2, but
not MFN1 also possesses an N-terminal RAS-binding domain
(119). The N-terminal and C-terminal domains extend
perpendicularly into the cytosol, while the hydrophobic domain
spans the OMM (117), resembling an unfolded mitofusin
conformation optimal for mitochondrial tethering and therefore

permissive for fusion (120, 121). However, it seems that
conformational plasticity exists and mitofusins adopt either a
fusion-constrained or fusion-permissive molecular conformation
directed by specific intramolecular binding interactions through
HR1 and HR2 domains (120, 122). MFN1/2 form homo- and
hetero-oligomers on the OMM and are required for an
elongated mitochondrial network (24). MFN2 plays a
fundamental role in mitochondrial dynamics, including
mitochondrial transport, mitophagy and communication with
other organelles (11, 123), as well as in cellular bioeneretics.
Specifically, it coordinates mitochondrial fusion by working in
close tandem with its fellow fusogenic protein, OPA1 (124), and
it is involved in mitochondrial biogenesis (21, 125) by
regulating the expression of nuclear-encoded respiratory chain
subunits (126). It is also important for tethering mitochondria
to the endoplasmic reticulum (ER) (127) and modulating some
functions of the ER (128, 129). Furthermore, it is implicated in
apoptotic cell death and OMM permeability, oxidative
phosphorylation (126) and microtubule-related mitochondrial
transport in axons via interaction with Miro-proteins (130, 131).
Therefore, it is not a surprise that deletion of MFN2 is
embryonically lethal and alterations of its functions have been
associated with a number of different pathological conditions,
ranging from neurodegeneration to impaired glucose
homeostasis (11, 129). Interestingly, no disease has been
associated with mutations of MFN1.
MFN2 mutations account for 20% of Charcot-Marie-Tooth

disease type 2 (CMT2) cases, making this the most prevalent
axonal form of CMT (31, 132). CMT2A is a neurological
disorder characterized by complex phenotypes, including not
only neuropathy-related features but also systemic impairment
of the CNS (11). Both autosomal dominant and autosomal
recessive inheritance of these mutations, as well as sporadic
new mutations have been described (133). Furthermore,
truncation mutations in MFN2 have been shown to be
responsible for hereditary motor sensory neuropathy type VI
(HSMN VI), a rare early-onset axonal type of CMT associated
with bilateral sub-acute, sometimes improved spontaneously,
or acute optic neuropathy (11, 31, 134-136). Although
symptoms and disease severity are heterogeneous, the
frequency of MFN2 mutations was shown to be significantly
higher among severely affected patients with CMT2A (137,
138). MFN2 mutations might also be found in all subtypes of
CMT (139). Moreover, MFN2 mutations are linked to a
spectrum of clinical manifestations wider than CMT2
neuropathy alone. Indeed, a phenotype resembling the DOA-
plus phenotype, characterized by early-onset optic atrophy,
axonal neuropathy and mitochondrial myopathy, has been
associated with a novel MFN2 missense mutation (c.629A>T,
p.D210V) accompanied by multiple mtDNA deletions (140).
Furthermore MFN2-related disorders may even mimic
multiple sclerosis, when presenting with optic atrophy, brain
lesions on MRI and mild or unrecognized neuropathy (141).

Bagli et al: Mitochondrial Dynamics and Optic Neuropathy (Review)

515



Most MFN2 mutations in CMT2A are missense and cluster
within the GTPase and in the HR1 domains (31, 137, 138,
142, 143). A mutational hotspot region located immediately
upstream of the GTPase domain has been recognized (31).
Previous reports suggested that patients with compound
heterozygosity have more severe neuropathy, and their
phenotypes are consistent with an additive dominant negative
effect of MFN2 mutations (144). Some mutations lead to a
gain of function, since the mutated protein tends to aggregate
in mitochondria, while other mutants result in loss of function.
Since mitochondrial fusion is impaired (31, 145), the
subsequent disequilibrium between fusion and fission
processes may negatively affect cell function and serve as a
potential mechanism of neurodegeneration (11). However, the
pathogenicity of MFN2 mutations is suggested to rely also on
other functions of the MFN2 protein, such as the interaction
between mitochondria and the organelle transport machinery.
Indeed recently, several studies using in vitro and in vivo
models of CMT2A highlighted the relationship between
impaired mitochondrial trafficking due to MFN2 mutations
and axonal degeneration (11). 

Particular MFN2 mutations have been associated with
specific clinical features. In this way, visual impairment has
been associated with missense or nonsense mutations and
incomplete penetrance of visual loss has been linked to
Q276R mutation (11). However it seems that a genotype–
phenotype correlation cannot be establish. The same mutation
can be associated with both early- and late-onset disease, as
well as different signs and symptoms, even among members
of the same family (135), which is probably due to
environmental or other factors that modulate genetics (11).

OPA3. OPA3 is composed of at least three exons that are
alternatively spliced to produce two major transcripts: OPA3A
and OPA3B, (146). Defects in OPA3 have been associated
with both recessive and dominant optic neuropathy (147).
Interestingly, mutations of OPA3, OPA1 and SPG7 have all
been shown to be responsible for non-syndromic DOA. 3-
Methylglutaconic aciduria type III (3-MGCA type III), also
known as Costeff optic atrophy syndrome, is a neuro-
ophthalmological syndrome caused by recessive mutations in
the OPA3 gene, most prevalent amongst individuals of Iraqi-
Jewish origin and typically characterized by early-onset
bilateral optic atrophy, late development of a movement
disorder (ataxia or extrapyramidal dysfunction) of variable
severity beginning in the first or second decade of life, and
increased urinary excretion of 3-methylglutaconic acid (148-
152). Autosomal dominant OPA3-related disease on the other
hand is less common than the recessive form, with only a few
families identified to date (147), but highly penetrant (153). It
is characterized by optic neuropathy either isolated or more
often associated with congenital/infantile lenticular opacity,
hearing loss and neurological symptoms (147). It is a

clinically heterogeneous disorder, indicating a complex
molecular pathology. Some patients present with poor visual
acuity and nystagmus from birth, while others experience a
slowly progressive, symmetrical decrease in vision starting in
the first two decades of life, or remain asymptomatic until
later in life. The optic neuropathy is similar to that caused by
OPA1 mutations characterized by primary involvement of the
papillomacular bundle (147). The phenotypic spectrum of
autosomal dominant mutations in OPA3 was further expanded
recently with the identification of a de novo mutation in exon
2 encoding OPA3 Leu79Val, which leads to an unusually
severe phenotype including optic atrophy, cataracts, ataxia,
and peripheral and autonomic neuropathy (154). 

The functional and biological role of OPA3 is still unclear.
The presence of a putative N-terminal MTS indicates its
import into mitochondria (146). However the studies
concerning OPA3 localization in the IMM or OMM are
controversial (146, 155, 156). The N- and C-terminal regions
are reported to be exposed to the IMS and cytoplasm,
respectively. OPA3 seems to play a regulatory role in
mitochondrial dynamics and more specifically in fission, since
overexpression of OPA3 significantly induced mitochondrial
fragmentation. It is also referred to as sensitizing cells to
apoptosis (156).

The three known 3-MGCA type III-related mutations are all
assigned to exon 2 of OPA3A (157) and its adjacent splice site
(146, 149), while G93S and Q105E mutations lead to DOA
associated with cataracts and extrapyramidal signs (158).
Overexpression of a familial OPA3 mutant (G93S) induced
mitochondrial fragmentation and spontaneous apoptosis,
suggesting that OPA3 mutations may cause optic atrophy via
a gain-of-function mechanism (156). Furthermore, a novel
insertion, c.10_11insCGCCCG/p.V3_G4insAP, which is
located in the mitochondrial presequence, results in decreased
steady-state levels of the mutant protein compared with the
native one and leads to DOA and hearing loss (153). A
fragmented mitochondrial network and reduced mitochondrial
mass was observed in cells isolated from individuals harboring
this novel mutation (153).

SLC25A46. SLC25A46 belongs to the SLC25 family of
mitochondrial carrier proteins responsible for the transfer of
diverse substrates across the IMM (159). SLC25A46 is an
ortholog of UGO1, a yeast outer membrane protein essential
for mitochondrial membrane fusion (160-163). It is an integral
OMM protein which has been shown to interact with the IMM
remodeling protein mitofilin (164), OPA1 and MFN2 (165,
166). Moreover, the oligomerization of OPA1 and the
regulation of OPA1-dependent crista modulation, a cellular
adaptation to metabolic demand, were shown to be dependent
on SLC25A46–OPA1 interaction (54). SLC25A46 also
interacts with components of the MICOS complex, which is
indispensable for the maintenance of mitochondrial crista
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junctions (166-171). However, unlike UGO1, SLC25A46 acts
as a pro-fission component in the regulation of mitochondrial
dynamics (160, 165). Loss of SLC25A46 results in a
hyperfused mitochondrial phenotype in human cells (164, 166,
172) due to increased stability and oligomerization of MFN1/2
on mitochondria (166). A recent study showed that SLC25A46
plays an important role in the maintenance of architecture of
mitochondrial cristae and mitochondrial lipid homeostasis by
functioning upstream of the MICOS complex and by
interacting with the ER/mitochondrial contact site complex,
respectively (173, 174). However, further investigation is
needed, since this mechanism of action was questioned by
another study using a different cell system  (166). Since
SLC25A46 is involved in mitochondrial ultrastructure via
interaction with a large number of proteins and formation of
transient complexes, it probably acts as a coordinator of rapid
changes needed in mitochondrial dynamics and crista
morphology in response to changes of the microenvironment.

Recessive SLC25A46 mutations were recently identified in
a syndrome named optic atrophy spectrum disorder that has
since been designated hereditary motor and sensory
neuropathy type VIB (HMSNVIB), which covers a broad
clinical spectrum including early-onset optic atrophy,
peripheral neuropathy and cerebellar degeneration, with
variable age of onset and severity (164). In particular,
SLC25A46 was identified as a new locus accounting for
congenital pontocerebellar hypoplasia (PCH) a lethal
condition considered as one extreme of HMSNVIB. The
impact of SLC25A46 mutations on the variable phenotype of
HMSNVIB seems to be dictated by the relative stability of the
encoded protein (164). In agreement with that, destabilized
and nonfunctional mutant SLC25A46 L341P correlates with
the phenotype of lethal congenital PCH syndrome and a
homozygous missense mutation in SLC25A46 (c.425C >T),
also causing destabilization and loss of SLC25A46 function,
was shown to account for the development of Leigh
syndrome, an early-onset and fatal neurodegenerative disease
associated with bilaterally symmetric lesions in the brainstem,
basal ganglia, and spinal cord. Therefore, the regulation of
SLC25A46 level seems to be fundamental for its function. In
accordance with this, ubiquitin ligases were reported to
contribute to the selective and rapid degradation of SLC25A46
L341p by the proteasome (166).

ATPase family AAA-domain containing protein 3A (ATAD3A).
ATAD3A is a nuclear-encoded protein, ubiquitously expressed
in multicellular organisms. ATAD3A interacts simultaneously
with both the IMM and OMM and it seems to be devoid of
the function of mitochondrial AAA+ protease, since it lacks a
proteolytic domain. Monoallelic and biallelic variation
involving both single-nucleotide variants and copy-number
variants at the ATAD3A locus was recently recognized in
seven families as leading to a primarily neurological disease

characterized by  global developmental delay, hypotonia, optic
atrophy and axonal neuropathy (175). 

The ATAD3 gene family in humans includes three paralogs
(ATAD3A, ATAD3B, ATAD3C) (176, 177). ATAD3A has an N-
terminal domain including two coiled-coil domains with high
oligomerization probability that interacts with the OMM and
a central transmembrane segment, which anchors the protein
in the IMM and positions the C-terminal AAA(+) ATPase
domain (Walker A and Walker B) in the matrix. ATAD3A
interacts simultaneously with both mitochondrial membranes
and therefore, it regulates mitochondrial dynamics at the
interface between the IMM and OMM and is involved in
several cell responses, such as cell growth, enhanced
channeling of cholesterol for hormone-dependent
steroidogenesis (178-180) and mitochondrial fission (178). It
was also shown to play a role in mtDNA maintenance and
replication (181), as well as cancer cell growth and metastasis
(182). Loss of function of ATAD3A at contact sites between
the OMM and IMM was shown to induce cell fission
machinery (178). Since ATAD3A can co-immunoprecipitate
with MFN2, OPA1 and DRP1, a possible role of ATAD3A in
mitochondrial dynamics could be maintained through these
interactions (178). 

Defective ATP-binding ATAD3A mutations were shown to
interfere with normal oligomer functions leading to
fragmentation of mitochondria (178). Furthermore, the
p.Arg528Trp variant was shown to act through a dominant-
negative mechanism in fibroblasts isolated from affected
individuals by generating small mitochondria that trigger
mitophagy (175). On the other hand, the recessive copy-
number variants lead to infantile lethality through loss of
ATAD3A function. 

DRP1. DRP1 is a dynamin-related GTPase essential for
mitochondrial fission in mammalian cells. It is recruited to
mitochondria via receptors, reversibly associate with the OMM
and further assembles around mitochondrial tubules to form an
oligomeric ring that constricts and divides the mitochondrion
in a GTP-dependent process (23, 183, 184). It contains four
distinct domains: GTP-binding, middle, insert B, and GED
(185). Mutation of DRP1 blocks mitochondrial fission,
resulting in elongated mitochondrial networks due to
unopposed mitochondrial fusion (23). This cellular defect
causes developmental lethality in mice (186). Only a single
case study of a patient with a DRP1 mutation has been
described (187). This patient was a newborn girl, who died at
37 days due to multisystem abnormalities, including small head
circumference, hypotonia, few spontaneous movements, optic
atrophy and poor feeding. The heterozygous mutation (A395D)
in this patient located in the middle domain, important for self-
assembly, suggests that this mutant dramatically disrupts
higher-order assembly of DRP1 and thereby reduces assembly-
induced GTP hydrolysis in a dominant-negative mode of action
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(185). Analysis of the isolated fibroblasts showed elongated
mitochondria and peroxisomes.

MFF. MFF is essential for fission of mitochondria and
peroxisomes (34, 188). It is considered the major membrane
DRP1 receptor and important regulator of organelle fission
(33, 184, 189). Interestingly, MFF was shown to efficiently
stimulate the GTPase activity of the brain-specific DRP1
isoform compared to ubiquitously expressed isoform and to
mediate DRP1 recruitment to synaptic vesicles (189). As a
result, when it is knocked-down, mitochondria become
elongated (34) and the amount of DRP1 recruited to them is
reduced. MFF is anchored in the OMM through its C-terminal
transmembrane segment. The sequence of MFF indicates that
it also interacts with other proteins and participate in protein
complexes that mediate the fission pathway (33, 34). 

A truncating mutation in MFF was first identified in a Saudi
Arabian boy with delayed psychomotor development,
spasticity, optic atrophy, and bilateral, increased signal
intensities of the basal ganglia (190). Furthermore, recently
three boys with similar overlapping phenotype were found to
carry truncating mutations in MFF (191). The disease onset
was in the first year of life, characterized by seizures,
developmental delay and acquired microcephaly, followed in
subsequent years by dysphagia, spasticity, optic neuropathy
and peripheral neuropathy (191). Brain MRI showed Leigh-
like patterns, with bilateral changes of the basal ganglia and
subthalamic nucleus, indicating impaired mitochondrial energy
metabolism (191). However, the activiity of mitochondrial
respiratory chain complexes were found to be normal at least
in skeletal muscle. These biallelic loss-of-function variants of
MFF were recognized as causing extremely elongated,
interconnected mitochondria and peroxisomes, and loss of
DRP1 recruitment to the fission nodes in cells isolated from
the affected individuals (191).

Conclusion

Inherited optic nerve degeneration due to dysfunction of
mitochondrial metabolism and predominantly respiratory chain
defects has been identified in patients with Leber’s hereditary
optic neuropathy harboring mtDNA mutations, as well as
individuals carrying mutations in novel genes, such as
transmembrane protein 126A (TMEM126A), aconitase 2
(ACO2), reticulon 4-interacting protein 1 (RTN4IP1),
chromosome 12 ORF 65 (C12orf65), NADH: ubiquinone
oxidoreductase core subunit (S2NDUFS2), mitochondrial tRNA
translation optimization 1 (MTO1), and deafness dystonia
protein 1 (DDP1) (41). However, the pathogenic mechanism
underlying RGC loss is much more complex and impairment of
mitochondrial network dynamics due to genetic defects has also
been shown to account, alone or in combination with
bioenergetic crisis, for syndromic or isolated optic neuropathies. 

Several inter-related molecular, tissue-specific factors seem
to create a complex interacting network not fully understood
yet which dictates mitochondrial function and thereby cellular
and tissue integrity. This complexity may be responsible for
genotype-phenotype disparity and this translates into
phenotypic heterogeity, a hallmark for the need for early and
correct diagnosis of these disorders. The application of more
advanced techniques regarding CNS (MRI) and nerve fiber
layer (OCT) imaging in recent years offers an accurate
evaluation of CNS/optic nerve involvement, recognition of
asymptomatic patients and subsequent expansion of the
phenotypic spectrum. It is obvious that a comprehensive
phenotypic profile combined with knowledge gained from
detailed genotypic characterization, molecular studies on cells
isolated from affected patients and transgenic animal disease
models is the only promising approach in order to dissect the
relative role of the involved molecules and elucidate the
signal pathways underlying these monogenic, as well as
complex, neurodegenerative disorders. To that end, generation
of induced pluripotent stem cells by reprogramming
fibroblasts isolated from affected individuals and their
subsequent differentiation into various neural cell populations
will expand further the knowledge regarding the susceptibility
of particular cell types, such as RGCs, to specific genetic
alterations.

Although treatment options concerning disorders of
mitochondrial dynamics are currently limited, the future is
open for the development of novel neuroprotective
strategies and innovative gene-therapy approaches. Novel
therapeutic strategies include genetic engineering to correct
or silence particular gene mutations and pharmacological
approaches targeting the structure of the affected protein
(120). Finally, understanding the aspect of mitochondrial
function and subsequent cellular process that is affected by
a particular genetic defects might offer an alternative more
global therapeutic option by enabling the development of
efficient treatment targeting the process rather than the
gene itself.
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