
Abstract. A number of studies have reported that acute lung
injury (ALI) and acute respiratory distress syndrome (ARDS)
are independent risk factors for organ dysfunction and
mortality in patients with sepsis. Although ALI/ARDS might
be an essential therapeutic target during the management of
sepsis, severe sepsis should be treated effectively and as soon
as identified. We have classified three phases, ranging from
sepsis to organ dysfunction, characterizing the interaction
between neutrophils and platelets. The first phase is neutrophil
extracellular trap (NET) formation and intravasated platelet
aggregation. The next phase is extravasated platelet
aggregation (EPA), promoted by NET-facilitated detachment
of endothelial cells. The final phase is organ dysfunction,
caused by pulmonary veno-occlusive disease (VOD), fibrosis,
and immunoparalysis induced by EPA. Severe sepsis is
characterized by a continuum of coagulopathy, with
coagulation abnormalities often developing before the onset
of clinical symptoms. The initial medical treatment for
ALI/ARDS is inhibition of NET formation and intravasated
platelet aggregation to prevent endothelial cell damage (Phase
1). Beraprost and silvestat, phosphodiesterase 3 (PDE3)
inhibitors, are often administered in clinical practice. To

determine hypercoagulopathy, plasma levels of thrombin–
antithrombin complex and plasmin–plasmin inhibitor complex
are continuously monitored in patients with suspected sepsis.
Furthermore, the implementation of quality indicators for the
early management of severe sepsis and septic shock is strongly
associated with a reduced mortality. We conclude that
pathophysiology of organ dysfunction from severe sepsis is
caused by pulmonary VOD, fibrosis, and EPA-facilitated
immunoparalysis. In order to prevent ALI/ARDS in patients
with sepsis, countermeasures for NET and platelet
aggregation should be pre-emptively employed and confirmed
by several trials.

Injury and shock syndromes can potentially induce systemic
inflammation and subsequent organ dysfunction. Acute lung
injury (ALI), characterized by widespread inflammation and
life-threatening hypoxemia, results from a discrepancy in
ventilation and perfusion within the lung (1). Acute
respiratory distress syndrome (ARDS), previously known as
respiratory distress syndrome/adult respiratory distress
syndrome/shock lung, may be triggered by traumatic injury
or lung infection but is often the result of sepsis. Moreover,
the risk of developing ARDS rises dramatically when
multiple risk factors for acute lung injury are present (2).

ALI and ARDS describe clinical syndromes of acute
respiratory failure with substantial morbidity and mortality
(3). ALI/ARDS consists of acute inflammation and tissue
injury of the lung, leading to decreased gas exchange of
oxygen and carbon dioxide (4). ALI/ARDS is associated
with several pathological changes: the release of
inflammatory cytokines, the breakdown of endothelium
lining the lung's blood vessels, the loss of surfactant (leading
to decreased alveolar surface tension), the accumulation of
fluid in the lung, and the formation of excessive fibrosis. 
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The highest incidence of ALI/ARDS occurs in patients with
sepsis and those undergoing multiple emergency transfusions
(5). Patients with multiple traumatic events are also at
increased risk for developing ALI/ARDS (6). Patients with
sepsis-related ARDS have a significantly higher 60-day
mortality rate than patients with non-sepsis-related ARDS
(38.2% vs. 22.6%, respectively) (7). The mortality rate for
ALI/ARDS varies widely based on disease severity, patient age
and the presence of other medical conditions (8, 9). ALI/ARDS
can cause multiple organ dysfunction syndrome and death (10).

The combined activation of coagulation and inflammation
play an important role in multiple organ dysfunction and poor
outcomes following severe trauma (11). Elevated activation of
the extrinsic coagulation pathway is common in patients with
severe sepsis (12). Furthermore, disseminated intravascular
coagulation (DIC) is a frequent complication of systemic
inflammatory response syndrome (SIRS) and is substantially
involved in the prognosis of conditions. These range from
SIRS to sepsis, to severe sepsis, and eventually to septic shock
(13, 14). In critically-ill patients with thrombocytopenia,
coagulopathy and organ dysfunction progress with significant
mutual correlation and are dependent on rising SIRS score.
This leads to the concept of 'SIRS-associated coagulopathy',
that may play a critical role in inducing DIC and multiple
organ dysfunction syndrome in patients with SIRS (15). 

Recent studies have shown that activation of platelets and
leukocytes, mutually interacting, correlates with the severity
of organ dysfunction in sepsis (16). Moreover, the systemic
activation of inflammation and coagulation, associated with
endothelial injury, holds prognostic value for the
development of ALI/ARDS (11, 17).

We have classified three phases, from sepsis to organ
dysfunction, characterizing the interaction between
neutrophils and platelets.

The first phase is neutrophil extracellular trap (NET)
formation and intravasated platelet aggregation. The next phase
is extravasated platelet aggregation (EPA), promoted by NET-
facilitated detachment of endothelial cells. The final phase is
organ failure by pulmonary veno-occlusive disease (VOD),
fibrosis and EPA-induced immunoparalysis (Figure 1).

We review the roles of platelet aggregation and leukocytes
in the progression from sepsis to organ dysfunction, and
outline possible preventative measures for ALI/ARDS. 

Case Report

An 82-year-old female was admitted to our Institution for
hepatocellular carcinoma with non-alcoholic steatohepatitis.
Upon dynamic computed tomography, an enhanced tumor, 
50 mm in size, was detected in the S4/8 area. She underwent
partial hepatectomy. Approximately 26 days following surgery,
the patient suddenly developed a high fever (up to 38.6˚C),
dyspnea and hypoxemia. Laboratory findings 24 h following the

high fever revealed a markedly increased total WBC count of
13,500/μl and CRP of 9.2 mg/dl, with a decreased platelet count
of 109,000/μl (31% rate of decline/48 h). Forty-eight hours
following the high fever, the CRP increased to 11.5 mg/dl, with
WBCs and platelets at 5,840/μl and 92,000/μl, respectively. At
that time, the P/F ratio decreased to 82 and the patient was
intubated because she presented with shock and was diagnosed
with ARDS. The thrombin-antithrombin complex (TAT) and
plasmin-plasmin inhibitor complex (PIC) was 8.2 ng/ml and 
0.5 μg/ml, respectively. This correlates to severe coagulation
activation but mild fibrinolytic activation. 

Hypotension persisted despite levofloxacin, gamma
globulin administration and continuous infusion of
dopamine. Simultaneously, we started continuous infusion of
sivelestat sodium hydrate in order to reduce excessive
neutrophil elastase release. The patient was followed-up for
2 days and recovered from shock. Six days following the
high fever, methicillin-resistant Staphylococcus aureus was
detected in the sputum culture. Given the patient’s
immunocompromised state, treatment was continued for
persistent ARDS and pneumonia. However, she died 40 days
later from complications due to DIC. 

Possible Mechanism of Progression from 
Sepsis to Organ Dysfunction

Phase 1: NET and intravasated platelet aggregation. The
prevalence of neutropenia during sepsis carries an
independent risk for mortality (18). The concept of NETs,
entailing a biophylactic mechanism for neutrophils targeting
bacteria, is currently being explored (19). NETs, composed
of neutrophil nuclear and granule constituents, are
extracellular chromatin structures that entrap microbes.
Activated neutrophils release anti-microbial granule proteins
such as damage-associated molecular pattern (DAMP)
proteins, elastase, myeloperoxidase, histones and high
mobility group box 1, which form extracellular fibers and
bind bacteria (Figure 2). NETs degrade virulence factors and
eventually initiate the rupture of the cell (20). This self-
sacrificing action of neutrophils against invading microbes,
although beneficial with respect to entrapping microbes,
when excessive causes cellular damage (21, 22).

Neutrophils and intravasated platelets are known to
participate in the pathogenesis of severe sepsis. The
sequestration of neutrophils in the lungs is necessary for the
recruitment of platelets, suggesting that neutrophils function
as a pro-adhesive surface for platelets (23). Clark et al.
reported several cellular events that lead to the enhanced
trapping of bacteria in blood vessels: Platelet toll-like
receptor 4 (TLR4), activated by lipopolysaccharide, detects
TLR4 ligands in blood and induces platelet binding to
adherent neutrophils. This leads to robust neutrophil
activation and the formation of NETs. Plasma from patients
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with severe sepsis also induces TLR4-dependent platelet–
neutrophil interactions, leading to the production of NETs. It
was shown that NETs retain their integrity under flow
conditions and ensnare bacteria within the vasculature. The
entire event was found to occur primarily in liver sinusoids
and pulmonary capillaries, where NETs have the greatest
capacity for bacterial trapping (24, 25). Blocking NET
formation reduces the focalization of circulating bacteria
during sepsis, resulting in their increased dissemination to
distant organs. Thus, NETs ensnare circulating bacteria and
provide intravascular immunity that protects against bacterial
dissemination to distal organs during septic infections (26).

In recent years, several studies have elucidated the crucial
role of NETs in thrombosis (27, 28). Excessive microvascular
thrombosis causes disorders of the microcirculation and leads
to organ dysfunction. In addition to their protective role,
NETs were noted to be associated with endothelial injury
(24). Histones, released from NET-activated neutrophils, have
recently been demonstrated to function as endogenous danger
signals or DAMPs when they translocate from the nucleus to
the extranuclear space (29). Extracellular histones released in
response to inflammatory challenges contribute to endothelial
damage, organ failure and death during sepsis (22). 

Formation of NETs by neutrophil–intravasated platelet
interaction results in both endothelial damage and thrombosis
following ALI/ARDS. As such, NET formation represents a
dynamic balance between bacterial focalization in order to
prevent distant organ dissemination, and excessive
endothelial injury to the host (30). 

Phase 2: EPA. In ALI and ARDS, platelets and platelet–
neutrophil complexes can be found within the pulmonary
vasculature, airways, interstitial, and alveolar compartments
(17). Endothelial damage and detachment after NET
formation followed by EPA is the root cause of organ
dysfunction in sepsis. We present the case of a patient with
severe postoperative sepsis occurring after hepatectomy.
Immunohistochemical analysis for the presence and
localization of platelet aggregation in autopsy specimens are
shown in Figure 3A. EPA was observed in airways, known
as extravasated spaces. 

Microvascular endothelial injury leads to an increase in
capillary permeability. This alteration in permeability permits
the exudation of protein-rich fluid, as well as platelets, into
the peribronchovascular interstitium, ultimately crossing the
epithelial barrier into the distal airspaces of the lung (31).
Damage to the vascular endothelium by NETs can result in
the denudation of the endothelium or the loss of fenestrations,
allowing platelets to enter the extravasated space. 

Platelets contain storage pools of peptide growth factors
including platelet-derived growth factor, vascular endothelial
growth factor (VEGF), transforming growth factor-β
(TGFβ), and nonpeptide vasoactive compounds including

serotonin (5-hydroxytryptamine: 5HT), thromboxane A2
(TXA2), norepinephrine, histamine, bradykinin, and platelet
activating factor (32). Platelets also contain proteins such as
thrombospondin-1 (TSP1), platelet factor 4 and CD40L(33). 

Plasminogen activator inhibitor type 1 (PAI1), present in
vascular smooth muscle cells, endothelial cells and platelets, is
the primary inhibitor of tissue-type plasminogen activator and
urokinase plasminogen activator. Moreover, PAI1 plays an
integral role in the regulation of fibrinolysis. Elevated levels of
PAI1 result in deficient plasminogen activation and are
associated with a predisposition to thrombosis and veno-
occlusive disease (VOD) following bone marrow transplantation
(34). Platelets release potent pro-inflammatory chemokines and
also modulate leukocyte function (35).

In phase 2, EPA may be stimulated by tissue injury, hypoxia,
cytokines, endotoxin and endotoxemia. This ultimately leads
to pulmonary VOD by EPA-derived TXA2 and 5HT, resulting
in pulmonary hypertension. TXA2 is a strong vasoactive
metabolite of arachidonic acid, with powerful pro-aggregatory
and pro-inflammatory properties, inducing platelet aggregation
and vasoconstriction (36). 5HT is an important mediator in
both the enhancement of platelet aggregation and the induction
of local vasoconstriction (37). Although VEGFA acts as a
vasodilator under ordinary circumstances, it acts, paradoxically,
as a vasoconstrictor in patients with endothelial failure (38).

Low platelet counts have long been recognized as an
important prognostic factor in sepsis, based on the
assumption of their role as a biomarker for sepsis severity
(39). The consumption of platelets may be induced by
intravasated platelet aggregation followed EPA.

Phase 3: Organ dysfunction, Immunoparalysis. The Scientific
Subcommittee on Disseminated Intravascular Coagulation, of
the International Society on Thrombosis and Haemostasis,
defined DIC as “an acquired syndrome characterized by the
intravascular activation of coagulation with loss of
localization arising from different causes. It can originate
from and cause damage to the microvasculature, which if
sufficiently severe, can produce organ dysfunction” (40). DIC
is characterized by the systemic activation of coagulation,
which results in the generation and deposition of fibrin, and
leads to microvascular thrombi in various organs –
significantly contributing to multiple organ dysfunction
syndrome (41). The crosstalk between inflammation and
coagulation is essential since coagulation is activated by
inflammation, as is observed in sepsis (42, 43). 

PAI1 regulates the degree of fibrinolytic activation and is
an important factor in characterizing DIC (43). Platelet-alpha
granules contain large amounts of PAI1, which are released
during vascular injury and assist in fibrin clot stability.
Although the patient presented here died from DIC,
intravasated thrombus was not observed (Figure 3B),
indicating that the patient’s mortality was not a direct result
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of DIC. The organ dysfunction observed may have been
caused by pulmonary VOD and EPA-facilitated pulmonary
hypertension, not intravasated microvascular obstruction.
Therefore, EPA-derived TXA2 and 5HT can induce

pulmonary VOD and pulmonary hypertension via
vasoconstriction. EPA-derived PAI1 and TGFβ induce
pulmonary fibrosis, leading to ultimate organ dysfunction
(Figure 4). 
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Figure 1. Phases leading to organ dysfunction. We classified three phases, from sepsis to organ dysfunction, characterizing the interaction between
neutrophils and platelets. Phase 1 is formation of neutrophil extracellular traps (NETs) and intravasated platelet aggregation. Phase 2 is extravasated
platelet aggregation, promoted by NET-facilitated detachment of endothelial cells. Phase 3 is organ failure by pulmonary veno-occlusive disease,
fibrosis and immunoparalysis.

Figure 2. Schematic representation of neutrophil extracellular trap (NET) formation. NETs are extracellular chromatin structures that entrap
microbes. NETs release anti-microbial granule proteins such as damage-associated molecular pattern proteins, neutrophil elastase, myeloperoxidase,
histones and high mobility group box 1. These function to form extracellular fibers and bind bacteria. NETs degrade virulence factors and eventually
initiate rupture of the cell. This self-sacrificing mechanism of neutrophils against invading microbe although beneficial, in excess causes cellular
and endothelial damage.



Furthermore, platelet-derived TGFβ and PAI1 may also
induce pulmonary fibrosis. PAI1 suppresses fibrinolysis and the
progression to fibrosis in the tissue microenvironment (44).
TGFβ is also important for the induction of fibrosis, often
associated with chronic phases of inflammatory diseases (45).

Shock and multi-organ dysfunction occur following the
intense inflammatory reaction to sepsis. Complications arise
from sepsis-related immunoparalysis and contribute to
morbidity and mortality from sepsis (46, 47).

It is well known that TGFβ and VEGFA are potent
immunosuppressive factors that drive the expansion of
regulatory T-cells and myeloid-derived suppressor cells (48).
The CD40–CD40L co-stimulatory pathway has been shown to
play a crucial role in the production of cytokines, including
interleukin (IL)-10, which is a known immunosuppressive
cytokine inhibiting macrophage-dependent antigen presentation,
T-cell proliferation, and Th1 cytokine secretion of IL2, IFNγ,
and TNFα (49). Among various functions, these cytokines,
especially IL2, also modulate the activity and proliferation of
T-lymphocytes (50). Thrombospondin-1 is a potent suppressor
of T-cell activation via its receptor CD47 (51).

EPA-derived factors, including VEGFA, TSP, CD40L and
TGFβ, may also directly contribute to immunoparalysis
(Figure 4). Therefore, EPA plays an essential role in the
progression of organ failure in cases of ALI/ARDS.

Future Therapies

Conventional treatments, including anti-inflammatory
therapy and other experimental treatments have largely been
unsuccessful (52, 53). Pulmonary hypertension is of serious
clinical concern and a disease that eventually leads to lung
or heart failure (54). 

We assert that ALI and ARDS treament should be
implemented in patients with pulmonary hypertension. Pre-
emptive medical care for ALI/ARDS in its early stages is
important in preventing progression to phases 2 and 3. As
such, the key treatment for ALI/ARDS relies on the
inhibition of NET formation and platelet aggregation while
simultaneously preventing host endothelial damage. In
clinical practice, we administer a phosphodiesterase (PDE)
3 inhibitor, beraprost and sivelestat. 

PDE3 inhibitor. The isoform PDE3 comprises two
subfamilies, PDE3A and PDE3B. Recently, it has been
shown that PDE3A is the predominant subtype of PDE3
expressed in platelets (55). Milrinone, a specific PDE3A
inhibitor, has been shown to reduce acute pulmonary
hypertension and is an effective vasodilator (56, 57).
Milrinone also inhibits arachidonic acid-induced change in
platelet shape and adenosine diphosphate (ADP)-induced
platelet aggregation (58). Milrinone induces an elevation of
intraplatelet cyclic adenosine 3’,5’-monophosphate in a dose-
dependent manner, resulting in the inhibition of platelet
aggregation (59). Cilostazol is a specific and potent inhibitor
of PDE3 in platelets and smooth muscle cells, where it
diminishes intracellular calcium, causing smooth muscle cell
relaxation and the inhibition of platelet activation (60).
Therefore, use of PDE3 inhibitors cilostazol and milrinone
may be appropriate, owing to their antiplatelet properties,
and ability to increase tolerance to ALI/ARDS injury. 

Beraprost. There are many pathophysiological changes
during severe sepsis and septic shock; one of the most
striking is metabolic derangement (61). Among the metabolic
changes, hyperglycemia is the most important (62).
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Figure 3. Immunohistochemical analysis for the presence and localization of platelet aggregation in autopsy specimens from presented hepatectomy
patient. A: CD42b expression is evident as dark particles, morphologically characterized as platelets. Extravasated platelet aggregation was
observed in airways, known as extravasated spaces (black arrows). B. No intravasated thrombus was observed in the vessel (white arrows),
indicating that the patient’s mortality was not directly caused by DIC. Original magnifications: CD42b, ×400.



Hyperglycemia is a major risk factor for endothelial
dysfunction and vascular complications. In recent years,
significant advances have been made in understanding
endothelial cell dysfunction triggered by high glucose
concentration (63). Accordingly, the control of
hyperglycemia in sepsis is considered to be a very effective
therapeutic target (64). Additionally, insulin has an anti-
inflammatory effect through the suppression of inflammatory
cytokines (e.g., nuclear factor-kappa B) (65). In critically ill
diabetic patients, insulin delivery and insulin-dependent
glucose uptake by skeletal muscle are delayed and impaired.
Therefore, it is pivotal to impair insulin resistance of
endothelial cells (66). Kubota et al. demonstrated that
impaired insulin signaling in endothelial cells, due to
reduced insulin receptor substrate 2 expression and insulin-
induced endothelial nitric-oxide synthase phosphorylation,
causes attenuation of insulin-induced capillary recruitment
and insulin delivery, reducing glucose uptake by skeletal
muscle (67). The use of agents such as beraprost, a stable

prostacyclin analog capable of improving insulin resistance
and vascular endothelial function, may ultimately contribute
to increasing the life expectancy of patients with peripheral
artery disease (68). To improve insulin resistance, we
administer beraprost sodium during the perioperative state.
Beraprost also prevents platelet aggregation by increasing
cAMP and reducing TXA2, which has coagulant properties
and is produced by platelets. We also use a closed-loop
glycemic control system with an artificial pancreas (STG-55,
NIKKISO Co., ltd., Tokyo, Japan) to the intensive care unit
for patients administered beraprost.

Sivelestat. Sivelestat is a selective inhibitor of neutrophil
elastase (69). The perioperative administration of sivelestat
sodium hydrate mitigated postoperative hypoxia, partially
suppressed postoperative hypercytokinemia, shortened the
duration of SIRS, and stabilized postoperative circulatory
status after thoracoscopic esophagectomy (70). The
administration of sivelestat was also shown to improve the
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Figure 4. Mechanism of progression from sepsis to organ dysfunction, characterized by neutrophil extracellular traps (NETs) and platelet
aggregation. Extravasated platelet aggregation (EPA) in the airway space, initiated by damage to the endothelium, is induced by formation of NETs
or intravasated platelet aggregation in sepsis. Various growth factors released by EPA, including thromboxane A2 (TXA2), 5-hydroxytryptamine
(5HT), plasminogen activator inhibitor type 1 (PAI1) and transforming growth factor β (TGFβ), may induce pulmonary hypertension and promote
the progression of lung fibrosis, as well as suppress lung regeneration, initiating acute lung injury and acute respiratory distress syndrome.
Furthermore, EPA-derived vascular endothelial growth factor A (VEGFA), thrombospondin-1 (TSP1), sCD40L and TGFβ may also contribute to
immunoparalysis. DAMP:  Damage-associated molecular pattern.



outcome for patients with sepsis with associated ARDS
(71). Our previous study demonstrated that sivelestat
inhibits the adhesion and migration of neutrophils to the
vascular endothelium in hepatic ischemia-reperfusion
injury, thereby suppressing liver injury (69). Sivelestat can
limit the number of circulating activated neutrophils and
improve pulmonary oxygenation in patients (72). Sivelestat
inhibits the adhesion and migration of neutrophils to the
vascular endothelium and may prevent from endothelial
damage (69, 71).

We conclude that the administration of these bundle
treatments by phase 2 could play a crucial role in preventing
organ dysfunction in cases of ALI, ARDS and sepsis.

Useful Markers for Treatment

Asakura reported that suppressed-fibrinolytic-type DIC, in
which coagulation activation is severe but fibrinolytic
activation is mild, is typically seen in sepsis. It was described
that PAI1, the fibrinolytic inhibitory factor, is markedly
increased, fibrinolysis is strongly suppressed, and the
dissolution of multiple microthrombi is more difficult. As a
result of microcirculatory impairment, severe organ
dysfunction may occur (43, 73).

PAI1 is supplied from EPA during phase 2. Thus, plasma
levels of TAT and PIC should be continuously monitored in
patients with suspected sepsis in order to detect hyperco-
agulopathy. The measurement of TAT and PIC activity can
identify patients with ongoing severe coagulopathy during the
early stages of sepsis. As such, the implementation of quality
indicators for the early management of severe sepsis and
septic shock is strongly associated with decreased mortality.

Conclusion
We propose that pulmonary VOD, fibrosis and immuno -
paralysis (initiated by NET and platelet aggregation), result
in endothelial cell damage and may primarily contribute to
ALI and ARDS in sepsis. Counter-measures for NET
formation and anti-platelet treatments such as PDE3
inhibitors, beraprost and sivelestat may be advantageous
treatments preventing ALI/ARDS in patients with sepsis. 
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