
Abstract. Patients with QT prolongation have delayed
cardiac repolarization and may suffer fatal ventricular
arrhythmias. To determine the role of cytokines in causing
this syndrome, we reviewed reports on patients with
rheumatoid arthritis, psoriasis and other inflammatory
conditions. These patients frequently have prolonged QT,
which correlates with increases in tumor necrosis factor
alpha, and interleukin-1β and 6. Studies in experimental
models have shown that these cytokines act through
stimulation of reactive oxygen species. Our review of data on
phospholipidosis and on QT-shortening agents suggests a key
role in QT prolongation for the ceramide/sphingosine-1-
phosphate rheostat. We conclude that the cause of prolonged
QT in inflammatory conditions is cytokine induction of
reactive oxygen species and then ceramides, and believe that
QT-prolonging agents bypass initial steps of this pathway and
directly affect ceramides. Since both pro-inflammatory
cytokines and numerous medications cause QT prolongation
and ventricular arrhythmias by this mechanism, extra caution
is needed when using these agents in patients with
inflammatory conditions.

An increase in the levels of pro-inflammatory cytokines plays
a role in the morbidity of numerous diseases. Marked
elevations in levels of tumor necrosis factor-alpha (TNFα),
and interleukins IL1β and IL6, in particular, have been found

in diseases as diverse as diabetes (1), Alzheimer’s disease (2),
inflammatory bowel disease (3) and cancer (4). When
elevation of these cytokines becomes massive, a 'cytokine
storm' may develop and cause death of the patient (5-7).
These pro-inflammatory cytokines are also found to be
increased in autoimmune diseases, and blockers of these
cytokines are now standard therapies for patients with
rheumatoid arthritis (RA) and many other diseases (8-10).

In long QT syndrome, there is delayed repolarization
secondary to abnormalities in the potassium, sodium and
calcium ion channels in myocardial cells. This may be caused
by a genetic abnormality, coexisting cardiac diseases,
hypokalemia or hypomagnesemia, or by one of numerous
pharmaceutical agents, including commonly used
antihistamines, sedatives, antibiotics, antiarrhythmics and
psychiatric drugs. Ventricular tachycardia and sudden death
secondary to delay in repolarization may occur (11-15). There
is now increasing evidence suggesting that overexpression of
IL1β, IL6, TNFα, and other cytokines plays a role in the
pathogenesis of the long QT syndrome. 

Data from Patient Trials

It has been observed that patients with rheumatoid arthritis
(RA) have a markedly increased incidence of QT
prolongation and an increased mortality secondary to cardiac
arrhythmias (16-19). Patients with RA are thought to have
twice the risk of death from ventricular arrhythmias compared
to the normal population (17), and a 50 ms increase in QT in
patients with RA doubles the risk for all-cause mortality (18).
This increase in mortality risk also correlates with increases
in the levels of inflammatory markers (17). Patients with
other autoimmune diseases, such as psoriasis (20), systemic
lupus erythematosus (21-24) and inflammatory bowel disease
(25), have also been shown to have an increased incidence of
QT prolongation. Prolonged QT from myocarditis secondary
to infectious diseases is also well-described (26-31).
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In all of these inflammatory conditions, marked increases
in IL1β, IL6, TNFα, in particular, are seen. Adlan et al. have
shown that the levels of these three cytokines and of the anti-
inflammatory cytokine IL10 in patients with RA correlate
directly with the extent of prolongation of the QT interval
(32); and that elevation of these cytokines correlates with
increased QT prolongation even in patients without disease
(33). In a study of 1200 patients with heart failure, Deswal et
al. showed the chance of dying could be predicted by the
extent of elevations of TNFα and IL6 (34). The 'electrical
storm' of recurrent ventricular arrhythmia seen with cardiac
disease is also associated with elevated levels of cytokines
and other inflammatory markers (35, 36). Furthermore,
prolongation of the QT interval has been reported as a side-
effect of therapy in anticancer trials of the pro-inflammatory
cytokines, IL18 and interferon-γ (IFNγ) (37, 38). 

In a recent study, Lazzerini et al. noted that patients with
RA treated with tocilizumab, an IL6 blocker, had shortening
of their previously prolonged QT interval, and this shortening
was associated with concomitant decreases in inflammatory
markers. In this trial of 17 patients with severe RA, 76%
(13/17) had QT intervals of greater than 440 ms
(mean±SD=452.3±35.8 ms) before starting therapy. After six
months of therapy, only 29% (5/17) had a QT interval greater
than 440 ms (mean±SD=428.1±34.3 ms). Decreases in the
levels of TNFα and C-reactive protein correlated with the
decrease in QT (39).

Cytokines: Data from Experimental Models

Transgenic mice which overexpress TNFα have a markedly
prolonged action potential duration and experience recurrent
ventricular arrhythmias (40). Studies in animal models or in
cultured cardiomyocytes support the hypothesis that elevations
in cytokines can cause prolonged QT. Wang et al. studied the
effects of TNFα on canine cardiomyocytes using whole-cell
patch clamp techniques. Marked inhibition of the rapid
delayed-rectifier K+ current (IKr) was seen. TNFα was also
found to reduce the human ether-à-go-go-related gene (hERG)
current in HEK 293 cells expressing hERG. The suppressive
effect of TNFα was concentration-dependent, and could be
blocked by co-administration of an antibody to TNFα (41).
The effect was thought to be due to TNFα stimulation of
reactive oxygen species (ROS) since it was also blocked by
vitamin E and by the superoxide dismutase mimic manganese
(III) tetrakis (4-benzoic acid) porphyrin (MnTRAP). Kawada
et al. reported that rat cardiomyocytes incubated with TNFα
showed a decreased transient outward potassium current (Ito),
and reductions in Kv4.2 and K+ channel-interacting protein-2
(42). Fernandez-Velasco found similar results, and also
suggested that TNFα affects cardiac K+ channels through
stimulation of ROS. Again, the effect of TNFα on QT
prolongation was blocked by vitamin E and by MnTRAP (43).

Petkova-Kirova et al. studied mice overexpressing TNFα in
the heart, using whole-cell voltage-clamp recording of K+

current, and observed a 50% decrease in Ito, as well as a
major decrease in the slow component of the delayed rectifier
potassium current (IKs) (44). In another study, Grandy and
Fiset reported that ventricular myocytes from mice chronically
treated with TNFα to achieve blood levels equivalent to those
seen in patients with congestive heart failure or HIV exhibited
significantly reduced Ito and IKr (45). Li and Rozanski
reported that IL1 significantly increased the duration of the
action potential and the effective refractory period in excised
papillary muscle, and increased the L-type calcium current
(ICaL) in isolated cardiomyocytes. The increase in action
potential duration in papillary muscle was blocked by aspirin
and by indomethacin (46). Hagiwara et al. used whole-cell
patch clamp recordings of the ventricles of mice exposed to
IL6, and found a marked increase in ICaL (47).

Phospholipidosis and Ceramides 

Another clue to the mechanism by which prolonged QT may
occur is the similarity between the list of medications that
cause QT prolongation and the list of those that cause
phospolipidosis (PLD), the excess accumulation of
intracellular phospholipids due to abnormalities in lysosomal
lipid metabolism. Sun et al. screened 4,090 approved and
investigational agents and found that 209 induced PLD in
Hep G2 cells. Seventy-seven percent of these compounds
were hERG channel blockers, and when steroidal drugs were
excluded, 87% of PLD-inducing drugs were found to be
hERG channel blockers (48). Abnormalities in cytokine
production have been seen in phospholipidotic cells. We
noted a study by Reasor et al. that showed marked
enhancement of IL6 and TNFα release by rat
phospholipidotic alveolar macrophages after
lipopolysaccharide (LPS) stimulation (49). Likewise, Reinhart
et al. reported that amiodarone, an agent which causes both
PLD and prolonged QT, stimulated the release of TNFα and
transforming growth factor (TGF)-β from pulmonary alveolar
macrophages (50). Similar results have been reported by
Masubuchi et al. (51). On the other hand, Munic et al.
reported that the phospholipidotic potential of various
macrolide antibiotics correlated with a reduction in IL6 levels
in LPS-stimulated cells. Small increases in TNFα levels were
seen with increasing PLD (52). 

More importantly, although the exact biochemical
mechanism by which PLD occurs is not known, it is clear that
abnormalities in ceramide metabolism play a role in this
disease entity. Several investigators have shown that PLD is
associated with marked abnormalities in ceramide metabolism
(53, 54). Ceramides are lipid molecules consisting of
sphingosine and fatty acids. They are formed by hydrolysis
of sphingomyelin by sphingomyelinases, but may also be
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synthesized through other pathways (55). It has been
suggested that PLD results in increased levels of ceramides
within cells and that this is part of the mechanism of drug-
induced PLD (56). Other investigations support the
hypothesis that ceramide metabolism plays a key role in PLD.
Exposure of human macrophages to oxidized low-density
lipoprotein results in both PLD and an increased content of
acid sphingomyelinase and ceramides (57). The potential
importance of the ceramide transacylase lysosomal
phospholipase A2 (LPLA2) in alternate pathways of ceramide
metabolism has been emphasized by Shayman et al. (53).
Hiraoka et al. studied mice made deficient in LPLA2 by
deletion of exon 5 of the (Lpla2) gene. These mice develop
increases in ceramides and PLD of alveolar macrophages,
peritoneal macrophages and spleen (58). Abe et al. studied
the effects of three compounds: D-threo-1-phenyl-2-
decanoylamino-3-morpholino-propanol (PDMP), a
glucosylceramide synthase inhibitor and PLD-inducing agent;
the strongly phospholipidotic agent, amiodarone; and
tetracycline, which does not cause PLD, on Madin Darby
canine kidney cells. Both PDMP and amiodarone inhibited
LPLA2 and the transacylation of ceramide. This effect was
concentration-dependent, and no effect was seen with
tetracycline (59). Lecommandeur studied rat HEP G2 liver
cells after chloroquine-induced PLD and found changes in the
fatty acyl chain lengths of the ceramides, as well as changes
in ceramide synthases, and suggested these changes might
affect membrane morphology (60). 

It is known that ceramides are important in the induction
of multiple diseases, including atherosclerosis (61), diabetes
(62) and cancer (63), as well as in growth arrest and cell
apoptosis (64). It is also known that ceramides play a key role
in TNFα and IL1 signal transduction (65-68). Studies have
shown that IL1, IFNγ and TNFα can stimulate
sphingomyelinase activity, resulting in ceramide accumulation
(61, 69-72), and ceramide has frequently been referred to as
the mimic of TNFα because of its similar effects on tumor-
cell apoptosis and proliferation, and its role in many other
disease processes (73-77). Lopez-Marure et al. showed that
treatment with C8-ceramide had identical effects to those of
TNFα on endothelial-cell proliferation and DNA synthesis
(74). Similarly, Dbaibo et al. showed that TNFα and C2-
ceramide had identical effects on the growth of Jurkat T-cells
(76). Raines et al. showed that C2-ceramide and C6-ceramide
mimicked the effects of TNFα on mitogen-activated protein
kinase (MAPK) enzymatic activity, and on tyrosine
phosphorylation (77). It is known that ceramides down-
regulate the hERG K+ channel (78-80). Ceramides are
metabolized to sphingosine and fatty acids, and sphingosine is
phosphorylated by sphingosine kinases to form sphingosine-
1 phosphate. The ceramide and sphingosine-1 pathways have
opposite effects, the ceramide pathway causing cell death, and
the sphingosine-1 phosphate pathway promoting cell survival

(81-83). It is the balance of these two pathways that
determines the fate of the cell (81). Since it has been
postulated that ceramide metabolism is the common pathway
to the development of atherosclerosis, perhaps through
stimulation by TNFα (61), it is not unreasonable to ask
whether the ceramide pathway might also be key to the
mechanism of QT prolongation.

Agents that Reduce the Prolonged QT Interval

It has been long known that female sex is a risk factor for the
long QT syndrome (84). However, QT intervals are shorter in
the luteal phase of the menstrual cycle, when progesterone levels
are higher, than in the follicular phase (85). This suggests that
progestins have a protective effect against long QT (86). Kadish
et al. studied 34,378 post-menopausal women who used
unopposed estrogen, combined estrogen and progesterone, or
used no therapy. A mild QT-prolonging effect was seen with
estrogen, which was reversed with progesterone (87). Nakamura
et al. investigated the effects of progesterone on guinea pig
ventricular myocytes using patch clamp techniques. Progesterone
shortened action potentials by lengthening IKs and inhibiting
ICaL (88). Odening et al. studied ovariectomized transgenic
LQT2 rabbits, which were exposed to estradiol, progesterone or
dihydrotestosterone. In the estrogen-treated rabbits, ICaL
increased, while in the progesterone-treated animals, ICaL
decreased. Major cardiac ventricular events occurred in five out
of seven estradiol-treated rabbits, but in none of the
progesterone- or dihydrotestosterone-treated animals (89).
Progesterone is known to have anti-inflammatory actions in
many diseases. Aisenberg et al. showed that the anti-
inflammatory effects of progesterone were essential in preventing
pregnancy loss after LPS administration in mice (90). Loudon
emphasized the importance of progesterone suppression of IL8
and cyclooxygenase-2 in maintaining myometrial quiescence in
pregnancy and avoiding premature labor (91). Multiple studies
have suggested that progesterone can reduce secondary damage
from inflammation after traumatic brain injury by reducing levels
of TNFα, IL1β and IL6 (92-94). Giannoni et al. showed that
progesterone dramatically reduced secretion of TNFα and IL6
from mononuclear cells in umbilical cord blood from newborn
children (95). Progesterone is known to induce sphingosine
kinase, and the S1P pathway, the counteracting pathway to
ceramides (96). Recent studies have suggested that non-genomic
progesterone signaling may be a counteracting force to the
effects of ceramides (97-103). Kupchak et al. have shown that
non-genomic progesterone receptor activity can be antagonized
by TNFα, and by 1(S),2(R)-D-erythro-2-(N-myristoylamino)-1-
phenyl-1-propanol, a ceramidase inhibitor (101). Moussatche and
Lyons have suggested that progesterone receptors act as the
'fulcrum' of the ceramide/S1P rheostat, determining whether
ceramide synthase or ceramidase activity is greater, and that
progestins and TNFα play opposing roles in the actions of these
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enzymes (98). Thomas and Pang suggested the neuroprotective
effects of progestins are mediated by this mechanism (100). This
suggests that the QT-shortening action of these agents may occur
because of their opposing actions to TNFα and ceramides. It is
also interesting that both estrogens and anti-estrogens, such as
tamoxifen and toremifene, cause QT prolongation, and that both
estrogens and anti-estrogens increase production of ceramides,
although by different mechanisms. Tamoxifen is a potent
inhibitor of glucosylceramide synthase and of acid ceramidase
(104, 105). Estrogens increase the activity of ceramide synthases
(106, 107).

3-Hydroxy-3-methylglutaryl coenzyme A reductase
inhibitors (statins) may reduce ceramides by a number of
mechanisms. Statins have also been shown to reduce levels
of pro-inflammatory cytokines in many conditions, and
discontinuation of these medications in patients being treated
for hypercholesterolemia may result in a marked increase of
cytokines and other inflammatory markers (108-110). In
animal models of traumatic brain injury, the anti-cholesterol
agents, atorvastatin, simvastatin and lovastatin, reduce brain
and cerebrospinal fluid levels of IL1β, IL6 and TNFα (111-
113). Iwata et al. showed that statins reduced IL6 and IL8
expression from LPS-stimulated human bronchial epithelial
cells (114), and statin use is associated with decreased
mortality in patients with pneumonia (115-117) and sepsis
(118, 119). Thomsen et al., for example, reviewed the case
histories of 29,900 patients hospitalized with pneumonia.
Mortality among statin users was 10.3% at 30 days and
16.8% at 90 days, compared to 15.7% and 22.4% among non-
statin users. These investigators also noted that statin users
had lower blood levels of the inflammatory marker, C-
reactive protein (116). Statins are known to reduce the QT
interval (120, 121), and to reduce the chance of ventricular
arrhythmia (122-125), and the reduction in ventricular
arrhythmias has been linked to decreased inflammation (121,
124). Several investigators have argued that the primary
underlying mechanism for the pleiotropic effects of statins is
activation of sphingosine-1 phosphate-1 (S1P1) signaling
(126, 127). Sugiura et al. showed that treatment with
rosuvastatin led to an increase in the plasma level of S1P1
(128), and it has been reported that both atorvastatin and
pitavastatin cause an up-regulation of S1P1 receptors (127).
Furthermore, addition of pravastatin has been shown to
prevent ceramide-induced death of mouse cerebral endothelial
cells (129). Wei et al. showed that pravastatin and
simuvastatin blocked oxidized LDL-induced acid
sphingomyelinase activity and ceramide production in
coronary artery endothelial cells (130).

Other agents have been shown to shorten the QT. We
showed that liposomal curcumin, as well as empty liposomes,
can attenuate the prolongation of the QT interval caused by
crizotinib, nilotinib and other QT-prolonging agents (131-
133). Liposomal curcumin and empty liposomes suppress

TNFα, IL1β, IL6, monocyte chemoattractant protein 1
(MCP1), macrophage inflammatory protein 1-alpha (MIP1α)
and Rantes, in both in vitro and in vivo models (134).
Curcumin, which has both pro- and antioxidant effects, has
been reported to protect against amiodarone pulmonary
toxicity [a precursor to pulmonary PLD (135)] by reducing
TNFα and TGFβ (136). Curcumin itself may cause prolonged
QT because of its pro-oxidant effects, or because it can
stimulate de novo ceramide synthesis (104), yet QT
prolongation is blocked by liposomes. It has been suggested
that liposomes, besides their anti-inflammatory activities, may
compete with sphingomyelin for the enzyme
sphingomyelinase, thus reducing the production of ceramides,
or act by direct interaction with the cell membrane (137-139).

We have noted that in experimental models, the inducing
effect of TNFα on QT prolongation can be blocked by
antioxidants (41, 43), and other studies in animal models (140)
and in patients (141, 142) have confirmed this. Zhang et al.
showed that antioxidants restored IKr and hERG in the diabetic
rabbit model of diabetes (140). Bednnarz et al. showed
antioxidant vitamins corrected QT dispersion after exercise in
patients post myocardial infarction (141). Kuklinski et al.
reported that in patients treated with coenzyme Q and selenium,
prolonged QT intervals were normalized in all, while 40% of
controls continued to demonstrate prolonged QT. None of the
treated patients died of re-infarction, while 20% of control
patients had died of re-infarction by one year (142). Prolonged
QT in diabetic patients has been associated with reduced plasma
concentrations of vitamin C (143). Numerous studies have
shown that ROS cause activation of sphingomyelinases (144-
150). Vitamin E has been shown to reduce neutral
sphingomyelinase activity and prevent neuronal death in rats
after cerebral ischemia (151), although it may have contrary
effects in cancer cells (152). Vitamin E has also been shown to
prevent the induction of PLD in U937 cells exposed to 7-
ketocholesterol (153). Navas et al. reported that coenzyme Q
regulates the release of ceramides by non-competitive inhibition
of neutral sphingomyelinase (154). The antioxidants 4,5-
dihydroxy-1,3-benzenedisulfonic acid disodium salt
monohydrate (Tiron) and N-acetylcysteine have been shown to
block acid sphingomyelinase activity and the formation of
ceramide-enriched membrane platforms that are stimulated by
TNF-related apoptosis-inducing ligand (104, 155).

Cytokine-induced Prolongation of QT 
Likely Occurs Through ROS and Ceramides

The information from these studies suggests the pathway by
which cytokines cause prolonged QT. After stress, cytokines
are released, and in turn, stimulate production of ROS. ROS
cause activation of sphingomyelinases, which stimulate the
ceramide pathway, and alter the ceramide pathway/
sphingosine-1-phosphate pathway balance (Figure 1). The
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first step, concerning the role of stressors in the induction of
pro-inflammatory cytokines, is well documented. As noted
above, Wang et al. (41) and Fernandez Velasco et al. (43)
both found that TNFα caused IKr, IKs and Ito suppression in
experimental models, and that this effect was reversible by
antioxidants such as vitamin E, and by a superoxide
dismutase mimic, suggesting that TNFα caused this
suppression by stimulating ROS. Pro-inflammatory cytokines
(TNFα, IL1β, IL6, and IFNγ) have been shown to stimulate
ROS in other experimental models (156-159). As noted,
studies have shown that ROS can cause the activation of
sphingomyelinases, causing an increase of ceramide levels
(144-150). The mechanism of histone deacetylase inhibitor-
induced leukemia cell death, for example, is thought to be
secondary to acid sphingomyelinase-dependent generation of
ceramides. This process does not occur in the absence of ROS
stimulation of sphingomyelinase, and is blocked by
antioxidants (146). ROS can also stimulate the salvage and
de novo pathways of ceramide synthesis (160, 161), and this
is likely the mechanism of TNFα stimulus of the de novo
pathway (162). An increase in ROS appears to be the major
mechanism of the cytokine effect on these enzymes,
particularly on sphingomyelinases, although ROS-
independent pathways may also play a role (163). ROS also
inhibit sphingosine kinase-1, and thus further tilt the balance
between the ceramide pathway (destructive) and the S1P
pathway (protective) (81, 164, 165). The ceramide pathway
is known to regulate numerous potassium channels, including
hERG (78-80, 166-169). Ganapathi et al. studied the effects
of C6-ceramide on HEK-293 cells and found that ceramide

inhibited hERG channel current, and recruited hERG
channels within caveolin-enriched lipid rafts (169). Chapman
et al. reported an up to 30% decrease in hERG current with
C6-ceramide, which they attributed to a reduction in the total
number of hERG channels (78). Bai et al. found that C2-
ceramide reduced hERG current, an effect they concluded
was moderated by ROS (80). Wu et al. showed that C2-
ceramide inhibited IKr in neuroblastoma IMR-32 cells and in
rat pituitary GH(3) cells, and that this effect could be
duplicated by TNFα (79).

Drug-induced Prolonged QT

We have argued that pro-inflammatory cytokines cause
prolonged QT by stimulating the ceramide pathway. If this
hypothesis is accurate, we must account for the mechanism
of action of QT-prolonging drugs, many of which are actively
associated with the suppression of cytokines. We believe that
although elevated levels of TNFα, IL1β and IL6 cause QT
prolongation through the ceramide pathway and that this is
the explanation for the high incidence of prolonged QT in
inflammatory conditions, agents inducing QT prolongation
may bypass the initial steps in this model and cause
prolonged QT by directly affecting the ceramide pathway and
disrupting the ceramide pathway/S1P pathway balance. 

An important class of agents that cause QT prolongation is
the tyrosine kinase inhibitors (TKIs), which are now used
extensively for the treatment of chronic myelogenous
leukemia (CML), renal cell carcinoma, hepatoma,
gastrointestinal stromal tumors and many other types of
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Figure 1. A simplified model: Cytokine causation of the prolonged QT syndrome.



cancer. One of the most prominent toxicities of nilotinib, a
second-generation TKI which targets the breakpoint cluster
region–ABL proto-oncogene 1 (BCR–ABL) receptor on
CML cells, is QT prolongation. It has been shown that
nilotinib induces apoptosis of CML cells by up-regulating
ceramide synthase and down-regulating sphingosine kinase
(170, 171). Addition of exogenous ceramides increased the
apoptotic effect of nilotinib. In another study, El-Agamy
showed that nilotinib caused a decrease in inflammatory
cytokines and ROS generation and ameliorated LPS-induced
acute lung injury in rats, presumably secondary to its
stimulatory effect on ceramides and subsequent reduction in
TNFα (172). Similarly, dasatinib, another second-generation
TKI which is similar to nilotinib and which also causes QT
prolongation, also causes apoptosis of CML cells by up-
regulating ceramide synthase and down-regulating
sphingosine kinase, thus shifting the ceramide/S1P balance
toward ceramide (173). Likewise, alterations in the
ceramide/S1P rheostat toward excess S1P have been
associated with resistance to imatinib in patients with CML.
The efficacy of imatinib has been linked to its generation of
ceramides, particularly C18-ceramide, whereas resistance is
thought to be caused by increased sphingosine kinase-1
activity and increased levels of S1P (174). Resistance has also
been correlated with increased activity of glucosylceramide
synthase, which converts ceramide to glucosylceramide.
PDMP, a glucosylceramide synthase inhibitor and inducer of
PLD, increased CML cell kill after treatment with imatinib
(175). Huang et al. showed PDMP sensitizes resistant T315I
mutant CML cells to a BCR–ABL inhibitor (176). Gao et al.
reported that resistance to sunitinib, a tyrosine kinase
inhibitor which causes prolonged QT and which is commonly
used for treatment of renal carcinoma, gastrointestinal stromal
tumors and pancreatic neuroendocrine tumors, is caused by
activation of sphingosine kinase-1 and stimulation of the S1P
pathway (177). Salas et al. showed that sphingosine kinase-1
and S1P mediate BCR–ABL stability and cause resistance to
therapy, and that the efficacy of nilotinib depended on
suppression of S1P, consistent with the view that all these
agents work by tilting the ceramide/S1P balance toward
ceramide (178). Many other investigators have found similar
results (179-181).

While it is well-known that pro-inflammatory cytokines
can stimulate the production of ceramides, it is also well-
documented that exogenous ceramides, and the stimulation of
the ceramide pathway, can cause a feedback inhibition of
cytokines (182-188). For example, Jozefowski et al. showed
that treatment with C8-ceramide reduced production of TNFα
and MIP2 in murine peritoneal macrophages and in J774A.1
macrophage-like cells after LPS stimulation, and concluded
that ceramide acted as a negative regulator of cytokine
production. Inhibition of sphingomyelinase increased
cytokine production (182). Rozenova et al. found similar

results. They studied acid sphingomyelinase-deficient mice
and peritoneal macrophages derived from the animals, and
found that both the animals and the isolated macrophages
produced 10- to 15-fold higher levels of TNFα when
stimulated with LPS (183). Walton et al. reported that C6-
ceramide inhibited LPS-induced IL8 synthesis in human
aortic endothelial cells (184). The negative regulation of
cytokines by ceramides may explain why medications which
bypass the initial steps in the inflammatory pathway to
ceramides and cause prolonged QT directly, may also cause
cytokine suppression (189).

Other agents that cause QT prolongation are known to
stimulate aberrant ceramide metabolism. For example,
chlorpromazine, a commonly used antipsychotic drug, has
been shown to reduce the level of acid ceramidase, which
degrades ceramides to sphingosine and fatty acids, causing
increased levels of ceramides (190-192). It is also well-known
that chlorpromazine can induce inflammatory conditions,
such as drug-induced lupus (193, 194). Hieronymus et al.
have shown that the addition of S1P, which shifts the
ceramide/S1P balance away from ceramide, can block
chlorpromazine-induced apoptosis of peripheral blood
mononuclear cells, and have suggested that aberrations of the
ceramide pathway are the cause of drug-induced lupus (195).

Tricyclic antidepressants have been shown to have effects
on ceramide/S1P balance. Desipramine inhibits acid
ceramidase (190-192), although it also has an inhibitory effect
on sphingomyelinase (196-198). Because of their inhibitory
effects on sphingomyelinase, tricyclic antidepressants have
been studied extensively as possible suppressors of ceramides,
and it has been speculated that the antidepressant effects of
these agents may be due to their effects on this enzyme.
However, Elojeimy et al. treated DU145 prostate carcinoma
cells with desipramine and found an increase in ceramide
levels, suggesting that in some cases, the effects of
desipramine on acid ceramidase may outweigh its effects on
sphingomyelinase (192). That sphingomyelin hydrolysis and
ceramidase activity may produce ceramides with different
fatty acid chain lengths, which is discussed below, may be
another explanation why tricyclic antidepressants cause
prolonged QT despite inhibiting sphingomyelinase.

Antimalarials, such as mefloquine and chloroquine, have
profound effects on the ceramide pathway. Mefloquine
inhibits sphingomyelin synthase and glucosylceramide
synthase, leading to an increased intracellular ceramide
concentration, and this is thought to be its mechanism of
action against Plasmodium falciparum (199). Mefloquine also
increases sphingomyelinase (200) and reduces sphingosine
kinase (201). Chloroquine inhibits acid ceramidase (190).

Cyclooxygenase-2 inhibitors, such as celecoxib, are known
to cause prolonged QT (202), and to increase ceramide levels
by activating sphingomyelinase (203-205). In one study,
addition of C6-ceramide duplicated the effects of celecoxib on
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the cell cycle and cell growth inhibition (204). Schiffmann et
al. showed that the toxic effects of celecoxib occur by activation
of ceramide synthase 6 and the salvage pathway (206). 

Fingolimod, a sphingosine analog with both agonist and
antagonist effects on the S1P1 and other S1P receptors, and
which sequesters lymphocytes in lymph nodes, is used to treat
patients with relapsing multiple sclerosis. Fingolimod causes
QT prolongation and inhibition of the hERG current (207-
209), and sometimes fatal arrhythmia (210). This drug also
can cause profound suppression of cytokines, including
TNFα, IL1β, MCP1, interferon γ, chemokine (C-X-C motif)
ligand 1 and TGFβ (211, 212). 

In the mouse model of influenza-induced cytokine storm,
modulation of the S1P1 receptor was identified as the primary
pathway for initiation of the storm (213). The storm was
reversed in this model through feedback inhibition by a S1P1
receptor modulator, with marked reductions in TNFα, MCP1,
IFNγ, MIP1α, IL6 and other cytokines (214, 215). In this
study, the S1P1 receptor modulator was a much more
effective therapy than the antiviral agent, Tamiflu: 82% of
mice treated with the receptor modulator survived compared
to 50% with Tamiflu and to 20% of controls, 96% (27/28) of
mice treated with both the receptor modulator and Tamiflu
survived (213). Ceramides are composed of sphingosine and
fatty acids.  Sphingosine kinase, the enzyme which catalyzes
sphingosine to S1P, is the crucial enzyme in the balance
between the opposing ceramide to S1P pathways, and
sphingosine has important ceramide-like effects (216). In
addition, fingolimod, like tricyclic antidepressants, appears to
inhibit acid ceramidase (217). Other sphingosine analogs,
such as siponimod, have also been reported to cause
prolonged QT (207). 

Many other agents that are known to cause prolonged QT
have been shown to affect the ceramide pathway and disrupt
the ceramide/S1P balance, including aminoglycosides (218-
221), antiestrogens such as tamoxifen (222), quinolones (221-
224), monoclonal antibodies such as rituximab (225),
platinum-containing antineoplastics (226-228), calcium
channel blockers (229, 230), anthracyclines (231, 232),
arsenic trioxide (233, 234), antihistamines (229), taxanes
(235), cyclosporines (235) and imidazole antifungals such as
ketoconazole (235). A list of QT-prolonging drugs and their
effects on ceramide signaling is given in Table I.

Ceramide Fatty Acid Chain Length

The production of specific ceramides may be as important as
the total amount of cytokines in the causation of the
prolonged QT interval (236-238). Senkal et al. showed that
treatment with the anthracycline doxorubin, in combination
with gemcitabine, against human head and neck carcinoma
cells, resulted in a 3.5-fold increase in ceramide synthase
activity. When these cells were heterotransplanted into mice,

a 7-fold increase in C-18 ceramide was seen after treatment,
despite no increase in total ceramide levels (236). Veret et al.
showed that treatment of pancreatic β-cells in culture with
high doses of glucose resulted in apoptosis through
stimulation of ceramide synthase-4, and increases in the
levels of C18:0, C22:0 and C24:1 ceramides, without an
increase in total ceramides. Down-regulation of ceramide
synthase-4 by short-interfering RNA reduced apoptosis (238).
C16:0 ceramide appears to have an important role in the
induction of glucose intolerance. Turpin et al. reported that
obese patients had elevated levels of ceramide synthase-6
mRNA and C16:0 ceramide in their adipose tissue. In
addition, they showed that ceramide synthase-6-deficient mice
had reduced levels of C16:0 ceramide and did not develop
glucose intolerance or obesity after a high-fat diet (239). In
patients with Parkinson’s disease, ceramide levels are
generally elevated. However, levels of C16:0, C18:0, C20:0,
C22:0 and C24:1 ceramides are especially high, particularly
in those who have significant cognitive impairment (240).
There is also a great deal of data showing that elevated levels
of C18:0 and C24:0 ceramides contribute to disease severity
in patients with Alzheimer’s disease (241). Such patients have
greatly increased levels of C24:0 ceramide in the middle
frontal gyrus, and the levels of C18:0 and C24:0 ceramides
there correlate with disease severity. Addition of amyloid β-
peptide-42 to cultured hippocampal neurons has been shown
to result in increased C18:0 and C24:0 ceramide levels, and
this effect can be reversed by an inhibitor of serine
palmitoyltransferase (242). Numerous investigators have
shown that C16:0, in particular, is crucial for apoptosis, both
of malignant and normal cells (241-245). In cancer, and other
diseases, it has been suggested that very long chain ceramides
interfere with the toxic effects of C16:0 ceramide, and that
what is crucial in many diseases is the balance between C16:0
and C24:0 ceramides, with C16:0 having toxic and C24:0
having protective effects (241, 242, 247).

The role of ceramides with specific fatty acid lengths in the
pathogenesis of the prolonged QT syndrome and other
abnormalities of cardiac function is not known. However, as
noted, the production of different cytokines by different
enzymes in the various ceramide pathways could be part of
the reason why tricyclic antidepressants cause prolonged QT
despite their tendency to inhibit sphingomyelinase. Di Paola
et al. showed that C2-ceramide stimulated, while C16-
ceramide inhibited, cytochrome c oxidase activity in rat heart
mitochondria. Short-chain ceramides inhibited the generation
of ROS associated with membrane potential-dependent
reverse electron flow from succinate to complex 1, while
long-chain ceramides had no effect. The investigators in this
study concluded that short-chain ceramides caused a collapse
in membrane potential, leading to an increase in permeability
(248). Monette et al. reported that the impaired electron
transport and increase in ROS in the aging rat heart after
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chronic inflammation was caused by increased levels of
C16:0, C18:0 and C24:1 ceramides. The increased ceramide
levels and mitochondrial abnormalities were reversed by (R)-
α-lipoic acid (249). Russo et al. reported that mice which
were fed a diet high in myristate (C14:0) developed marked
increases in ceramide synthase-5 and C14-ceramide through
the de novo pathway, resulting in cardiac hypertrophy and
dysfunction (250). No effect was seen with a high palmitate
(C16:0) diet.

The significance of these findings is unclear, but there are
hints that C16:0 ceramide may be especially important in the
causation of QT prolongation, just as it is in other diseases. In
a series of elegant experiments, Schiffmann et al. reported
that celecoxib activation of ceramide synthase-6 induced
C16:0 ceramide selectively, and showed that the toxic effects
of celecoxib on cell growth were solely due to C16:0
ceramide production (206). As noted, Lecommandeur
reported that drug-induced PLD is characterized by an
increase in C16:0 ceramide, even when the total ceramide

content is not changed (60). Bock et al. showed that treatment
of Jurkat T-lymphocytes with C16:0 ceramide causes
clustering of the voltage-gated potassium channels Kv1.3
within ceramide-enriched membranes, resulting in inhibition
of Kv1.3 activity (251). It is also known that many of the
toxic effects of TNFα occur specifically through generation
of C16:0 ceramide, and that these toxic effects can be blocked
by reduction of this ceramide (252, 253). Likewise, it has
been shown that the toxic effects of IFNγ in models of
autoimmune disease occur specifically through ceramide
synthase-6 and C16:0 ceramides, and that these effects are
reversed by inhibition of this ceramide (254).

Conclusion

We conclude that excess levels of pro-inflammatory cytokines
play a role in causing prolongation of the QT interval, and
that the likely mechanism of action is through ROS and the
ceramide pathway. We also believe that QT-prolonging drugs
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Table I. QT-Prolonging agents and their effects on ceramide/S1P signaling

Drug class Important effects Ref.

Tyrosine kinase inhibitors ↑ Cer Syn; ↓ Sph Kin 170-171, 173-174, 177-181
Antipsychotics (e.g. chlorpromazine) ↓ Acid Cer; ↓ SMase 190-192
Tricyclic antidepressants ↓ Acid Cer; ↓ SMase 190-192, 223, 229
Antimalarials (e.g. chloroquine) ↓ Acid Cer; ↓ GCS; ↓Sph Syn; ↓ Sph Kin; ↑↓ SMase 190-192, 199-201
Cyclooxygenase-2 inhibitors (e.g. celecoxib) ↑ SMase; ↑ Cer Syn (salvage pathway) 203-206
Sphingosine analogs S1PR modulation; Cer-like effects on rheostat; ↓ SMase; 213-217, 271

↓ Cer Syn; ↓ Acid Cer; ? reverse Acid Cer activity
Aminoglycosides (e.g. gentamicin) ↑ Sph Syn; ↑↓ SMase 218-221
Anti-estrogens (e.g. tamoxifen, toremifene) ↓ Acid Cer; ↓ GCS 104, 105, 222, 235
Quinolone antibiotics ↓ Sph Syn; ↑ SMase 221, 223, 224
Rituximab (monoclonal antibody against CD20) ↑ SMase 225
Platinum-containing anti-neoplastics ↑ SMase 191, 226-228
Calcium channel blockers (e.g. verapamil) ↓ Sph Kin; ↓GCS 104, 229-230, 235, 255, 256
Anthracyclines ↑ SPT, ↑ Cer Syn (de novo Cer synthesis); ↑ SMase 231-232, 235, 255
Arsenic trioxide S1PR modulation; ↑ SPT, ↑ Cer Syn (de novo Cer synthesis); ↓ GCS 233, 234, 257
Antihistamines ↑↓ SMase; ↓ Sph Kin 229, 258
Taxanes ↑ SPT, ↑ Cer Syn (de novo Cer synthesis) 235, 255
Cyclosporines ↑ Cer Syn; ↓ GCS 104, 235, 255, 259
Imidazole antifungals (e.g. ketoconazole) ↓ GCS 235, 255
Vinca alkaloids ↑ SPT, ↑ Cer Syn (de novo Cer synthesis) 235, 255
Cortisol receptor blockers (e.g. mifepristone) ↓ GCS 235
Sodium nitroprusside ↑ SMase 235
Methamphetamines ↑ SPT, ↑ Cer Syn (de novo Cer synthesis) 260
Histone deacetylase  inhibitors ↑ SMase 146, 261, 262
Opioids ↑ SMase; ↑ SPT, ↑ Cer Syn (de novo Cer synthesis), ↑ Sph Kin 263, 264
Curcumin ↑SPT, ↑ Cer Syn (de novo Cer synthesis) 265
Proteasome inhibitors (e.g. bortezomib) ↑ SPT, ↑ Cer Syn (de novo Cer synthesis) 266
Streptozotocin ↑ SPT, ↑ Cer Syn (de novo Cer synthesis) 267
Macrolides ↑ SMase, ↓ SM Syn, ↓ SPT 267-270

Acid Cer: Acid ceramidase; Cer: ceramide; Cer Syn: ceramide synthase; GCS: glucosylceramide synthase; S1PR: sphingosine-1 phosphate recptor;
SMase: sphingomyelinase; SM Syn: sphingomyelin synthase; Sph Kin: sphingosine kinase; SPT: serine palmitoyltransferase.



may bypass the initial steps and cause prolonged QT by direct
effects on the ceramide and S1P pathways and alterations of
the ceramide/S1P rheostat. Elevated levels of cytokines may
predispose a patient to QT prolongation, and this may be the
reason that the QT-prolonging potential of these agents may
not be observed in initial studies in human volunteers. Recent
studies have suggested that it may be the stimulation of
ceramides with particular fatty acid chain lengths, as much as
the increase in total ceramides, which is important in the
pathogenesis of some diseases. The potential role of
individual ceramides, particularly C16:0 ceramide, in the
causation of QT prolongation needs to be investigated. That
pro-inflammatory cytokines and QT-prolonging medications
may cause QT prolongation by the same mechanism means
extra caution is needed when using these agents in patients
with inflammatory conditions.
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