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Abstract. Aim: The purpose of this study was to investigate
the gene expression levels of elastin and fibulin-5 according to
differences between carotid plaque regions and to correlate it
with clinical features of plaque destabilization. Materials and
Methods: The study included 44 endarterectomy specimens
available from operated symptomatic carotid artery stenoses.
The specimens were separated according to anatomic location:
internal carotid artery (ICA), external carotid artery (ECA)
and common carotid artery (CCA), and then stored in liquid
nitrogen. The amounts of cDNA for elastin and fibulin-5 were
determined by Quantitative real-time PCR (Q-RT-PCR). Target
gene copy numbers were normalized using hypoxanthine-
guanine phosphoribosyltransferase (HPRT1) gene. The delta-
delta CT method was applied for relative quantification.
Results: Q-RT-PCR data showed that relative fibulin-5 gene
expression was increased in ICA plaque regions when
compared to CCA regions but not reaching significance
(p=0.061). At the same time, no differences were observed in
elastin mRNA level between different anatomic plaque regions
(p>0.05). Moreover, elastin and fibulin-5 mRNA expression and
clinical parameters were compared in ICA plaques versus CCA
and ECA regions, respectively. Up-regulation of elastin and
fibulin-5 mRNA levels in ICA were strongly correlated with
Sfamily history of cardiovascular disease when compared to
CCA (p<0.05). Up-regulation of fibulin-5 in ICA was
significantly and
triglycerides and very low density lipoprotein (VLDL) when
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compared to ECA (p<0.05). Conclusion: The clinical
significance is the differences between the proximal and distal
regions of the lesion, associated with the ICA, CCA and ECA
respectively, with increased fibulin-5 in the ICA region.

Carotid artery disease is described by decreased patency of
the carotid arteries, which is commonly caused by
atherosclerosis, potentially leading to ischemic stroke (1).
Recent literature suggests that carotid plaque itself should be
re-classified referring to the point of maximum stenosis.
Documentation of microscopic pathology implies that the
region of plaque proximal (upstream) to the maximal point
of stenosis features severe inflammatory characteristics of an
unstable lesion. However, the distal region was shown to
feature characteristics of a stable lesion (2). Development of
atherosclerotic carotid plaque is a dynamic and complex
process that involves various events, for instance,
proliferation of smooth muscle cells, macrophage and
lymphocyte migration, formation of new blood vessels, and
remodeling of the extracellular matrix. In recent years, many
studies have suggested that the different phases of
atherosclerosis may be mediated through the action of
metalloproteinases and other matricellular proteins (3-6).
Elastin and fibulin-5 are extracellular membrane proteins
actively involved in matrix stabilization. Their expression was
shown to be increased at atherosclerosis-resistant regions of the
aorta, and they were shown to be degraded by
metalloproteinase activity at thoracic aortic dissections (7, 8).
Vascular shear stress was reported to be associated with
atherosclerotic activity. One of the proposed mechanisms was
due to alteration of the extracellular matrix composition (8-10).
Elastin is one of the most important components of elastic
fibers and vascular extracellular structures, and was found to
have decrements and structural alterations in vessel walls in
response to atherosclerosis (11). Elastin assembly is a
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Table 1. Demographic and clinical characteristics of the study group.

Parameter Total
(n=44)
Gender (F/M) 15/29
Age (years) 68+10
Smoking (%) 50
Alcohol (%) 22.7
Hypertension (%) 68.2
Diabetes (%) 455
Triglycerides (mg/dl) 136+57
Total cholesterol (mg/dl) 183+56
HDL-cholesterol (mg/dl) 41x11
LDL-cholesterol (mg/dl) 115+50
VLDL-cholesterol (mg/dl) 27+12
Homocysteine (umol/L) 1243
C-Reactive protein (mg/L) 12+19
Platelets (per pL) 241,000+103,000
Prothrombin time (sec) 15+16
PTT (sec) 93+25
APTT (sec) 27+15
Heart rate (bpm) 79+6
Diastolic blood pressure (mmHg) 79+9
Systolic blood pressure (mmHg) 132+17

HDL: High density lipoprotein; LDL: Low density lipoprotein; VLDL:
very low density lipoprotein; PT: prothrombin time; APTT: activated
partial thromboplastin time. Values are reported as the mean+standard
deviation or the number of patients as a percentage of the total group.

delicate process, that can be affected by several other
proteins and factors. Its role is being increasingly appreciated
in the pathogenesis of atherosclerosis and other diseases
(12). While the molecular interactions between elastin and
other microfibrils during elastogenesis have been
investigated, the mechanisms of elastic fiber formation
remain unclear (13). Recently, Basu et al. showed that the
ratio of elastin to collagen expression is higher in carotid
artery and the aorta compared to that in femoral artery and
vein (14).

Fibulin-5, also known as embryonic vascular growth factor
(EGF-)like repeat-containing protein and developmental
arteries and neural crest EGF-like protein, is a calcium-
binding extracellular matrix protein shown to play a critical
role in the assembly of elastic fibers (15, 16). Fibulin-5
appears to be essential for the polymerization of elastin (15-
17). Furthermore, fibulin-5 interacts with the elastic fiber
molecules tropoelastin and fibrillin-1 and therefore was said
to be important for elastic fiber formation (15, 18, 20). Aside
from its elastogenic function, fibulin-5 plays multiple roles
in various cellular processes (21). Recent studies showed that
fibulin-5 is expressed in developing arteries, as well as
atherosclerotic arteries (21).

It is yet unknown whether elastin and fibulin-5 are
affected during carotid atherosclerosis. In the present study,
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Table II. The relative gene expressions for elastin and fibulin-5 in
internal carotid artery (ICA) and common carotid artery (CCA) plaque
locations.

Gene ICA (n=44) CCA (n=44) p-Value
Elastin -0.375+2.949 —1.048+2.739 0.124
Fibulin-5 —3.250+3.545 —4.089+3.371 0.061

Values are reported as mean+SD, p-values less than 0.05 denote
statistical significance.

we aimed to investigate the relation of these genes with
carotid atherosclerotic activity with regard to the anatomic
divisions of the plaque.

Materials and Methods

Patients and specimen. The study population consisted of 44 patients
operated at the Peripheral Vascular Surgery Service, Istanbul School
of Medicine with symptomatic carotid stenoses =70%. Those with
asymptomatic stenoses or stenoses <70% were treated medically.
Carotid artery plaques were obtained immediately after
endarterectomy. All operations were performed with standard surgical
techniques and minimal manipulation of the specimen. After obtaining
Institutional Review Board approval (number:2741/10.21.2008),
specimens were collected prospectively. Following endarterectomy, the
plaque was divided ex vivo into internal carotid artery (ICA), external
carotid artery (ECA) and common carotid artery (CCA) parts. These
were then stored immediately frozen in liquid nitrogen to prevent
nucleic acid and protein breakdown.

RNA isolation and cDNA synthesis. Total RNA for cDNA synthesis
was extracted from tissues. Total RNA was extracted by using
commercial Magnapure Compact RNA isolation Kit (ROCHE
Diagnostics, GmbH, Roche Applied Science, Manheim, Germany).
RNA samples were quantified using a NanoDrop ND-1000
spectrophotometer (Thermo Fisher Scientific, Wilmington, DE,
USA). Synthesis of cDNAs was performed on a Thermal Cycler
device (Applied Biosystems GeneAmp PCR System 9700, Life
Technologies, Foster City, USA) using Transcriptor First-Strand
cDNA Synthesis kit (ROCHE).

Quantitative real-time PCR (Q-RT-PCR). First strands of the cDNA
samples were synthesized using Reverse Transcriptase-PCR . The
PCR assays were carried out in a LightCycler 1.5 (ROCHE) device
using LightCycler TagMan master kit (ROCHE) and specific primer
and probe sequences.

The primers and probes were designed using www.
universalprobelibrary.com. The gene-specific primers and probes for
elastin and fibulin-5 used in quantitative PCR were as follows: forward
primer for elastin: 5’CAGCTAAATACGGTGCTGCTG3, reverse
primer; 5’AATCCGAAGCCAGGTCTTG3’, and probe 5°-FAM-
TGGAGGAG-3’-dark quencher; forward primer for fibulin-5:
5’CTGCCCTCCAGGCTACATC3’, reverse primer 5° CCTGTGCT
CACATTCGTTGA3’, and probe 5’-FAM-GCTGGGATG-3’-dark
quencher. To ensure the fidelity of mRNA extraction and reverse
transcription, all samples were subjected to PCR amplification with
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Figure 1. Relative gene expression levels of elastin and fibulin-5 in plaques in ICA compared to CCA regions (A) and ICA compared to ECA regions (B).

oligonucleotide primers and probes specific for the constitutively
expressed gene hypoxanthine-guanine phosphoribosyltransferase
(HPRTI) and normalized. HPRT] primers and probe were as follows:
forward primer: 5’TGACCTTGATTTATTTTGCATACC3’, reverse
primer: 5° CGACAAGACGTTCAGTCCT3’, and probe 5’-FAM-
GCTGAGGA-3’-dark quencher.

The cycle number was determined as being within the linear
amplification range from a linear amplification curve. The copy
numbers of samples were obtained after quantitative amplification
and target gene Ct values were normalized to the respective Ct
values obtained for HPRTI due to previously designed relative
quantification method (22). Differences in expression levels are
denoted as log-transformed ratios to show fold change

Statistical analysis. Statistical analysis were performed using the
SPSS version 18.0 software (SPSS Inc., Chicago, IL, USA).
Student’s r-test was used to examine significance of differences
between two groups and Chi-square and Fisher’s exact tests was

used to compare expression by demographic information. Values are
given as the meantstandard deviation (SD). p-Values less than 0.05
denoted statistical significance..

Results

The study population consisted of 44 patients with
symptomatic carotid stenosis treated with carotid
endarterectomy. Demographic data are shown in Table I.
Q-RT-PCR was used to assess the mRNA level of elastin
and fibulin-5 genes with regard to anatomical region of
plaque. The expressions of our target genes are shown in
Figure 1. Elastin and fibulin-5 overexpression was found in
18 and 13 ICA plaques vs. CCA plaques, on the other hand,
decreased elastin and fibulin-5 expression was found in 26
and 31 ICA plaques vs. CCA plaques, respectively. Fibulin-5
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Table III. Correlation of elastin and fibulin-5 gene expression with clinical parameters of patients with plaque located in internal carotid artery

(ICA) and common carotid artery (CCA).

Parameters

Elastin expression Fibulin-5 expression p-Value
ICA vs. CCA (n=44) ICA vs. CCA (n=44)
Down-regulation Up-regulation Down-regulation Up-regulation  Elastin  Fibulin-5

(n=26) (n=18) (n=31) (n=13) expression expression
Demographics and co-morbidities
Female gender (%) 34.6 66.7 355 30.8 0.930 1.000
Age >55 years (%) 73.1 94 .4 774 92.3 0.115 0.402
Smoking (%) 50.0 50.0 484 53.8 1.000 0.741
Alcohol (%) 26.9 16.7 194 30.8 0.489 0.449
Hypertension (%) 654 72.2 742 538 0.632 0.186
Diabetes (%) 46.2 444 38.7 61.5 0911 0.165
Family history of
cardiovascular disease (%) 154 44 4 16.1 53.8 0.045% 0.010%*
Hypercholesterolemia (%) 38.5 389 38.7 385 0977 0.988
Laboratory values
Triglycerides (mg/dl) 132.71+58.92 140.56+54.92 136.91+58.59 132.75+52.68  0.688 0.858
Total cholesterol (mg/dl) 183.7+60.74 182.83+52.06 182.01+57.38 187.75+£56.39  0.965 0.805
HDL-Cholesterol (mg/dl) 42.52+12.69 39.98+9.77 41.41+11.46 41371198  0.527 0.993
LDL-Cholesterol (mg/dl) 115.21+53.35 115.82+46.86 114.29+50.07 119.32+52.31 0.972 0.807
VLDL-Cholesterol (mg/dl) 27.38+12.6 27.23+10.82 27.39+12.11 27.05+11.02  0.970 0.943
Homocysteine (umol/L) 11.81+4.23 11.26+2.43 11.34+3.89 11.95+2.42 0.726 0.711
C-Reactive protein (mg/dl) 12.51+21.09 11.47+15.38 14.17£21.6 6.56+5.88 0.873 0.283
Platelets (per pL) 244922.39+97544.52  236960.87+115171.69 245977.93+103095.32 227250+110182.64 0.817 0.641
Prothrombin time (sec) 16.54+21.12 12.12+1.09 15.49+18.74 12.39+1.27 0.396 0.589
Values are reported as mean+SD and or as percentages, *Statistically significant.
mRNA expression was higher in ICA plaques versus CCA  Discussion

but this did not reach statistical significance (p=0.061) (Table
II). When we compared ICA and ECA plaque, fibulin-5
expression was not significantly different in these regions
(p=0.569). Elastin and fibulin-5 overexpression was indicated
in 19 and 23 ICA plaques vs. ECA plaques, nevertheless,
decreased elastin and fibulin-5 expression was found in 25
and 21 ICA plaques vs. ECA plaques, respectively.

We also compared fibulin-5 expression between CCA and
ECA regions. There were no significant differences between
these two regions (p=0.231). At the same time, no
differences were observed between elastin mRNA levels in
plaques from different anatomical regions (p>0.05).

Additionally, we investigated associations between elastin
and fibulin-5 gene expression levels and clinical parameters
in ICA compared to CCA plaque. Up-regulation of elastin
and fibulin-5 gene expression was strongly correlated with
family history of cardiovascular disease (elastin: p=0.045
and fibulin-5: p=0.010) (Table III). When ICA was
compared to ECA, the up-regulation of fibulin-5 expression
was correlated with diabetes (p=0.032), and high levels of
triglycerides (p=0.007) and VLDL-cholesterol (p=0.031)
(Table IV).
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Ischemic strokes are frequently caused by plaque rupture and
embolization resulting from unstable carotid atherosclerotic
lesions (23). The pathological mechanisms responsible for
plaque instability are increased inflammation, angiogenesis
and vessel wall remodeling (23-26). Several studies have
shown an increased number of macrophages in symptomatic
internal carotid artery plaques (27-29).

Arteries close to the heart may have adapted to high
pulsatile blood pressure by increasing their medial thickness
and their elastin content, which ultimately gives the artery
an increased level of compliance and stability, as shown in
in situ models (10). The elastin:collagen ratio and matrix
metalloproteinases play a crucial role in vascular remodeling
and in the development of atherosclerosis (10). Stretch,
rather than the shear stress produced by flow, may influence
the development of the elastic-hyperplastic layer at the
apical walls of the aorta (and its branch dividers such as the
ICA), which is followed by a inhibition of smooth muscle
cell growth and atherogenic gene expression by elastin,
resulting in the construction of an atherosclerosis-resistant
structure (8).
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Table IV. Correlation of elastin and fibulin-5 gene expression levels with clinical parameters of patients with carotid artery ICA plaque compared

to ECA plaque locations.

Parameters Elastin expression Fibulin-5 expression p-Value!  p-Value?
ICA vs. ECA (n:44) ICA vs. ECA (n:44)
Down-regulation Up-regulation Down-regulation Up-regulation
(n=25) (n=19) (n=21) (n=23)
Demographics and co-morbidities
Female gender (%) 32 63.2 28.6 39.1 0.737 0.460
Age (>55) (%) 80.8 83.3 81 82.6 1.000 1.000
Smoking (%) 48 52.6 57.1 43.5 0.761 0.365
Alcohol (%) 24 21.1 19 26.1 1.000 0.724
Hypertension (%) 68 68.4 66.7 69.6 0.976 0.837
Diabetes (%) 40 529 28.6 39.1 0.405 *0.032
Family history of
cardiovascular disease (%) 20 36.8 19 348 0214 0318
Hypercholesterolemia (%) 36 42.11 38.1 39.1 0.680 0.944
Laboratory values
Triglycerides+SD (mg/dl) 126.4+55.67 147.96+57.27 112.02+43.97 162.76+£58.26 0262 *0.007
Total Cholesterol+SD (mg/dl) 173.94+51.55 194.46+61 .41 166.91+54.75 200.7+54.27 0.290 0.076
HDL-Cholesterol+SD (mg/dl) 41.38+12.12 41.42+10.93 42.57+12.26 40.23£10.73  0.993 0.558
LDL-Cholesterol+SD (mg/dl) 107.66+41.93 124.27+57.6 101.8+44.83 129.15+52.13  0.340 0.111
VLDL-Cholesterol+SD (mg/dl) 25.8+11.52 29.21%12.07 23.37+11.39 31.73£10.75 0394  *0.031
Homosistein+SD 11.5£3.97 11.63+2.52 11.86+4.06 11.2+2.72 0.935 0.668
C-reactive protein+SD 16.43+24.3 7.04+7.24 18.8+26.53 6.96+7.14 0.114 0.098
Platelets+=SD 245879+116554.18  236191.23+87575.67 258216.9+122279.8  224223.73+79421.750.777 0.313
Prothrombin Time+SD 17.22+22.09 11.87+1.17 12.37+3.53 16.54+21.44 0.293 0.420

n:Number of individuals, Values are reported as mean+SD and numbers with percentages, *p-values less than 0.05 denoted statistical significance.

Ip=Elastin expression, 2p=Fibulin-5 expression.

Recently, carotid plaque composition was assessed in vivo
referring to the point of maximum stenosis. Unstable plaque
phenotype was shown in proximal (upstream) areas of the
carotid atherosclerotic plaque, whereas there was a stable plaque
phenotype in distal (downstream) parts (2). At the same time,
plaque develops most significantly in the proximal portion of
the ICA (the area known as the carotid bulb) and plaque at this
site is the most common cause of stroke (30). Atherosclerotic
carotid plaque has been studied extensively to correlate contents
with lesion characteristics regarding microscopic as well as
genetic features. Various proteins were shown to be associated
with certain lesions (31). Elastin and fibulin-5 are cell-
membrane proteins composing the extracellular matrix. Elastin
is a main component of elastic fibers that provides elasticity to
various tissues such as ligaments, arterial walls and skin (32).
Fibulin-5 is an elastin-binding protein essential for elastic fiber
development, as shown in vivo (29). The elastin content was
shown to increase vascular compliance in arteries. Recent
studies of transgenic mice and some inherited human diseases
focused on the biological function of fibulin-5 (33, 34). Studies
have demonstrated differential gene expression of fibulin-5 in
the neointima after carotid artery ligation, and in activated
endothelial cells of atherosclerotic plaques (14, 35).

Furthermore, elevated fibulin-5 was associated with increased
thickness of the internal and external elastic laminae and thus
was suggested to alter vascular tone (36).

Since the point of maximum stenosis almost certainly
resides at the ICA, we aimed to re-classify the carotid plaque
anatomically and consistently. Therefore, in the present
study, the endarterectomy specimens were divided into
anatomic ICA, CCA and ECA parts following tissue harvest.
We hypothesized that ICA contents would reflect the
atherogenic load compared to CCA and ECA counterparts.
To our knowledge, this is the first study that provides a gene-
expression analysis based on the anatomical divisions of
atherosclerotic carotid plaque. We observed that fibulin-5
mRNA expression was higher in ICA plaques versus those
of the CCA regions, although not significantly (p=0.061).

In conclusion, we suggest that the clinical significance is
the differences between the proximal and distal regions of
the lesion, namely increased fibulin-5 in the ICA region.
Specification of cellular and molecular mechanisms that
denote the presence of vulnerable plaques could be useful as
diagnostic biomarkers for patients with stenosis of the ICA.
This differential expression pattern needs further evaluation,
with extended protein and gene panels.
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