
Abstract. Background: Dendritic cells play key roles in
thymic histophysiology and histopathology. Therefore, we
analyzed the immunotopographical distribution of cells
expressing markers of dendritic cells and macrophages in
postnatal human thymus. Materials and Methods: The
streptavidin-biotin peroxidise-labeled (LSAB) and the double-
LSAB/alkaline phosphatase/anti-alkaline phosphatase (APAAP)
immunohistochemical procedures were used. Results: S100
protein-, Cluster of designation 1a (CD1a)-, CD207-, CD11c-
and CD123-positive cells, many of them exhibiting the
morphology of dendritic cells, were detected in the cortex but
mainly in the medulla. These markers, except CD123, were
also detected in cells of juvenile and immature Hassall bodies.
CD68- and CD163-positive cells were detected in the cortex
and the medulla but not in Hassall bodies. Conclusion: The
immunohistological detection of S100-, CD1a-, CD207- and
CD11c-positive dendritic cells in juvenile and immature
Hassall bodies may reflect an important role of these structures
in the cooperation of epithelial and dendritic cells in the
process of T-cell differentiation. 

The human thymus is a lymphoepithelial organ which
supports the production of self-tolerant T-cells with both
competent and regulatory functions and their migration to the
peripheral blood circulation (1-6). In this multistep process of
T-cell maturation and differentiation the cellular components
of the thymic microenvironment [thymic epithelial cells
(TECs), thymic dendritic cells (TDCs), macrophages,
fibroblasts] play an essential role (7-56). Among these, TDCs
play an important role in the generation of T-cell tolerance
through the negative-selection of auto-reactive thymocytes and

in the development of thymic T-regulatory cells (7-31, 36-44).
TDC are bone marrow-derived dendritic cells (DCs), which
are professional antigen-presenting cells (APC) involved in
immunity and tolerance and characterized by differences in
their anatomic distribution, cell surface marker expression and
function (57-62). 

Human TDCs are typically large cells (20-30 μm) that
express Human leukocyte antigen –DR (HLA-DR) and
Clusters of designation 4 (CD4) and by using flow
cytometry, these cells can be subdivided on the basis of their
immunophenotypic features into plasmacytoid TDCs and
classical TDCs (reviewed in 7-11). The plasmacytoid TDCs
exhibit the immunophenotype HLA-DR intermediate/CD11c-
negative/CD123high, whereas the classical TDCs can be
further subdivided into two different immunophenotypic
subsets: a) a population of immature HLA-DR intermediate/
CD11c-positive/CD123-negative TDCs, and b) a population
of more mature HLA-DRhigh/CD123-negative TDCs, which
can be further differentiated into b1) HLA-DRhigh/
CD11chigh/CD123-negative/CD11b-positive and b2) HLA-
DRhigh/CD11c-positive/CD123-negative/CD11b-negative
cells (11, 14-16, 22-24). 

HLA-DR intermediate/CD11c-negative/CD123high plasma-
cytoid TDCs express high levels of CD4 and CD45RA, but
not CD45RO, and secrete interleukin-12 (IL-12) following
stimulation with IL-3 and CD40 ligand (CD40L); a subset of
plasmacytoid TDCs express CD2, CD5 and CD7 (14, 22, 23,
36). It was suggested that plasmacytoid TDCs may protect the
thymus against viral infection since they produce high levels
of interferon-alpha (IFN-α) in response to some viruses, such
as HIV-1 and influenza virus (23, 37). Furthermore, there is
evidence that plasmacytoid TDCs may also affect the positive
selection of thymocytes through IFN-induced up-regulation of
Major histocompatibility complex-I (MHC-I) on thymic
stromal cells (24, 36, 37). 

HLA-DR intermediate/CD11c-positive/CD123-negative
immature TDCs express the myeloid-related marker CD33,
as well as high levels of CD4 and low levels of CD2, CD7,
CD45RO and CD45RA (23). 
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HLA-DRhigh/CD11chigh/CD11b-negative/CD123-negative
mature TDCs express high levels of CD40, CD83 and CD86
proteins and secrete high levels of IL-12 following
stimulation with IL-3 and CD40L; they also express DC
maturation marker DC-lysosome-associated membrane
glycoprotein (DC-LAMP) mRNA, thymus- and activation-
regulated chemokine (TARC, CCL19) and thymus-expressed
chemokine (TECK, CCL25) mRNA which both regulate
thymocyte homing/trafficking, but they do not express
macrophage inflammatory protein-1α (MIP-1α) mRNA (14,
17, 23, 39, 40). In contrast, the HLA-DRhigh/
CD11chigh/CD11b-positive/CD123-negative mature TDCs
are CD45ROhigh, express granulocyte macrophage-colony
stimulating factor (GM-CSF) receptor and MIP-1α mRNA
but they do not express TARC or TECK mRNA, and secrete
low levels of IL-12 following stimulation (14). 

Although some authors reported that various cytokines
and growth factors, such as tumor necrosis factor-α (TNF-
α), transforming growth factor-β1 (TGF-β1), IL-7, IL-6, IL-
4, IL-3. Stromal Cell Factor (SCF)(c-ΚΙΤ ligand) and Flt-3
ligand (FL) regulate the differentiation and the survival of
peripheral DCs (reviewed in 57-61), only one study focused
on human TDCs, reporting that GM-CSF is an anti-apoptotic
cytokine for human TDCs and a significant modulator of
their accessory function (43). Moreover, evidence has been
provided that the survival and function of human TDCs are
regulated by an autocrine Hedgehog signaling, which plays
critical roles in the development of numerous tissues in
embryogenesis (44). 

Various lines of evidence indicate either a common origin
for some TDCs and thymocytes, or the existence of separate
intrathymic T-cell lineage and DC precursors, but recent
evidence supports the notion that intrathymic DCs and T-
cells arise from different precursors (10). Indeed, Luche et
al., analyzed a major subset of TDCs expressing CD8a and
Langerin (CD207), which were thought to derive from
progenitors with lymphoid potential, and demonstrated that
these TDCs do not share a common origin with T-cells, but
originate from intrathymic precursors that express markers
that are normally present on all (CD11c and MHC-II
molecules), or on some [CD207, CD135, CD8a, chemokine
(C-X3-C motif) receptor 1 (CX3CR1)] DC subsets (12).
They demonstrated that the earliest intrathymic precursors
of CD8-positive TDCs correspond to myeloid-type CD44-
positive/CD25-negative double-negative 1c (DN1c) cells and
support the view that under physiological conditions,
myeloid-restricted progenitors generate the whole
constellation of DCs present in the body, including the
thymus (12). The results of Luche et al., are consistent with
the recent findings of Schlenner et al., who generated IL-7
receptor-α (IL7r) Cre recombinase knock- in mice and
found that more than 85% of T-cell progenitors were IL7r
reporter-positive, whereas most myeloid cells in the thymus

were derived from IL7r reporter-negative cells (13).
Schlenner et al., showed that thymic myeloid cells and DCs
(except plasmacytoid dendritic cells) were mostly of non-
lymphoid origin and concluded that lymphoid-restricted
progenitors are the major route to T-cells and distinct origins
of lymphoid and myeloid lineages represent a hallmark of
hematopoiesis.

Although age-dependent alterations during thymic
involution affect TECs and thymocytes, there is evidence that
thymic macrophages and TDCs are only slightly affected by
age (52-56). Indeed, Varas et al., (52, 53) analyzed the
immunophenotype of purified human TDCs by flow
cytometry using antibodies to MHC-II, CD80, CD86, CD40
and CD54, and investigated the T-cell stimulatory capacity
of TDCs from young and elderly donors by in vitro studies.
Despite the slight decrease of the number and the thymocyte-
stimulatory capacity of TDCs in elderly donors, the
proportion of TDCs remain constant with age and are still
able to induce the proliferation of alloreactive T-cells,
suggesting that TDC functions remain quite unaltered in the
aged thymus (52, 53). 

Immunohistological studies on thymic tissue sections are
important for gaining insight into thymic histology and
histopathology (8, 14-16, 20-23, 31-35, 62-71). However,
there is paucity of multiparametric immunohistological
information regarding the topographical distribution of
human thymic cells expressing markers of DCs in
comparison to cells expressing markers of macrophages in
paraffin sections, which permit reliable morphological
evaluation of immunopositive cells. Therefore, by double-
immunostaining, we analyzed the immunotopographical
distribution of human thymic cells expressing S100, CD1a,
CD207, CD11c, CD123, CD68 and CD163 in paraffin
sections of postnatal human thymuses. 

Materials and Methods

Materials. Paraffin sections from normal human postnatal thymuses
(from individuals aged 14 days to 14 years) previously analyzed for
the immunohistological expression of cytokeratins, neural/
neuroendocrine proteins and beta-tubulin isotypes (63), were
included in the present study.

Immunohistochemistry. The immunostainings were performed using
the streptavidin-biotin peroxidase-labeled (LSAB) procedure and by
the double-LSAB/alkaline phosphatase/anti-alkaline phosphatase
(APAAP) immunohistochemical procedures (63, 64). The immuno-
stainings were performed, in most cases, using a Ventana
autoimmunostainer, according to the manufacturer’s protocols and
instructions. The antibodies used are presented in Table I. S100,
CD1a and CD68 immunostainings were used in our previous study
as markers for the identification of DCs and macrophages in normal
thymic tissue but the immunotopographical distribution of cells
expressing these markers was not analyzed in detail (63). Positive
control slides (reactive lymph nodes) and negative controls with
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Figure 1. Immunohistological analysis of thymic medulla using the double streptavidin-biotin peroxidase-labeled (brown staining)/alkaline
phosphatase anti-alkaline phosphatase (red staining) immunohistochemical procedures. Double immunostaining for CD1a (brown)/CD123 (red)
(A), CD1a (brown)/CD163 (red) (B), CD11c (brown)/CD1a (red) (C), CD11c (brown)/CD123 (red) (D), CD11c (brown)/CD163 (red) (E), CD123
(brown)/CD 163 (red) (F), CD207 (brown)/CD 1a (red) (G), CD207 (brown)/CD 1a (red) (H), CD207 (brown)/CD11c (red) (I), CD207 (brown)/CD
163 (red) (J) (magnification ×400).



omission of the primary antibody were also included and the
antibodies used in the present study were also tested in various types
of lymphoid malignancies (Hodgkin’s lymphomas and B- and T-cell
non-Hodgkin’s lymphomas) from our previous studies (72-76). 

The LSAB and double-LSAB/APAAP immunostainings were
analyzed qualitatively by light microscopy using a Nikon eclipse 50i
microscope. Cells showing positive immunostaining with LSAB and
APAAP were labeled brown and red, respectively (Figure 1). Then
the images from the sections with the double-LSAB/APAAP
immunostainings were converted from RGB (Red Green Blue) color
space to L*a*b* color space, a perceptually uniform color space
which is able to quantify qualitative color differences that the
human eye perceives (77). The L*a*b* space consists of a
luminosity layer “L*”, a chromaticity layer “a*” indicating where
color falls along the red-green axis, and a chromaticity layer “b*”
indicating where the color falls along the blue-yellow axis. Both, a*
and b* layers contain all required color information needed for the
identification of stained tissue areas. Images were subjected to color
segmentation analysis using L*a*b* (CIELAB) color space and K-
means clustering algorithm (77, 78). The difference between two
colors was estimated using the Euclidean distance metric and image
pixels were classified into “a*b*” space, using K-means clustering
(78). Following the clustering process, clusters characterized as
brown areas (representing cells showing positive immunostaining
with LSAB procedure), were clearly separated from red areas
(representing cells showing positive immunostaining with APAAP
procedure), thereby validating the results obtained by qualitative
optical microscopy analysis. 

Results 

The Hassall bodies (HBs) in the present study were classified
as juvenile, immature, mature, senescent and lymphocyte-
rich according to previous studies (32, 33). Briefly, juvenile
HBs were small- or medium-sized, ovoid or irregular
formations of epithelial cells with unaltered morphology,
without necrosis or cellular debris. Immature HBs were
round or oval formations, consisting of squamous epithelial
cells with prominent cytoplasmic acidophilia, but without
degenerative changes. Mature HBs were medium- or large-
sized formations, with necrotic or cystic degenerative
changes in the central area, but presenting squamous
epithelial cells at their periphery. Senescent HBs were of
very large size, without any epithelial cells, but with
calcified, necrotic material, cellular debris or cystic

dilatation. Lymphocyte-rich HBs were medium- or large-
sized formations, containing compact islands or small groups
of lymphocytes. S100-, CD1a-, CD207- and CD11c-positive
cells were detected in the cortex and mainly in the medulla,
and in juvenile and immature HBs but not in mature and
senescent HBs. Most of these S100-, CD1a-, CD207- and
CD11c-positive cells were large, with irregularly-shaped
nuclei and abundant cytoplasm, consistent with DCs
morphology (Table II, Figure 1). CD123-positive cells were
detected in the cortex and mainly in the medulla, but not in
HB. Most CD123-positive cells were of medium and large
size, having ovoid or irregularly-shaped nuclei, with some of
them exhibiting visible nucleoli (Table II, Figure 1). S100-
positive cells outnumbered CD1a-, CD207-, CD11c- and
CD123-positive cells. CD1a also stained most cortical and
some medullary thymocytes. CD68- and CD163-positive
cells were detected in the cortex and the medulla but not in
HB. Double-immunostainings showed clearly distinct
populations expressing CD123, CD11c, CD1a, CD207, or
CD163. Double-immunostainings did not reveal expression
of chromogranin and synaptophysin by cells expressing
CD1a, CD207, CD11c, CD123, CD163 and CD68.

Discussion

Immunohistology is important for gaining insight into thymic
histology and histopathology (8, 14-16, 20-23, 31-35, 62-71).
Indeed, immunohistology showed the various subsets of
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Table I. Antibodies used for immunohistochemical analysis.

Antibody Clone Dilution Source

CD1a CD1a007 Ready-to-Use Biocare Medical Concord, CA, USA
CD68 KP1 1:50 Dako Glostrup, Danmark
CD207 SNCL-Langerin 1:100 Novocastra Newcastle, UK 
CD123 7G3 1:10 BD Pharmingen San Diego, CA, USA 
CD11c S-HCL-3 1:100 R&D Systems Abingdon, England
CD163 SNCL-CD163 1:100 Novocastra Newcastle, UK

Table II. Expression of dendritic cell and macrophage markers in
thymus.

Cortex Medulla Hassall bodies

S-100 + + +
CD1a + + +
CD207 + + +
CD123 + + –
CD11c + + +
CD68 + + –
CD163 + + –



normal human TDCs to be localized mainly at the cortico-
medullary junction and the medulla but also in the cortex (8,
14-16, 21-23). In fact, using frozen-section
immunofluorescence, Paessens et al., recently reported, the
identification of CD209-positive APCs in the human thymic
cortex which exhibit both immunophenotypic features of
macrophages and immature TDCs (HLA-DM-positive/CD83-
negative/CD86low/CD68-positive) (21). It was suggested that
these cortical CD209-positive TDCs appear to function in
thymocyte selection and/or removal of apoptotic thymocytes
from the thymic cortex (21). Moreover, paraffin-section
immunohistology allowed for analysis of the development and
maturation of TDCs during human ontogeny. Indeed,
Savchenko et al., showed that during the early period of
thymic ontogeny (at 4 months), S100-positive TDC precursors
appear at the corticomedullary border and in the medullary
region (15). All of the TDC and macrophage markers
examined (CD1a, CD207, CD163) were subsequently
expressed from 5 months of age and together with the
development of HB, GM-CSF was observed in TECs of HB
(at 5–6 months) (15). Furthermore, paraffin-section
immunohistology detected alterations of TDCs in patients with
early defects in T-cell development. Indeed, Poliani et al.,
using S-100, CD208/DCLAMP, CD11c, and CD303/BDCA2
as markers of TDC and claudin-4, Ulex europaeus agglutinin-
1 ligand and Aire as markers of TECs, identified severe
reduction of TDCs and profound abnormalities of TEC
differentiation in nine infants with various genetic defects
leading to complete or partial block in T-cell development (T-
negative severe combined-immunodeficiency, reticular
dysgenesis, and Omenn syndrome) (20).

Prompted by the above data, we used double-
immunostainings to analyze the immunotopographical
distribution of human TDCs in paraffin sections from
thymuses which have been previously analyzed for the
expression of cytokeratins, neural/neuroendocrine markers
and beta-tubulin isotypes (63). 

In the present study, double immunostainings revealed
S100-, CD1a-, CD207- and CD11c-positive cells in the
medulla and in juvenile and immature HBs, but not in mature
and senescent HBs. This is supported by previous studies
which detected S100-, CD1a- and CD207-positive cells with
dendritic morphology, dispersed among the epithelial cells of
juvenile and immature HBs (15, 33). The detection of S100-
, CD1a-, CD207- and CD11c-positive DCs in the medulla and
in juvenile and immature HBs may reflect an important role
of HBs in the cooperation between epithelial and DCs in the
process of T-cell differentiation. There is accumulating
evidence that HBs may play an important role in thymic
histophysiology. Indeed, the epithelial cells of HBs secrete
cytokines and growth factors and express IL-7, TGF-α, CD30
ligand, stromal cell-derived factor-1 (SDF-1), macrophage-
derived chemokine (MDC), thymic stromal lymphopoietin

(TSLP), its receptor, GM-CSF and IL-7 (2, 3, 34, 35). There
is evidence that TSLP secreted by human HBs may activate
immature CD11c-positive TDCs to up-regulate HLA-DR and
DC-LAMP and to express high levels of the co-stimulatory
molecules CD80 and CD86 (14, 31). These DCs are then able
to induce the proliferation and differentiation of CD4-
positive/CD8-negative/CD25-negative thymic T-cells into
CD4-positive/CD8-negative/CD25-positive/FOXP3-positive
T-regulatory cells (31). Moreover, it has been shown that co-
cultivation of human thymocytes with DCs in the presence of
TSLP induced a significant increase of CD4-positive/CD25-
positive T-cells (31). In addition, immunohistology revealed
that CD25-positive/CTLA4-positive regulatory T-cells
associate in the thymic medulla with activated (mature) TDCs
and TSLP-expressing HBs (31). On the basis of these
findings Watanabe et al., suggested that HBs have a critical
role in TDC-mediated positive selection of medium-to high-
affinity self-reactive T-cells, leading to the generation of
CD4-positive/CD25-positive T-regulatory cells within the
thymus (31). 

In the present study, CD123-positive plasmacytoid TDCs
were not detected in HBs. These CD123-positive/CD11c-
negative cells are phenotypically and functionally different
from the CD123-negative/CD11c-positive TDCs (11) that we
observed among epithelial cells of HBs. It is possible that
CD123-positive plasmacytoid TDCs are not directly involved
in the functional network, implicating the communication of
HBs with developing T-cells and antigen-presenting CD11c-
positive TDCs. 

In the present study, double immunostainings showed
clearly distinct populations expressing CD123, CD11c, CD1a,
CD207, or CD163. Although the CD123 immunostaining
pattern has not been previously analyzed by paraffin section
immunohistology on human thymus, our CD123 results are
consistent with the flow cytometric findings of Smith et al.,
who found that human TDCs, highly expressing CD123 were
CD11c- and CD14-negative (16). Moreover, our CD11c,
CD163, CD1a and CD207 results are consistent with the
paraffin section immunohistological findings of Savchenko et
al., (15) and Poliani et al., (20) on human thymus. In these
studies, double immunostainings showed some
CD11c/CD163 and CD1a/CD207 double-positive cells (15,
20). The detection of these double-positive cells, considered
together with the identification of clearly distinct populations
expressing CD123, CD11c, CD1a or CD207, may indicate
different stages of human TDC differentiation. 

In conclusion, the diversity of the immunohistological
profiles and the immunotopographical distibution of human
TDCs may reflect the diversity of their biological functions
and/or their different stages of differentiation. The present
results provide further immunohistological evidence that DC-
associated proteins may be required for the development and
function of the human thymic microenvironment. The
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detection of S100-, CD1a-, CD207- and CD11c-positive
human TDCs in the medulla and in juvenile and immature
HBs may reflect an important role of HB in the co-operation
between epithelial and DCs in the process of T-cell
differentiation. The absence of S100-, CD1a-, CD207- and
CD11c-positive cells in mature and senescent HBs may reflect
the involution of these forms of HB. Moreover, our present
and previous findings in normal human thymic tissues (63, 64)
provide a detailed immunohistological mapping of proteins
associated with the cell-cycle, apoptosis, and epithelial and
DC differentiation, which may be helpful for the further
understanding of thymic histology and histopathology. 
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