
Abstract. Background: MicroRNAs (miRNAs) are small non-
coding RNAs that have aberrant expression in prostate cancer
tissues. miRNAs are involved in the initiation and progression
of cancer, and several miRNAs have been characterized as
tumor suppressors or oncogenes. It has been shown that some
miRNAs can be directly regulated from their own promoters by
epigenetic alterations in cancer cells. Moreover, phytoestrogens
are known to have epigenetic action on gene transcription.
Hence, we conducted here an examination of the miRNA
expression profile in human prostate cancer cell lines after soy
phytoestrogen treatment. Materials and Methods: The
comparative miRNA expression profiles of prostate cell lines
(PC-3, DU145, LNCaP) after a 48-h treatment of 40 μM
genistein, 110 μM daidzein, or 2 μM 5-azacytidine (5-AZA, a
demethylating agent) were conducted with a Taqman low-
density array. Results: We found that out of 377 miRNAs tested,
180, 170 and 150 miRNAs were amplified with 2% of variation
in the triplicate in PC-3, DU145 and LNCap cells, respectively,
and only 5 miRNAs for PC-3 and DU145 cells and 4 miRNAs
for LNCap exhibited a significant change in their expression.
Treatment with genistein or daidzein had similar effects on
miRNA regulation to those of 5-AZA treatment. Conclusion:
This work demonstrated a new role of isoflavones on the
regulation of miRNAs in prostate cancer.

MicroRNAs (miRNAs) belong to a class of small non-coding

RNAs that regulate the expression of protein-coding genes
(1, 2). MicroRNAs are 21 to 23 nucleotides long and control
gene expression by binding to complementary sites in the 3’-
untranslated regions (3’-UTRs) of target mRNAs, triggering
either translational inhibition or mRNA degradation (3).
However, miRNAs can also positively regulate gene
expression by binding to partial complementary sequences
in the promoter regions of genes (4). Recent studies have
shown the aberrant expression of miRNAs in prostate cancer
(5-8). Dahiya’s team also reported that genistein, a natural,
nontoxic dietary isoflavone, and trichostatin A (TSA), a
histone deacetylase inhibitor and potent anticancer drug,
alone or in combination significantly down-regulated the
expression of the minichromosome maintenance (MCM)
gene family in both androgen-dependent LNCaP and
androgen-independent PC3 cells (9). Moreover, this team
also reported that after combination treatments with
genistein, 5-azacytidine (5-AZA), a demethylating agent, and
TSA, there was an increase in the expression of miR-145,
suggesting that silencing of miR-145 occurs through DNA
methylation in prostate cancer cell lines (10).

Thus, this study was designed to examine the miRNA
expression profile in prostate cancer cell lines by real-time
quantitative reverse transcription polymerase chain reaction (RT-
qPCR) with Taqman low-density arrays through DNA
methylation after treatment with genistein, daidzein and 5-AZA. 

Materials and Methods

Cell lines and culture. The human prostate cancer cell lines DU145,
PC-3 and LNCaP were obtained from the American Type Culture
Collection (Manassas, VA, USA). DU145 is known to be negative
for androgen receptor (AR), as is the PC-3 cell line and LNCaP
cells are positive for AR. DU145 cells were cultured in Eagle’s
minimum essential medium (EMEM), PC-3 cells in F-12K medium,
and LNCaP cells in RPMI-1640. All cultures were supplemented
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with 1% glutamine (Sigma®), 0.1% gentamycin (Sigma®, St Louis,
MO, USA) and 10% fetal bovine serum (FBS) (Life Technologies,
Carlsbad, CA, USA) and were grown in a humidified atmosphere at
37˚C containing 5% CO2.

Cell treatments. Genistein (4’,5,7-trihydroxyisoflavone; Sigma®)
and daidzein (4’,7-dihydroxyisoflavone; Sigma®) were solubilized
in dimethyl sulfoxide (DMSO) at respective concentrations of 
40 μM and 110 μM, determined previously by flow cytometric
analysis as corresponding to causing cell cycle arrest in G2/M (11).
5-AZA (Sigma®), a DNA methyltransferase (DNMT) inhibitor, was
solubilized in phosphate-buffered saline (PBS) at a concentration of
2 μM. All treatments were performed for 48 h. 

RNA extraction. RNA was isolated from 106 cells using mirVana™
miRNA isolation kit (Ambion, Austin, TX, USA). Recovered RNA
was quantified using a Nanodrop 8000 spectrophotometer
(Nanodrop Technology®, Cambridge, UK) and RNA integrity was
assessed using a 2100 Bioanalyser (Agilent, Palo Alto, CA, USA).
RNA extracts with RNA integrity number values >9 were included
for further analysis.

Reverse transcription of miRNAs with stem-loop primers. Total RNA
(1 μg) was used for cDNA preparation using specific stem-loop
primers (12) according to the TaqMan microRNA Reverse
Transcription Kit (Applied Biosystems Incorporation, Foster City,
CA, USA).

Quantitative real-time PCR using low-density TaqMan miRNA array.
A predesigned array called miRNA panel A (366 TaqMan® miRNA
expression assay preconfigured in a 384-well format, microfluidic
cards; Applied Biosystems), were used for real-time PCR with the
ABI Prism 7900HT Sequence Detection System (Applied
Biosystems). The miRNA array in this study was configured into
377 miRNAs. A total of 100 μl reaction mixture with 50 μl cDNA
template (100 ng) and an equal volume of TaqMan® universal
master mix (Applied Biosystems) was added to each line of array
after gentle vortex mixing. Thermal cycler conditions were as
follows: 2 min at 50˚C, 10 min at 94.5˚C and 30 s at 97˚C, and 1
min at 59.7˚C for 40 cycles. SDS 2.2 software (Applied Biosystems)
was used to analyze and normalize the RT-qPCR data (13). In
addition, fold changes in gene expression in treated cells normalized
to an endogenous reference gene (MammU6-4395470) and relative
to the normalized expression in untreated cells were calculated.
Array experiments were performed in triplicate using samples from
three independent biological experiments. All data are expressed as
the mean±SD. Differences between groups were calculated with
Student’s t-test. A p-value <0.05 was defined as being statistically
significant.

Results  

Regulation of miRNAs in prostate cancer cell lines by
isoflavones and 5-AZA. We analyzed expressions of 377
mature miRNAs by Q-RT PCR using miRNA microfluidic
cards (Applied Biosystems) in prostate cancer cell lines (PC-
3, DU145, LNCaP) after a 48-h treatment of 40 μM genistein,
110 μM daidzein, or 2 μM 5-AZA. In PC-3 cells, out of 377
miRNAs tested, 180 miRNAs were amplified, with 2%

variation in the triplicate, and only five miRNAs exhibited a
significant change in their expression (Figure 1A). Expression
of four miRNAs was down-regulated and only one miRNA
was up-regulated by more than 3-fold in PC3 cells compared
to untreated cells. Expression of four miRNAs, namely miR-
125a, -125b, -15b and -320 significantly decreased (p≤0.01)
in PC3 cells after treatment with genistein, daidzein, or 5-
AZA by comparison to untreated cells. Expression of one
miRNA, namely miR-548b-5p, was significantly increased
(p≤0.01) in PC3 cells after treatment with genistein, daidzein,
or 5-AZA by comparison to untreated cells. The trend of
effect was the same with the two isoflavones, genistein and
daidzein as with the demethylating agent 5-AZA for specific
miRNAs. In DU145 cells, out of 377 miRNAs tested, 170
miRNAs were amplified, with 2% of variation in the
triplicate, and only five miRNAs exhibited a significant
change in their expression. Expression of five miRNAs was
down-regulated by more than 3 to 5-fold in DU145 cells
compared to untreated cells. Expression of five miRNAs
namely miR-155, -208b, -211, -376a and -411 were
significantly decreased (p≤0.01) in DU145 cells after
treatment with genistein, daidzein, or 5-AZA by comparison
to untreated cells. Expression was reduced with the two
isoflavones, genistein and daidzein similar to 5-AZA. In
LNCaP cells, out of 377 miRNAs tested, 150 miRNAs were
amplified with 2% of variation in the triplicate and only four
miRNAs exhibited a significant change in their expression.
Expression of three miRNAs was down-regulated by more
than 2-fold for two miRNAs and only one miRNA was up-
regulated in LNCaP cells compared to untreated cells.
Expression of 3 miRNAs namely miR-494, -520g, -542 was
significantly reduced (p≤0.01) in LNCaP cells after treatment
with genistein, daidzein, or 5-AZA by comparison to
untreated cells. Expression of one miRNA, namely miR-15a,
was significantly increased (p≤0.01) in LNCaP cells after
treatment with genistein, daidzein, or 5-AZA by comparison
to untreated cells. The trend of regulation for each miRNA
was the same with the two isoflavones, genistein, daidzein as
with the demethylating agent (5-AZA).

Validated targets of the altered miRNA expressions by
isoflavones and 5-AZA in prostate cancer cell lines.
Validated targets were compiled from miRecords database
(14) and miR2Disease database (15), downloaded from
http://mirecords.biolead.org/ and http://mir2disease.org/. For
PC3 cells, down-regulated miRNAs namely miR-125a, 
miR-125b and miR-15b, have respectively 3, 43 and 2
validated targets each. On the contrary, there are no validated
targets for the down-regulated miR-320 and the up-regulated
miR-548b-5p. Two targets, v-erb-b2 erythroblastic leukemia
viral oncogene homolog 2, neuro/glioblastoma derived
oncogene homolog (avian) (ERBB2) and v-erb-b2
erythroblastic leukemia viral oncogene homolog 3 (avian)
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Figure 1. miRNA profiling in PC3 (A), DU145 (B), LNCap (C) cell models after 2 μM 5-azacytidine (demethylating agent), 110 μM daidzein and 
40 μM genistein treatment. miRNA profiling using Q-RT PCR for mature miRNAs using stem-loop miRNA primers in treated and untreated cell lines.
Fold changes (log2) are shown with respect to untreated cells. Error bars represent the standard deviation. Statistical significance: *p≤0.05; **p≤0.01.



(ERBB3), were found in interaction with the down-regulated
miRNA, namely miR-125a and miR-125b. For DU145 cells,
down-regulated miRNAs, namely miR-155 and miR-376a,
have respectively 10 and 3 validated targets, but without any
interactive targets. On the contrary, there are no validated
targets for the other down-regulated miRNAs, miR-208b,
miR-211 and miR-411. For LNCap cells, treated by
isoflavone, the up-regulated miRNA, namely miR-15a, has
65 validated targets. The down-regulated miRNA, namely
miR-520g, has 1 validated target. There are no validated
targets for the down-regulated miRNAs miR-494 and miR-
542-5p. An interaction between miR-15a and miR-520g was
found with the target gene vascular endothelial growth factor
(VEGFα).

Discussion 

In the present communication we showed that out of 377
miRNAs tested, 180, 170 and 150 miRNAs, respectively,
were amplified with 2% of variation in the triplicate in PC-
3, DU145 and LNCap cells; of these, 5 miRNAs for PC-3
and DU145 cells and 4 miRNAs for LNCap exhibited a
significant change in their expression. The phytoestrogen
treatment, compared with the therapeutic agent (5-AZA)
demonstrated an action on the DNA methylation because
genistein and daidzein exhibited modification in their
expression similar to 5-AZA. Increased DNA methylation of
the CpG islands in the promoter region of genes is well
established as being a common epigenetic mechanism for the
silencing of tumor suppressor genes in cancer cells (16).
Epigenetic silencing of a gene can be reversed by drugs, such
as 5-AZA, which form a covalent complex with the active
site of methyltransferase resulting in generalized
demethylation. 

Epidemiologic studies suggest that intake of a soy-rich
diet may have a protective effect against prostate cancer (17,
18). Prostate cancer incidence is lower in Asian men who are
high soy consumers as compared to Westerners, who
consume low amounts (19). Genistein and daidzein, the two
principal soy isoflavones, show a wide array of
chemopreventive actions (20). The anticancer effects of
genistein and daidzein have been described to involve several
signalling pathways and mechanisms that lead to cell cycle
arrest, apoptosis, invasion, metastasis and angiogenesis (11,
21). Genistein is a naturally occurring isoflavonoid that is
abundant in soy products and has been identified as an
inhibitor of protein tyrosine kinases and thus it has a key role
in cell growth and apoptosis (22). It has also been reported to
have estrogenic properties and neoplastic activity in multiple
tumor types (23). It was also found to have epigenetic effects
in the mouse prostate (24) and in prostate cell lines by
regulating miR-1296 (9, 10). The above findings prompted
us to examine isoflavone effects on the expression of a large

group of miRNAs. They play an important role in various
biological an metabolic processes, including differentiation,
signal transduction, cell maintenance, disease (2, 25) and
cancer (5, 26). Bioinformatics predictions indicate that
miRNAs regulate about 30% of all protein-coding genes
(27). Moreover, the role of 5-AZA in the reversal of
epigenetic silencing of genes prompted us to compare its
effects with those of genistein and daidzein. Some findings
suggest that epigenetic changes can control the expression of
tumor suppressor intronic miRNAs by directly controlling
their host genes. This reveals an additional mechanism and
anticancer effect of epigenetic therapy (7). This work
improves our understanding of the mechanism(s) by which
miRNAs are modified by soy isoflavones and the effects of
epigenetic drugs (5-AZA) in cancer.
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