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Abstract. Antibiotic and antifungal agents used in supportive
care regimens for bone marrow transplantation recipients
contribute to a significant dose-modifying effect of otherwise
lethal total body irradiation. To determine whether drugs used
in supportive care and other commonly used antibiotics such
as tetracycline function as radiation protectors or damage
mitigators in vitro, 13 drugs were tested for radiation
protection and radiation damage mitigation of 32D cl 3
hematopoietic progenitor cells in clonagenic survival curves
in vitro. Antibiotic/Antifungal agents including cilastatin,
amikacin, ceftazidine, vancomycin, tetracycline, doxycycline,
ciprofloxacin, metronidazole, methacycline, minocycline,
meclocycline, oxytetracycline and rolitetracycline were added
in 1, 10, or 100 micromolar concentrations to murine
interleukin-3-dependent hematopoietic progenitor cell line
32D cl 3 cells either before or after irradiation of 0 to 8 Gy.
Control irradiated 32D cl 3 cells showed radiosensitivity
comparable to freshly explanted mouse marrow hematopoietic
progenitor cells (Dy 1.1+0.1 Gy, N 1.5+04). Positive control
GS-nitroxide JP4-039 (known radiation mitigator) treated 32D
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cl 3 cells were radioresistant (D, 1.240.1, N 58424
(p=0.009)). Of the 13 drugs tested, tetracycline was found to
be a significant radiation mitigator (D, 0.9+0.1, N 13.9+04
(p=0.0027)). Thus, the radiation dose-modifying effect of some
antibiotics, but not those currently used in the supportive care
(antibiotic/antifungal regimens) for marrow transplant
patients, may act as radiation damage mitigators for
hematopoietic cells as well as decreasing the growth and
inflammatory response to microbial pathogens.

In experimental animals as well as clinical protocols of bone
marrow transplantation, preparation of the host for infusion
of donor hematopoietic stem cells often utilizes total-body
irradiation or cytotoxic chemotherapy (1-5). In canine
models (2-4, 6-12), the LD 50/30 (dose which produces bone
marrow death in 50% of irradiated dogs at 30 days after
irradiation) has revealed a significant dose modifying effect
(DME) of the antibiotic and antifungal supportive care
regimen. The DME has been shown in some canine model
systems to increase from 4 to 7 Gy (1-3, 13-17). Supportive
care regimens have been further modified in recent years,
with the availability of new, more potent antibiotic and
antifungal agents (1-3, 12). A similar irradiation DME of
supportive care regimens has been demonstrated in canine
(1-4), and non-human primate models that include marrow
transplantation (18).

Antibiotics and antifungal agents used in current clinical
bone marrow transplant supportive care regimens have been
combined to prevent opportunistic infections facilitated by
the leukopenia of the bone marrow-toxic agents, which
include total-body irradiation (18-31). A question which has
arisen during discussion of the potential mechanism of
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supportive care-mediated irradiation DME is that one or
more of the antimicrobial agents could be acting as radiation
damage mitigators, outside of their antimicrobial actions.
Radiation mitigators are defined as those agents which can
improve survival when added after exposure to irradiation,
but before the appearance of clinical pathological or
pathophysiological symptoms or effects (32). Known
radiation mitigators used in clinical radiotherapy include
WR2721 (amifostine) (33), nitroxides (Tempol) (34), and in
experimental model systems, a series of new small molecule
radiation damage mitigators (33).

There is recent evidence from chemical library screening
experiments that analogs of some known antibiotics may
have DNA-intercalating capacity and may function to
stimulate DNA repair. These data have suggested that some
antimicrobial agents, including those used in supportive care
regimens, may have radiation damage mitigative properties.
We tested the effect of each of 13 antimicrobial agents,
including those used in current bone marrow transplantation
clinical protocols, in a radiation sensitivity assay utilizing the
interleukin-3(IL-3)-dependent ~ murine  hematopoietic
progenitor cell line 32D cl 3 (34-35) as a marker cell line for
human bone marrow stem cells.

Materials and Methods

Cells and cell culture. The murine hematopoietic progenitor cell line
32D cl 3 (34, 35), dependent for growth in vitro upon IL-3 was grown
in McCoys modified medium contained at 37°C in a high humidity
incubator according to published methods (34-35). This cell line has
been shown to be a sensitive indicator of the radiation protective and
radiation mitigative properties of new candidate drugs (33).

Antimicrobial agents and analogs. Each of 13 drugs (Table I) was
tested in triplicate experiments. Stock solutions of all drugs obtained
from Sigma Chemical Co., St. Louis, MO, USA, were made by
dissolving the drugs in sterile water at a concentration of 10 mM.
Drugs were assayed for their ability to modify the radiosensitivity of
32D cl 3 murine hematopoietic progenitor cell line. The antibiotics
were used at a concentration of 1, 10, or 100 uM by adding them to
32D cl 3 cells 1 hour before irradiation or immediately after
irradiation. Cells were irradiated to doses ranging from 0 to 8 Gy,
plated in methycellulose, and incubated at 37°C for 7 days, at which
time colonies of greater than 50 cells were counted (34-35). The
data show the mean+SEM of three separate experiments for D
(final slope of irradiation survival curve expressed in Gy) and N
(shoulder on the survival curve) of each drug. The antibiotics were
evaluated for their effect on D, and N. Some drugs when
administered at 100 pM after irradiation showed no colonies,
suggesting toxicity. The positive control radiation mitigator JP4-039
was added at 10 pM to cultures before or after irradiation, as
published elsewhere (36, 37).

Irradiation survival curves. Cells were irradiated using a Cesium
137 Gamma cell irradiator, dose rate 100 cGy/min over a total dose
range of 0 to 8 Gy. For evaluation of radiation protective capacity,
cells were incubated for 24 hours at each concentration of
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Table 1. Radiation protection and/or damage mitigation by supportive care
antimicrobials. 32D cl 3 cells were incubated in the presence of 1, 10 or
100 uM of the antibiotics for 1 hour before irradiation or added to the
cells after irradiation of 0 to 8 Gy. The cells were plated in
methycellulose, incubated at 37°C for seven days at which time colonies
of greater than 50 cells counted. Data was analyzed using linear
quadratic and single-hit, multi-target models. -- Indicates that no colonies
were detected at that concentration. All antibiotics were obtained from
Sigma Chemical Company, St. Louis, MO.

Antibiotic Concentration Before After
(UM) irradiation irradiation
Dy (Gy) N Dy (Gy) N
None 0 1.0+0.1 1.5+0.4
JP4-039 10 09+0.1 94«17 1.2+0.1 5.8+2.4
(p=0.0101) (p=0.009)
Cilastatin 100 1.0+0.1 14+03 1.5+02 1.2+0.1
10 1.0+0.1 13x12 14202 1.6+0.3
1 0.9+0.1 14403  1.4+0.1 1.5+0.1
Amikacin 100 1.0+0.1  2.0+0.1  1.1x0.1 4.1x04
10 0.8+0.1 4216 12402 29+1.9
1 1.0+0.1 25406 1.1+0.1 34402
Ceftazidime 100 1.1+0.1  2.5+07 1.1x0.1 5.6x1.9
10 12+0.1  32+1.1 1.1x0.1 4.7+1.6
1 1.1102  47+£3.1 1.1x0.1 3504
Vancomycin 100 1.2+0.3 1.0+0.1  1.7£0.1 1.0+0.1
10 1503 1.0+0.1 1.6x02 1.0£0.1
1 1.3+0.3 1.0£0.1  2.1+0.1 1.1+0.1
Doxyocycline 100 0.9+0.1 23+0.1 - --
10 09+0.1 2.8+0.1 1.0+0.1 7.5+3.7
1 0.8+0.1  29+0.1 1.0+0.1 44104
Ciprofloxin 100 1.2+0.1 1.2+0.1  1.2+0.1 1.320.1
10 1.2+0.1 1.0£0.1  1.3+0.1 1.3+0.1
1 1.3+0.1 1.1+0.1  1.3+0.1 1.5+0.3
Metronidazole 100 1.1£0.1 1403 1.3+0.1 1.2+0.2
10 1.2+0.1 13+02  1.2+0.1 1.1£0.1
1 1.2+0.1 1.2+0.1  1.2+0.1 12402
Tetracycline 100 12403  12+02 09+0.1 139+04
(p=0.0027)
10 12403  1.2+0.1 0.9+0.1 5.5+4.5
1 1.3+0.1 1505 1.1+0.2 5.3+29
Methacycline 100 1.0£0.1  29+09 0.7+0.1 44103
10 1.0+0.1  3.8+02 1.2+02 2.0+0.5
1 1.1#0.1  3.5+10 1.1x0.1 2.6+0.6
Minocycline 100 1.2+0.1 2.1+09 - --
10 1.140.1 55+22 - --
1 1.1+02  4.0+2.1 -- --
Meclocycline 100 15+02  1.7¢03  1.1x0.1 1.3+0.1
10 13+0.1  2.5+04 14+0.1 2.8+1.0
1 1.4+0.1 1.8+04  1.4+0.1 3.1x1.0
Oxytetracycline 100 -- - - --
10 0.8+0.1  7.0+1.5 09+0.1 8.3+2.8
1 0.9+0.1 8.8+2.7 1.0+0.1 7.7+42
Rolitetracycline 100 1.4+0.1 1.1+0.1 - --
10 13+0.1  33x1.1 -- -
1 15+02  24x14 - -

antimicrobial before irradiation. For irradiation mitigation
experiments, irradiated cells were centrifuged to a cell pellet and
resuspended in medium containing 1, 10, or 100 micromolar
concentrations of each antimicrobial, then plated in 0.8%
methylcellulose containing medium for clonogenic survival curve
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Figure 1. Each drug was added before or after irradiation to 32D cl 3 cells as described in the Materials and Methods. Cells were plated and
scored as described in the Materials and Methods. Results are the mean+SEM of each agent at each concentration.
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Figure 2. Each drug was added before or after irradiation to 32D cl 3 cells as described in the Materials and Methods. Cells were plated and
scored as described in the Materials and Methods. Results are the mean+SEM of each agent at each concentration.
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Figure 3. Each drug was added before or after irradiation to 32D cl 3 cells as described in the Materials and Methods. Cells were plated and
scored as described in the Materials and Methods. Results are the mean+SEM of each agent at each concentration.
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Figure 4. Each drug was added before or after irradiation to 32D cl 3 cells as described in the Materials and Methods. Cells were plated and
scored as described in the Materials and Methods. Results are the mean+SEM of each agent at each concentration.
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Figure 5. Each drug was added before or after irradiation to 32D cl 3 cells as described in the Materials and Methods. Cells were plated and
scored as described in the Materials and Methods. Results are the mean+SEM of each agent at each concentration.
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Figure 6. Each drug was added before or after irradiation to 32D cl 3 cells as described in the Materials and Methods. Cells were plated and
scored as described in the Materials and Methods. Results are the mean+SEM of each agent at each concentration.

13



in vivo 24: 9-20 (2010)

Metronidazole (Flagyl)

Before irradiation After irradiation
1 O Control E ' © control 3
A& 100 puMm ] & 100 puMm 3
© 1oum ] ® t1oum ]
g - vV oium : g [ Y o1um 4
B B
Q -1 Q 1
E 10 E E 10 .:.
Y C Y o
1) - a0 -
£ I £ i
2 i 2 i
© w0t ! C 10t g
3 E = | E
(7] " (%] L
10'3 " i B - |03 A A PP Y i
o 2 4 6 8 o 2 4 (-] ]
Radiation dose (Gy) Radiation dose (Gy)

Figure 7. Each drug was added before or after irradiation to 32D cl 3 cells as described in the Materials and Methods. Cells were plated and
scored as described in the Materials and Methods. Results are the mean+SEM of each agent at each concentration.
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Figure 8. Each drug was added before or after irradiation to 32D cl 3 cells as described in the Materials and Methods. Cells were plated and
scored as described in the Materials and Methods. Results are the mean+SEM of each agent at each concentration.
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Figure 9. Each drug was added before or after irradiation to 32D cl 3 cells as described in the Materials and Methods. Cells were plated and
scored as described in the Materials and Methods. Results are the mean+SEM of each agent at each concentration.

assay. Cells were plated at 500, 1000, or 2000 cells per plate in
triplicate at each dose according to published methods (34, 35). All
experiments were carried out in triplicate.

At 7 days after plating, colonies of 50 or more cells per colony were
scored using an inverted microscope according to published methods
(34, 35). Data are presented using each of two computer program
plotting linear, quadratic, and the alpha/beta model as appropriate (35).

Results

Radiobiologic effects on 32D cl 3 cell clonagenic survival. We
first tested the effect of each of 13 antibiotic and antifungal
agents including those used in supportive care regimens in
clinical and experimental (canine) bone marrow transplantation
models. The results in Tables I and Figures 1 through 13
demonstrate some toxicity of drugs at high concentrations (for
example, doxycycline at 100 uM after irradiation). The
antibiotic/antinocardial agents, minocycline and rolitetracycline
was toxic at all doses when added after irradiation (Table I).
Irradiation survival curves with 32D cl 3 demonstrated a
significant increase in the shoulder reflected as (N) by the
addition of the positive control GS-nitroxide, JP4-039 (37)
before or after irradiation (Table I). Tetracycline was also a
radiation mitigator by this assay at 100 uM (Table I) (Figure 8).

Radiation protection and damage mitigating properties of
tetracycline analogs. Each of 6 tetracycline analogs
evaluated by chemical library screening were tested for
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Figure 10. Each drug was added before or after irradiation to 32D cl 3
cells as described in the Materials and Methods. Cells were plated and
scored as described in the Materials and Methods. Results are the
mean+SEM of each agent at each concentration.
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Figure 11. Each drug was added before or after irradiation to 32D cl 3 cells as described in the Materials and Methods. Cells were plated and scored
as described in the Materials and Methods. Results are the mean+SEM of each agent at each concentration.
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Figure 12. Each drug was added before or after irradiation to 32D cl 3 cells as described in the Materials and Methods. Cells were plated and scored
as described in the Materials and Methods. Results are the mean+SEM of each agent at each concentration.
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Figure 13. Each drug was added before or after irradiation to 32D cl 3
cells as described in the Materials and Methods. Cells were plated and
scored as described in the Materials and Methods. Results are the
mean+SEM of each agent at each concentration.

radiation protection or damage mitigating properties against
32D cl 3 cells at each of the three concentrations described
in the Materials and Methods. These agents were not
significant radiation damage mitigators or protectors in the
32D cl 3 assay (Table I) (Figures 9-13).

Discussion

The development of protocols for clinical bone marrow
transplantation in patients with leukemia, lymphoma,
multiple myeloma, and other non-hematopoietic system
malignancies has taken into account the significant problem
of opportunistic infection during the interval between
transplant of donor hematopoietic stem cells and recovery
of peripheral white blood cell counts (7-8, 34). This interval
of leucopenia which can last 14-30 days, subjects the
transplant recipient to a significant risk of opportunistic
infections (19, 20). The use of laminar-flow rooms and
meticulous sterile technique in the Marrow Transplant Unit
has greatly minimized the incidence and severity of these
opportunistic infections (38). Antibiotic and antifungal
regimens used in the prophylactic care of transplant

recipients prior to marrow ablative therapy (total-body
irradiation or alkalinating agent therapy) as well as after
donor marrow infusion have been continuously modified
with the availability of newer, less toxic broad-spectrum
antimicrobial agents (8-9, 12).

Bone marrow transplantation recipients are prepared using
techniques of single fraction or fractionated total-body
irradiation at a dose of radiation that produces the
hematopoietic syndrome. The hematopoietic syndrome is by
definition one that can be corrected by replacement of
hematopoietic stem cells (32). Gastrointestinal, pulmonary, or
other non-hematopoietic organs reversibly damaged by
radiation are not rescued by bone marrow transplantation (33).
Total body irradiation doses, fractionation schemes, and efforts
to protect other non-hematopoietic tissues such as the lung,
using a pulmonary transmission blocks have established
guidelines for appropriate radiation doses and preparative
regimens (26).

It is also assumed that these drugs work secondarily to
decrease any inflammatory cytokine response to infection.
Supportive care regimens may also have utility in the
management of those victims of irradiation accidents who
may not be candidates for marrow transplantation (32).

In the present studies, we sought to determine whether
the common antibiotic tetracycline as well as one or more
of the agents used in the modern supportive care regimen
also act as radiation damage mitigators. To determine
whether small molecules including antibiotic or antifungal
agents are acting as radiation damage mitigators at this
basic cellular level, an in vitro clonagenic survival assay
system was used (39). Rapid assays for immediate
irradiation induced apoptosis, or cell death after the first
cell division are of value as well (36). The clonogenic
survival curve measures cell death within the first 7 cell
doublings after irradiation, and allows detection of lethal
events which may be delayed past the first cell division
(36). The results showed that tetracycline, like the positive
control drug JP4-039 (37), was a radiation mitigator in
vitro. Another study using siRNA screening of mRNA
targets identified doxycycline as a potential radioprotector,
but the drug was not effective in that study, as in the
present study in clonagenic survival curve assays using 32D
cl 3 cells, nor was it effective in vivo (39).

The present study supports efforts to design future
generations of antibiotics and antifungal agents with a goal
of also using them as radiation damage mitigators.
Antibacterial/antifungal agents could be modified to have
normal tissue radiation mitigation capacity to aid recovery
of the total-body irradiated transplant recipient or radiation
terrorist victim. Concerns for clinical application would
include confirmation that the agents not alter the tumor cell
killing effects of total-body irradiation. Screening new
antimicrobials as well as those used in clinical supportive

17
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care regimens for radiation damage mitigation capacity
should be of value in the development of treatments for
victims of radiation accidents and radiation terrorism.
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