
Abstract. Skeletal muscle regeneration is a highly
synchronized process involving the activation of various
cellular and molecular events, coordinating inflammation and
regeneration processes which are crucial for the beneficial
outcome of tissue remodeling. Fibrosis, a failure of tissue
remodeling, is initiated with muscle regeneration; however, it
is the result of an excessive inflammatory response,
representing an imbalance between enhanced production and
deposition and impaired degradation of extracellular matrix
(ECM) components of the muscle. Therefore, factors
influencing the relative degree of muscle fiber regeneration as
compared to the amount of scar formation have a critical role
in functional muscle remodeling. Herein we have focused on
the role of urokinase-type plasminogen activator (uPA) and
transforming growth factor beta 1 (TGFβ1) in ECM
degradation and reconstitution in muscles.

Skeletal muscle shows an enormous ability to adapt to
mechanical loading conditions by changing its mass and
phenotype via mechanisms that seem to be intrinsic to the
muscle (1-4). Exercise is one of the most powerful stimuli
for inducing structural, metabolic and functional re-
organization of skeletal muscle cells, while muscle plasticity
also occurs in a number of physiopathological processes,

such as muscular dystrophies, inflammatory myopathies, or
adult muscle aging (4-6). Furthermore, skeletal muscle has
the remarkable ability to initiate a rapid and extensive repair
process in response to metabolic or mechanical damage
following unaccustomed or excessive exercise, preventing the
loss of muscle mass (1, 6-8). As a postmitotic tissue, skeletal
muscle lacks ongoing cell replacement and, therefore, there
must be an effective local cellular repair system (9, 10).
Although much has been learned about the events involved in
skeletal muscle regeneration, the molecular mechanisms that
regulate this process remain largely undefined (11).

Skeletal muscle repair is a highly synchronized process
involving the activation of various cellular and molecular
responses, where the coordination between inflammation and
regeneration is crucial for the beneficial outcome of the
repair process following muscle damage (6, 12). Cellular
processes of myofiber regeneration are successfully
completed when the activation, proliferation and subsequent
differentiation and fusion of muscle satellite cells follow the
infiltration of inflammatory cells, leading to new myofiber
formation and enabling muscle repair and growth (12-14).
However, a process of fibrosis is initiated concomitantly with
muscle regeneration, as fibroblasts are activated and attracted
into the sites of damage during muscle inflammation (12).
Tissue regeneration depends on a balance between pro-
inflammatory and anti-inflammatory factors that determine
whether the damage will be resolved with muscle cell
replacement or with scar formation (12, 15). During this
process, the extracellular matrix (ECM) surrounding the
skeletal muscle appears to play an important role in
maintaining the structure of the muscle and a scaffold for
myofiber regeneration (6, 16), while factors such urokinase-
type plasminogen activator (uPA) and transforming growth
factor beta 1 (TGFβ1) have been implicated as key
modulators of skeletal muscle regeneration, since they
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contribute to ECM degradation and reconstitution, and,
hence, to muscle tissue remodeling (11, 14, 17, 18). This
review focuses on the molecular and cellular regulation of
muscle regeneration, particularly in the context of the
uPA/TGFβ1 bioregulation system and its interaction with the
repair process, following exercise-induced muscle damage
where extensive muscle tissue remodeling occurs.

Skeletal Muscle Damage and Repair: An Overview

Skeletal muscle fibers are repeatedly damaged and repaired
throughout life and certain fundamental characteristics of the
repair process following muscle damage have been
recognized and described, although the complex regulatory
pathways of muscle regeneration remain poorly understood
(6, 7, 12, 13, 19). Muscle damage can be caused by events
inside the muscle cells, such as metabolic deficits, ischemia
or innate genetic defects and disease, or it can result from
external events, such as injection of toxic agents, heat, cold,
transplantation, mechanical stress, or various activity models,
such as stretching or eccentric exercise (6, 7, 20-25). In most
cases, the damage can involve muscle fibers, connective
tissue and vascular and nerve supplies (22, 26-28).
Regeneration of myofibers and reconstitution of the ECM are
the main focus of this review, although the muscle
regeneration process also involves the essential aspects of
revascularization and reinnervation (6).

In order to study the muscle regeneration process in a
controlled and reproducible way, animal experimental
models of muscle damage have been developed in respect to
the various causes of damage mentioned above, including
laboratory animal models with abnormal degeneration and
regeneration due to spontaneous or artificial deregulation of
specific genes (6). In particular, special attention has been
paid to the cellular responses activated and the mechanisms
implicated in exercise-induced muscle damage and
regeneration (6, 7, 22, 24, 29-31), with eccentric exercise
(where the activated muscle is lengthened) used extensively
as a model to study exercise-induced muscle damage, since
it is particularly potent at inducing damage (20, 30, 32).

As a result of excessive physical activity, such as
resistance training and mostly eccentric muscle contractions,
the contractile system of muscle fibers sustains mechanical
damage, characterized by disruption of the normal
myofilament structures in sarcomeres, damage to
sarcolemma, loss of fiber integrity and leakage of muscle
proteins usually restricted to the cytoplasm of the muscle
cell, such as creatine kinase, into the blood (20, 24, 29, 33-
35). Eccentric exercise-induced mechanical stress has also
been proposed to result in disruption of connective tissue or
the ECM surrounding the myofibers (26-28, 36).

Muscle tissue repair following damage can be considered
as a process consisting of four interdependent phases:

degeneration, inflammation, regeneration and fibrosis
(Figure 1), where, apart from the role of growth and
differentiation factors, the degree of damage and the
interactions between muscle and the infiltrating
inflammatory cells appear to affect the successful outcome
of the muscle repair process (12, 37). Although the phases
of this process are similar after different causes of damage,
the kinetics and amplitude of each phase may depend on the
particular muscle damaged, the extent of damage, or the
animal model used (6, 7, 38, 39). In the present review,
regeneration of skeletal muscle following exercise-induced
mechanical damage will be treated further.

Skeletal Muscle Degeneration and Inflammation

Necrosis of damaged muscle tissue and activation of an
inflammatory response define the initial phases of muscle
repair. Infiltrating inflammatory cells, such as neutrophils,
macrophages and leukocytes, invade the muscle at the site of
damage, potentially contributing to the damage, removing the
necrotic tissue and promoting revascularization (6, 40-42).
The initial events of muscle repair consist of an intrinsic
degeneration within the fiber, since muscle fibers contain
intrinsic proteolytic and degradative pathways that respond to
the initiating mechanical lesion (7, 29). This phase occurs
during the several hours prior to the arrival of phagocytic
cells and continues during the phase of inflammation. It
consists of autogenetic processes that begin the degradation
of the lipid and protein structures within the damaged muscle
cells (30). As early as 1-6 hours following exercise-induced
muscle damage, neutrophils are the first inflammatory cells
to begin accumulating at the site of injury, destroying necrotic
tissue while working in conjunction with macrophages
residing within the muscle (43, 44). Factors released by the
damaged muscle activate these inflammatory cells which
release chemotactic agents and provide the chemotactic
signals to circulating inflammatory cells to invade the
damaged muscle and begin a digesting process surrounding
necrotic tissue (6, 24, 45). Because damaged muscle tissue
does not appear to be chemoattractive for neutrophils or
macrophages earlier than 24 hours following damage, there
might be other mechanisms to provide the signals necessary
to initiate the chemotaxis of inflammatory cells into the
damaged muscle. Human muscle satellite cells, when they are
activated to proliferate, and probably myoblasts, have been
shown to immediately release factors that attract monocytes
and macrophages to the site of damage (12).

A phagocytic process, characterized by a typical
inflammatory response in the muscle tissue, is evident by 2 to
6 hours after the damage, with rapid invasion of the damage
site by neutrophils and macrophages that potentially contribute
to the muscle damage. A rapid breakdown of the damaged
muscle fibres proceeds from lysosomal proteases, free radicals
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or other oxidants released by macrophages via a superoxide-
dependent mechanism which results in lysis of muscle fiber
membranes (30, 42). This inflammatory process intensifies
through 2 to 4 days following muscle damage and is important
in the removal of the necrotic tissue and for the stimulation of
muscle fiber regeneration (30). Macrophages become the
predominant inflammatory cells of the phagocytic process 2
days post damage, infiltrating the injury site to phagocytose
cellular debris, while they may also activate myogenic cells
contributing to the muscle regeneration process (6, 46, 47).
Muscle damage and healing should be considered as processes
intimately related to inflammatory cell invasion and interaction
with the damaged tissue, and the efficiency of muscle
regeneration appears to be dependent on efficiency of the

inflammatory cell invasion (12, 42). It seems that a continuous
sequence of inflammation and repair, where immune cells
interact with the damaged tissue, characterizes the process of
tissue recovery, while coordination between inflammation and
regeneration is crucial for muscle recovery following damage
(12, 37, 42). It has been proposed that skeletal muscle
interacts actively with the immune system by secreting various
chemokines, cytokines and cell adhesion molecules of innate
immunity (48).

Cytokines and growth factors released at the injury site by
activated inflammatory cells and muscle cells act as mediators,
by facilitating or retarding the influx of inflammatory cells
into the site of damage thereby modulating the inflammatory
process, while they also influence local blood flow and
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Figure 1. Stages of muscle repair process following damage. Damaged muscle fibers undergo the degeneration and inflammation phases, which
involve local myofiber necrosis and inflammatory cell infiltration. Fully functional recovery of muscle tissue depends on the precise coordination
between inflammatory and regeneration processes following damage. An excessive inflammatory response with a subsequent increase in ECM
production and deposition within the broken and between the regenerated muscle fibers would result in muscle fibrosis. Hence, myoblast migration
and fusion to form the terminal (regenerated) muscle fiber should begin before scar tissue proliferates excessively and obstructs the regenerating
muscle cells between the stumps of the disrupted myofibers. ECM: Extracellular matrix.



vascular permeability (12, 24, 37, 49). TGFβ1 appears to be a
chemotactic factor for macrophages and leukocytes (50),
while activated macrophages at the site of muscle damage
produce highly chemoattractive and mitogenic factors for
muscle precursor cells, such as fibroblast growth factor (FGF)
and platelet-derived growth factor (PDGF), facilitating the
repair of damaged myofibers (14, 47). TGFβ1 is found in
ECM in the form of latent TGFβ1 and its activation requires
the proteolytic action of the uPA/plasmin system. The role of
the TGFβ1/uPA bioregulation system has been implicated in
several pathophysiological processes (51-62).

Moreover, a combination of cytokines produced by
macrophages and other cellular sources activate and attract
fibroblasts into the site of damage. The subsequent route of the
inflammation process depends on the relative balance between
pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6,
tumor necrosis factor (TNF)-α, and anti-inflammatory
cytokines, such as IL-4 and IL-10, leading to adequate repair of
the damaged tissue without producing an excessive response
(12, 24, 63, 64). This balance between pro-inflammatory and
anti-inflammatory factors determines whether the damage will
be resolved with muscle fiber replacement and reconstitution
of a functional contractile apparatus, or with scar formation
(12, 15). A limited inflammatory response could theoretically
reduce excessive muscle degeneration and signals for scar
formation, but it may also inhibit strong signals that promote
the regenerative process, due to the reduced availability of
growth factors and cytokines (37).

Muscle regeneration is completed successfully when the
infiltration of inflammatory cells is followed by muscle
repair and growth, processes which involve activation,
proliferation and terminal differentiation of satellite cells (12,
13). Satellite cell activation should begin before scar tissue
proliferates excessively and obstructs the regenerating
muscle cells between the stumps of the disrupted myofibers
(65-67) (Figure 1).

Skeletal Muscle Regeneration: Role of Satellite Cells

Muscle regeneration follows the degeneration and
inflammation phases of the muscle repair process, beginning
after the inflammatory cells have cleared necrotic tissue. Its
primary cellular component has been established to be the
activation of muscle satellite cells (6), which participate in
the reconstitution of damaged tissue. The myofiber
regeneration process is dependent on the proliferative
activation of satellite cells and their subsequent myogenic
differentiation into myoblast-like cells (68-70). The
proliferation and myogenic differentiation of satellite cells
enable the regeneration of existing myofibers or the
generation of new myofibers (19, 71) (Figure 2).

Damaged muscle fibers constitute the site of mobilization
of the small, mononucleated satellite cells, which are located

between the basal lamina of the muscle and the sarcolemma
of myofibers (72). They have little cytoplasm and express no
muscle proteins (22). Satellite cells are the main, if not the
only, cell type that contributes to muscle regeneration. It has
been reported (73) that muscle regeneration could also occur
by other cell types (e.g. bone marrow and hematopoietic
stem cells), or by de-differentiation of mature muscle fibers
in some amphibian species and in vitro de-differentiation of
mammalian C2C12 myotubes (74). However, it remains an
open question if such de-differentiation could occur in
damaged mammalian skeletal muscle in vivo (75, 76).

The molecular mechanisms that are involved in the
regulation of satellite cell activation include the
inflammatory response and the release of certain growth
factors. The role of polymorphonuclear lymphocytes and
macrophages, leukocytes, cytokine IL-6 and several growth
factors has been implicated in satellite cell activation in vivo,
although the actual stimulus for their activation has still to
be defined (37, 73). In particular, an attractive aspect has
been developed in the literature for the influential role of
insulin-like growth factor-I (IGF-I)-induced actions,
especially those of IGF-IEc (mechano-growth factor; MGF)
on skeletal muscle satellite cells, as a potential mediator of
muscle regeneration process (12, 77, 78).

Upon exposure to signals from the damaged environment,
satellite cells near the injury site are induced to proliferate
and migrate; there is also evidence that they approach the
injury from other sites within the muscle, even from adjacent
muscles (19, 73). It has been proposed that the disruption of
the sarcolemma and basal lamina after muscle damage could
release and activate quiescent satellite cells and muscle stem
cells residing between these structures (37, 66), however,
recruitment of satellite cells from contiguous muscles
appears more seldom, requiring damage to the connective
tissue that separates the two adjacent muscles (79).
Nevertheless, it has been shown that myoblasts can migrate
across basal lamina and contribute to the repair of damaged
fibres (80).

In the course of muscle regeneration, satellite cells begin
the repair process after their activation as early as 24 hours
post-damage followed by a proliferative response in which
some or all of the activated cells undergo multiple mitotic
cycles. After this initial phase, the beginning of the
regenerative phase is marked by the subsequent
differentiation of the majority of the activated satellite cells
or their progeny into myoblast-like cells. They then become
incorporated into the damaged segments of myofibers,
providing the extra set of genes for supporting the repair
process, early enough for cell death to be avoided and thus
preventing subsequent functional deficit of the muscle (81),
and providing the extra nuclei required for increased protein
synthesis during regeneration (2, 37, 47, 66, 68, 73, 76, 81-
83). From animal experimental models of muscle damage, it
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has been shown that central myonuclei are observed in
discrete portions of the regenerating fibers, indicating that
cell fusion is rather focal to the site of damage and not
diffuse during regeneration (6). After myogenic cell fusion
has been completed, myonuclei of the new myofibers move
to the periphery of the fiber, which increases in size and
eventually culminates in a mature myofiber.

Differentiation of satellite cells into myoblasts involves
induction of embryonic forms of myosin heavy chain (MHC)
and the regulation of other muscle-specific proteins
belonging to the family of myogenic regulatory factors
(MRFs) (6) (Figure 2). These are transcription factors that
control the expression of several muscle genes and function
as main activators of skeletal muscle differentiation by
activating genes encoding structural and regulatory muscle
proteins (13, 84-86). Newly formed myofibers appear to be
basophilic, reflecting high protein synthesis, while their

expression of embryonic/developmental forms of MHC
reflects de novo fiber formation (6). Myofiber regeneration
following local muscle damage involves dynamic
restructuring of the muscle’s intermediate filament system
(3-7 days following damage) (87), the formation of new
multinucleated myotubes, which begin to be formed 3-4 days
after damage (88), coinstantaneously with the appearance of
fibres expressing embryonic MHC (3-10 days following
damage) (13), and consequently the replacement of the
damaged muscle fibers (89).

Skeletal Muscle Regeneration versus Fibrosis

Eccentric exercise-induced muscle damage also results in
alterations to the ECM and a very complex reaction exists
between muscle cells, ECM and inflammation mediators
following muscle damage (26, 27). ECM contributes to
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Figure 2. Mononucleated quiescent satellite cells are activated to enter the cell cycle and proliferate. This phase is followed by their early differentiation
into myoblasts, which is characterized by the up-regulation of the MRFs. Myoblasts subsequently start to fuse into multinucleated myotubes in a late
differentiation phase, expressing muscle differentiation-specific proteins to form mature muscle fibers. CK: Creatine kinase; IGF-1: Insulin-like growth
factor-1; MHC: Myosin heavy chain; MRFs: Myogenic regulatory factors.



resistance of the deformation of the muscle tissue and also
serves as a scaffold for the reconstruction of the regenerating
muscle fibers, while it is important in directing further
differentiation of myoblasts into functional myofibers (16,
18, 90). However, uncontrolled collagen deposition over the
post-damage period would restrict the regenerative potential
of the myofibers and have serious implications for the
functional capacity of the regenerating muscle due to the
replacement of contractile tissue with non-contractile
material (15, 65, 91). Thus, factors influencing the relative
degree of muscle fiber regeneration compared to the amount
of scar formation appear to be critical in functional muscle
repair (Figure 3).

The growth factors released from macrophages, myogenic
precursor cells and other cellular mediators of the damage process
do not always enhance muscle regeneration. In fact, it has been
shown that factors such TGFβ1 and myostatin (MSTN,
alternatively named growth and differentiation factor-8, GDF-8)
actually inhibit the skeletal muscle regenerative process (92-95).
TGFβs, namely TGFβ1, -β2, -β3 and also MSTN identified as
a new member of the TGFβ family (96), are important
cytokines that regulate the homeostasis of numerous cellular
functions and multiple biological processes including cell
growth, proliferation and differentiation, apoptosis, ECM
synthesis, cell motility and adhesion (97-101). TGFβ1 actions
appear to occur predominately through the recently identified
cytoplasmic proteins belonging to the Smad family, which are
TGFβ receptor kinase substrates that translocate into the cell
nucleus to act as transcription factors (99, 102). TGFβ1 plays
an important role in regulating tissue repair and remodeling
following damage, which, particularly during muscle
regeneration, involves regulation of an immune response,
myoblast fusion and inhibition of myoblast proliferation (1, 6).
It controls proliferation of most cell types (101). Reduced
proliferation and potent inhibition of cultured satellite cells by
TGFβs were found in vitro (103-105), while IGF-I can override
such effects of TGFβ1 (22, 106) and activate satellite cell
proliferation (2, 81, 107). Moreover, TGFβ1 is associated with
muscle fibrosis in various muscle diseases, such as Duchenne
muscular dystrophy (37), and it was found that prevention of
extreme fibrosis, e.g. via blocking of TGFβ1 with its antagonists
(108), can improve muscle healing and increase the regenerative
potential of muscle fibers (12, 37). TGFβ1 exerts its effects on
cell proliferation, migration and differentiation in part through
its capacity to modulate the deposition of ECM components
(99). TGFβ1 acts during inflammation and fibrosis to stimulate
the production of ECM proteins and, concurrently, to inhibit
their enzymatic degradation by stimulating the production of
proteinase inhibitors (37, 102, 109, 110) (Figure 3). It has been
proposed that TGFβ1 overproduction and subsequent
deregulation of its functions leads to progressive deposition of
ECM and tissue fibrosis, and TGFβ1 antagonists may act as
antifibrotic agents (108, 111).

A process of fibrosis is potentially initiated concomitantly
with skeletal muscle regeneration, through the activation of
TGFβ1, in order to quickly support the rejoining of the
damaged myofibers (12). The complex biological process of
fibrosis involves an acute inflammatory response and is
predominantly characterized by a transient activation of
fibroblasts to proliferate, producing an excessive and
abnormal deposition of ECM components in the affected
tissue (102, 111). It has been shown that TGFβ1 is a key
regulator of ECM assembly and remodeling (111) and it
appears to be one of the most potent profibrotic stimuli to
fibroblasts (102). TGFβ1 attracts fibroblasts to the site of
damage where they increase their synthesis of ECM proteins
(1) (Figure 3). Fibroblasts also overproduce TGFβ1 and it
is considered that they produce the majority of collagen and
glycoproteins, which remodel the ECM, replacing connective
tissue with scar tissue and reducing the degree of tissue
vascularity (37). The net accumulation of collagen in tissue
fibrosis is a result of an imbalance between enhanced
production and deposition and impaired degradation of ECM
components (111). Fibroblasts exhibit considerable
phenotypic heterogeneity in conditions involving tissue
remodeling and fibrosis. TGFβ1 has been shown to regulate
collagen mRNA expression in rabbit cardiac fibroblasts
(112). It also appears that the development of fibrosis is an
eventual result of TGFβ1-induced differentiation of
myoblasts and muscle-derived stem cells into myofibroblasts
(95). Phenotypically fibroblast-like cells, myofibroblasts,
have been hypothesized to play an integral role in fibrotic
responses in the heart (113, 114) and TGFβ1 expression and
protein production may act as an autocrine/paracrine
stimulus for collagen formation in cardiac myofibroblasts
(114). Activation of cardiac fibroblasts through
uPA/plasmin-activation of TGFβ1 or matrix
metalloproteinases (MMPs) has been proposed to cause
cardiac fibrosis. MMPs facilitate myofibroblast migration
and up-regulate the activity of potentially fibrogenic
cytokines such as TNFα and TGFβ1, while increased MMP
activity in the heart paradoxically appears to contribute to
fibrosis (115-117). Myofibroblast activation by TGFβ1
increases production of ECM components such as collagen,
laminin and fibronectin (118, 119). It should be mentioned,
however, that synthesis of these connective tissue proteins
after muscle damage appears to follow a certain sequence,
reflecting a particular function that each carries out during
muscle healing (91).

In addition, there is a growing body of evidence that the
uPA/plasmin system has an important contribution in the
homeostasis of muscle fibers and their ECM (14). Muscle
damage induces the expression of plasminogen activation
system components, which are involved in skeletal muscle
regeneration and remodeling (17, 23, 120). There are studies
demonstrating the recruitment of an extracellular proteolytic
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cascade during these processes, where the plasminogen
activation system constitutes an extensively used mechanism
for the generation of the proteolytic activity in the ECM (14,
17, 23) (Figure 3). A number of extracellular proteolytic
enzymes have been proposed to play an important role in the
responses involved in muscle regeneration, i.e. in
inflammation, the activation of satellite cells and the
migration and further fusion of myoblasts to form terminal
muscle fibers, while cell migration, ECM degradation and
tissue remodeling are involved in processes regulated by the
plasminogen activation/plasmin system (14). As discussed in
detail below, components of the uPA/plasmin system
probably regulate the expression and activity of cytokines
involved in inflammatory process, since plasmin releases IL-1

derived from macrophages and also activates TGFβs (14).
TGFβ-dependent and bFGF-dependent proliferation and
invasion of satellite cells also require the cell-associated
uPA/plasmin system (121).

uPA/plasmin System in Skeletal
Muscle Regeneration

The main components in the plasminogen activation system
include plasminogen (Plg), tissue-type plasminogen activator
(tPA), urokinase-type plasminogen activator (uPA),
urokinase-type plasminogen activator receptor (uPAR) and
plasminogen activator inhibitors-1 and -2 (PAI-1, PAI-2) that
control the activation of Plg (122). Most of these
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Figure 3. Cellular and molecular events implicating a uPA/TGF β1 bioregulation system in ECM remodeling during the competitive processes of
skeletal muscle regeneration and fibrosis following damage. ECM: Extracellular matrix; IGFs: insulin-like growth factors; IGFBPs: IGF binding
proteins; MMPs: matrix metalloproteinases; PAI-1: plasminogen activator inhibitor-1; TGFβs: transforming growth factor β; TIMPs: tissue inhibitors
of MMPs; uPA: urokinase-type plasminogen activator.



components are expressed by human skeletal muscle (23,
123, 124), especially during the initial regeneration phase
following in vivo muscle damage (17, 23, 120, 125, 126).

The end product of the plasminogen activation cascade is
plasmin, as a result of the proteolytic conversion of the
zymogen plasminogen (Plg) into this active serine proteinase
(17). Plasmin is the major fibrinolytic enzyme responsible
for the dissolution of fibrin at both intravascular and
extravascular sites, and, together with other proteinases such
as serine and metalloproteinases (MMPs), belongs to a group
of carefully regulated and specialized matrix-degrading
enzymes that appear to serve in matrix remodeling and
cellular reorganization (17). Active plasmin is generated
from the proteolytic, site-specific cleavage of its inactive
precursor (Plg) by two distinct plasminogen activators, uPA
and tPA (14). Although they have similar structure, as well
as common physiological substrates and inhibitors, it appears
that they have distinct physiological roles. uPA is selectively
induced and, between the two pathways of Plg activation, the
uPA-mediated pathway is the major one in skeletal muscle
regeneration, while tPA activity is not required for efficient
muscle regeneration in vivo, as demonstrated in uPA- and
tPA-deficient mice following experimental damage of
skeletal muscle (17, 23). Both uPA and plasmin activities are
necessary, by contrast to the dispensable tPA activity, for the
regeneration process following muscle damage (11, 14).
Colocalizing uPA and plasminogen to the cell surface may
optimize the rapid generation of plasmin (127). uPA is
secreted as an inactive molecule, pro-enzyme uPA (pro-
uPA), and only generates plasminogen activation after it has
been converted to an active form (128). Since the result of
plasminogen activation, plasmin, is the main factor involved
in uPA activation and can efficiently activate pro-uPA, it
leads to a phenomenon of reciprocal pro-enzyme activation,
which is a central property of the plasminogen activation
system (129, 130).

The formation of uPA-uPAR complex on the cell
membrane localizes plasmin-mediated uPA activity in the
pericellular space, which appears to have proteolytic, cell
migratory, adhesive and chemotactic effects and plays a
crucial role in cell migration and tissue remodeling (122,
131-133). However, the proteolytic conversion of the Plg
into plasmin can occur without uPAR (134) and is a highly
regulated and extensively used mechanism for the generation
of extracellular proteolytic activity (17). Moreover, alpha-
enolase constitutes a plasminogen receptor on several cell
types that localizes and promotes plasminogen activation
pericellularly, and appears to play a critical role in
fibrinolysis and ECM remodeling (126). Unrestrained
proteolytic activity would have deleterious effects on the
cells, so plasmin activity is tightly regulated at the level of
plasmin by alpha2-antiplasmin and at the level of PAs by
PAI-1 and PAI-2, which regulate the proteolytic activity of

plasminogen activators/plasmin. PAI-1 is the primary
physiological inhibitor of uPA and regulates the levels of
uPA-uPAR complex through promotion of its endocytosis
(14, 124, 135, 136).

Accumulating evidence indicates that the different
components of the plasminogen activation system play
differential roles in muscle regeneration: the inhibition of
uPA activity by PAI-1 appears to limit the efficiency of
muscle regeneration, while PAI-1 deficiency reduces the
extent of degeneration and accelerates skeletal muscle
regeneration (11). The balance between PAI-1 and uPA may
influence muscle regeneration through many pathways and
previous in vitro studies have shown that PAI-1 and uPA can
directly influence myogenesis (11, 121, 137-139), while
there are also studies suggesting an integrated function rather
than individual requirements of the different components of
the plasminogen activation system in myogenesis (14, 140).
Thus, plasmin activity is required for complete myoblast
fusion and differentiation in vitro, as was shown after
inhibition of its activity by α2-antiplasmin, while uPA and
Plg deficiency reduces the expression of muscle
regeneration-specific genes, such as myogenin and MyoD
(17, 23). PAI-1 deficiency demonstrated increased MyoD
and developmental myosin expression after damage, as well
as accelerated recovery of muscle morphology, protein levels
and function compared with those in wild-type mice (11).
uPA has been also suggested to be involved in regulation of
migration and fusion of myoblasts (115, 123, 138, 141). It
is able to induce proliferation, migration and fusion of
satellite cells through both the proteolytic (i.e. plasmin
formation, growth factor activation) and the non-proteolytic
(e.g. uPAR-binding, matrix-binding) functions of uPA (121,
138, 139), while binding of uPA to its receptor seems to be
necessary for human muscle satellite cell differentiation and
may further concentrate and enhance uPA activity on the cell
surface of migratory myoblasts (14, 123). Blocking uPA
from binding to its receptor resulted in inhibition of myoblast
migration and reduction of their differentiation into
myotubes (124). Other studies have also shown that a
decrease in uPA activity led to the inhibition of
differentiation due to a lack of myoblast migration and
fusion (142) and specific inhibition of uPA and plasmin
proteolytic activity appears to abolish migration, fusion and
differentiation of myoblasts in vitro (11, 138). Moreover, it
has been proposed that the expression of alpha-enolase
plasminogen receptor by migratory skeletal myoblasts could
serve to enhance plasmin generation on their surface,
facilitating efficient muscle regeneration (126).

Consistently with the biological context of skeletal muscle
differentiation, it has been proposed that the function and cell
localization of uPA are regulated to suit the changing needs
of myoblasts (124). A regulated localization of uPA allows it
to have a dual function: during differentiation, as a
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predominantly cell-associated protease on undifferentiated
myoblasts, providing the machinery that allows myoblast
migration, which is necessary for their alignment and fusion;
while as a soluble enzyme redistributed from the cell surface
to the extracellular space, it regulates signals controlling
myoblast differentiation (124).

Both uPA and PAI-1 may also contribute to tissue repair
through pathways that do not involve plasminogen, including
the regulation of growth factor activity and cell migration
(11, 143, 144). It has also been proposed that they may
modulate skeletal muscle regeneration through the regulation
of ECM turnover. The removal of ECM barriers may be
necessary for the efficient migration of satellite cells and
macrophages during the repair process. More specifically,
uPA and PAI-1 may modulate muscle regeneration by
regulating the inflammatory response, since macrophage
accumulation in the damaged muscle correlated with both the
clearance of damaged tissue and the efficiency of
regeneration (11). It was found that macrophages express
uPA during the inflammatory response to skeletal muscle
damage, as well as skeletal muscle stem cells later on during
the regeneration process (17), although macrophages
paradoxically appear to be important contributors to the
development of cardiac fibrosis by their uPA overexpression
(117). Regulation of uPA production is a critical event in
inflammation and wound healing processes (128) and a
reduced inflammatory response following muscle damage
could be the cause of the reduced muscle regeneration in
uPA-deficient mice, since the reduced accumulation of
macrophages at the site of damage would alter the
regeneration process (17, 23).

Besides its role as a protease, uPA may also stimulate
chemotaxis of macrophages and neutrophils, as well as
chemotaxis and proliferation of fibroblasts (133). In uPA- and
Plg-deficient mouse models, it was shown that the absence of
uPA and Plg resulted in less accumulation of macrophages
and T lymphocytes at the site of muscle damage, suggesting
a profound implication of uPA/plasmin activity in the
inflammation process through its direction of cell migration
(17, 23). The observed reduction of macrophage and T
lymphocyte accumulation could be a result of either a
reduced migratory capacity of these cells devoid of plasmin
activity, or of their reduced capability of traversing fibrin-rich
matrices, since fibrin could be a major matrix component
impeding the migration of inflammatory cells in the absence
of Plg (14, 23). Thus, it was suggested that plasmin plays a
role in fibrin solubilization and in cellular reorganization of
fibrin rich matrices, since a major role of plasmin is
fibrinolysis, i.e. the degradation of fibrin deposits (23).

The importance of the uPA-mediated plasmin activity in
clearance of extravascular muscle fibrin and in the normal
regeneration process has been explored following muscle
damage (17, 23), since the accumulation of fibrin in the

extracellular basal membrane would impede inflammatory
cell migration, obstruct the normal nutrition of the
regenerating muscle and impair muscle regeneration (14). A
pronounced regeneration defect, characterized by enhanced
fibrosis and myotube degeneration, was shown following
experimentally induced muscle damage in uPA- and Plg-
deficient mouse models, which could indicate a protective
role for Plg in skeletal muscle regeneration (17, 23).
Increased fibrin deposition was detected in damaged skeletal
muscle of uPA- and Plg-deficient mice, while systemic
fibrinogen depletion appeared to restore muscle regeneration
(17, 23). A pathogenic role in sustaining muscle regeneration
was demonstrated for fibrin accumulation following muscle
damage (14, 17, 23). It has been also proposed that plasmin
deficiency may represent an impediment to cell migration
because of the lack of its contribution to the degradation of
matrix components other than fibrin (14). It appears that
plasmin activity may be required to remove fibrin clots after
damage and clear a path to allow the migration of different
cells to the site of damage (11), while together with MMPs,
it is needed to complete wound healing: uPA-uPAR complex
participates in fibrinolysis, while MMPs have the capacity to
split fibrin by acting as pericellular fibrinolysins (122, 145).

A proteolytic activation cascade initiated by uPA/plasmin
is also involved in MMP activation during muscle
regeneration (14, 146). Plasmin can directly activate several
MMPs in vivo through proteolysis and it appears that the
activation of MMP-2 and MMP-9 during skeletal muscle
regeneration could be mediated by plasmin (14, 122, 146).
These MMPs appear to be differentially expressed at
different stages of degeneration and regeneration of
experimentally damaged skeletal muscle (147). It has been
proposed that MMP-9 expression is related to the
inflammatory response and probably to the activation of
satellite cells, since its expression is induced within 24 hours
post damage and remains present for several days; while
MMP-2 activation is concomitant with the regeneration of
new myofibers (147). Meltrin-α and cathepsin B have been
reported in myofiber degeneration-regeneration and appear
to be required for myotube formation in vitro (147-150)
since they can degrade other matrix components including
collagen, elastin and laminin (151, 152). The degradation of
collagen is catalysed by uPA through the formation of
plasmin, which acts as an activator of the zymogen forms of
collagenases (153).

Furthermore, increasing evidence supports the role of uPA
in promoting invasiveness, fibrinolysis and matrix
remodeling in various physiological and pathological
processes other than muscle regeneration (154). uPA is
expressed by many types of cancer cells (53, 155-157) and,
based on its proteolytic capacity, it is thought to be important
in tumor cell invasion (122, 158) and in optimizing the
survival of metastatic cancer cells (61, 157, 159-163).
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Finally, the uPA/plasmin system is implicated in several
non-fibrinolytic processes, which lead to ECM degradation,
either indirectly through the activation of latent MMPs, or
directly by proteolytic cleavage of ECM components such as
laminin, fibronectin and proteoglycans (14, 158, 164, 165).
In many physiological and pathophysiological conditions,
plasminogen activators and MMPs appear to act in concert
(122). Thus, plasmin and uPA, together with some MMPs,
can activate several latent growth factors and proteases, such
as TGFβ1 and bFGF, whose activities have been proposed to
be crucial for cell migration and tissue remodeling in vivo
and in vitro (23, 146, 166-169).

uPA/Plasmin/TGFβ Bioregulation System in
Skeletal Muscle Regeneration

Regulation of the bioactivity of various growth factors, such
as TGFβ1 and bFGF, is a possible mechanism by which uPA
and PAI-1 influence muscle regeneration (11). Plasmin-
induced activation of latent TGFβ1 is facilitated by uPAR via
bound uPA on the cell membrane (170). It is the secreted
form that is ‘‘latent’’, i.e. the precursor molecule and a TGFβ
binding protein (171); its activation requires extracellular
proteolytic digestion by serine proteinases, resulting in the
formation of active TGFβ1 dimer (166, 172). Activation of
secreted latent-TGFβs through serine proteinases, such as
plasmin, is a well regulated event that involves activation,
localization and balance of different components of the
system, representing a crucial event in regulating TGFβ
activity (111, 142). The inhibition of activation of TGFβs by
other serine proteinases, such as aprotinin, seems to stimulate
skeletal muscle differentiation due to the reduced
concentration of extracellularly active TGFβs (124). In fact,
TGFβ1 inhibits myogenic differentiation (142) without
inhibiting the expression or the binding activity of MRFs
(173, 174). It was proposed that PAI-1 and a2-antiplasmin
could also stimulate differentiation by inhibiting plasmin-
mediated activation of latent TGFβ1 (124). A decrease of
uPA activity, together with an increase of PAI-1, may
stimulate myogenic differentiation by inhibiting the
formation of the uPA-mediated plasmin activity and hence
the consequent activation of latent TGFβ1 (142).

Conversely, the regulation of uPA expression by TGFβ1,
bFGF or MGF in various cell types (128, 175), as well as in
myoblasts (141, 176), has also been documented. It was
proposed that the regulated expression of uPA by these
growth factors is involved in the responses of activated
fibroblasts to tissue injury (128), or in the control of the
proteolytic activity required during myoblast migration and
fusion throughout the whole myogenic process (141), thus
contributing to muscle regeneration (176). TGFβ1 induces a
fibrinolytic pattern characterized by an up-regulation of PAI-
1 and uPA receptor and a down-regulation of uPA in muscle

satellite cells and it has been proposed that this pattern is
exploited for satellite cell proliferation and invasion (121).
The use of antibodies that blocked the interaction of PAI-1
with uPA was found to impair satellite cells migration and
fusion in vitro (137, 140). In human keratinocytes, it was
found that TGFβ1 enhanced uPA activity, resulting in the
removal of PAI-1 from the ECM (177), while it stimulated
the production of uPA and PAI-1 in rat osteoblast-like cells
(178). It also appeared to stimulate uPA expression in
myofibroblast-enriched cell cultures (128). In gingival
fibroblasts, TGFβ1 inhibited uPA production, while it
stimulated uPA and PAI-1 production in granulation-tissue
fibroblasts, adding a crucial element to the cellular proteolytic
balance where plasminogen activation may be inhibited due
to PAI-1 synthesis (128). Taken together, these results could
reinforce the proposed distinction in cell behavior among
fibroblasts derived under different physiological conditions
(128). Moreover, the concept of a molecule having opposite,
biological context-specific effects is well established, hence
a molecule may have opposite consequences in uninjured
versus injured tissues, as has been proposed for PAI-1 (117).
Thus, it was suggested that preservation of fibrous scar tissue
may be the primary role of PAI-1 in wound healing, while in
uninjured heart, its role may be the inhibition of uPA and the
prevention of uPA-induced myocardiac collagen
accumulation and fibrosis (117).

Another important activity of TGFβ1 is the transcriptional
activation of genes that code for ECM proteins and their
regulatory proteins, such as fibronectin, collagen and PAI-1
(101, 179, 180). Hence, TGFβ1 has a major influence on the
reorganization of the ECM through the period of muscle
regeneration and appears to be responsible for the
remodeling of the ECM and basal membrane surrounding
damaged myofibers and the activated satellite cells (1). As a
result of repeated damage, TGFβ1 production increases,
leading, in turn, to the progressive deposition of ECM; it has
been proposed that such ECM deposition at the site of
damage would lead to tissue fibrosis (181, 182).

Conclusion

The data discussed in this review suggest that plasminogen
activation system components coordinate a regenerative
response to muscle damage via proteolytic and non-
proteolytic functions, compensatively to TGFβ-induced
fibrotic responses following tissue damage. A regulated
proteolytic cleavage versus enhanced deposition and
impaired degradation of ECM components surrounding the
damaged muscle appear to account for the contributory role
of uPA and TGFβ1 to the balance between the competitive
processes of muscle regeneration and fibrosis. This balance
determines whether the damage will be resolved with muscle
fiber replacement and reconstruction of a functional
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contractile apparatus, or with scar formation. In the context
of the beneficial outcome of the regeneration process
following muscle damage, appropriate ECM degradation/
reconstitution is crucial and the uPA/TGFβ1 bioregulation
system appears to have a key role in this process as a main
regulator of ECM remodeling.
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