APE1 and XRCC3 Polymorphisms and Myocardial Infarction

ATIKE TEKELI1, SELIM İSBİR2, ARZU ERGEN1, UZAY GÖRMÜŞ1, NILÜFER BOZKURT1, ÖZLEM TIMIRCI1, SINAN ARSAN2 and TURGAY İSBİR1

1Department of Molecular Medicine, The Institute of Experimental Medicine, Istanbul University, Capa-Istanbul; 2Department of Cardiovascular Surgery, Medical Faculty, Marmara University, Istanbul, Turkey

Abstract. Background: In most cells, DNA is regularly damaged by mutagens. Different DNA repair mechanisms operate on specific types of damaged DNA. When DNA damage resulting from free radicals is not repaired, it might lead to deteriorated gene expression, the development of a number of diseases such as cancer, diabetes, vascular diseases, and aging. In the present study, APE1 and XRCC3 gene polymorphisms were investigated in patients with myocardial infarction.

Materials and Methods: Forty-five first time elective coronary artery bypass grafting (CABG) patients with cardiopulmonary bypass (CPB) and 40 healthy individuals were studied. Gene polymorphisms were determined by a polymerase chain reaction–restriction fragment length polymorphism method.

Results: For the APE1 gene, the AG genotype was significantly higher in the patient group than in the control group. The patient group had significantly more G carriers but there was no statistically significant difference between patient and control groups the A allele. The XRCC3 TT genotype was found to be significantly more frequent in the patient group than it was in the control group. Conclusion: The results of our study suggested that the XRCC3 gene TT genotype and the APE1 gene AG genotype might increase the risk of myocardial infarcts.

Coronary artery disease is a multifactorial disease of inherited and environmental factors (1). The exact cause of atherosclerotic artery formation is still unknown (1). It is thought that disturbance in the balance between the production of reactive oxygen species (ROS) and antioxidant defence plays a vital role in formation of atherogenic plaques (1). ROS are thought to affect more than one mechanism contributing to this process: for example, oxidation of low density lipoprotein (LDL), endothelial dysfunction, vascular smooth muscle cell growth, monocyte migration and DNA damage (1, 2). Available evidence has shown that if DNA damage resulting from free radicals is not repaired, it might lead to deteriorated gene expression, the development of a number of diseases such as cancer, diabetes, neurodegenerative and vascular diseases and aging (3, 4).

Apurinic/apyrimidinic endonuclease (AP endo) is one of the key enzymes in the repair of abasic sites of DNA (5). Spontaneous base loss can occur in DNA by depurination, by action of glycolyses and by DNA oxidation; abasic products of these can be mutagenic by inhibiting topoisomerase actions, replication and transcription (5). This is usually prevented by the natural repair systems located in the cell (5). Mammalian cells have the AP endo 1 isoenzyme; it is a multifunctional enzyme, hydrolyzing phosphodiester bond 5’ to an abasic site to be able to generate 3’ hydroxyl terminus suitable for extension by a DNA polymerase and a downstream 5’ terminus with a deoxyribose phosphate residue to be removed and so replaced, so two strands can be ligated in order to complete the repair (5, 6). APE1 also plays a major role as 3’-phosphodiesterase in initiating repair of single-strand breaks resulting from DNA damage by free radicals (7-9). Previously, it was shown that reduced functional AP endo activity resulted in increased sensitivity to several oxidizing agents and ionizing radiation (5).

In the cell cycle, the S-phase checkpoint in response to DNA damage suppresses the initiation of replication and elongation and the restarting of the action of the replication fork requires several factors such as XRCC3-directed repair (10). XRCC3 functions through complex interactions with other relevant proteins to repair double-strand breaks and maintain genome integrity in multiple phases of homologous recombination (11, 12). Polymorphisms of XRCC3 have been associated with breast cancer susceptibility (10).

In a previous study on the roles of AP endo in embryonic development, it was suggested that APE1 gene knockouts of zebrafish developed a range of abnormalities in the eyes, notochord, brain and especially in the heart (5). In another study it was shown that overexpression of APE1/ref-1 suppressed TNF-α-induced expression of vascular cell

Correspondence to: Prof. Turgay Isbir, Department of Molecular Medicine, The Institute of Experimental Medicine, Istanbul University, 34280 Capa Istanbul, Turkey. Tel/Fax: +90 212 635 19 59, e-mail: tisibir@superonline.com

Key Words: DNA damage, coronary artery disease, oxidative stress, DNA repair, gene.

0258-851X/2008 $2.00+.40
adhesion molecule-1 (VCAM-1) in endothelial cells and consequent monocyte adhesion (2). Due to these findings, we aimed to evaluate the possible relationships of APE1 and XRCC3 gene polymorphisms with myocardial infarct.

Materials and Methods

The study population consisted of 45 first time elective coronary artery bypass grafting (CABG) patients with cardiopulmonary bypass (CPB) admitted to the Cardiovascular Surgery Department of Marmara University, Faculty of Medicine Hospital. The control group consisted of 40 healthy individuals with no known history of any disease. The study had the approval of the Institutional Ethical Committee for Biomedical Research. Clinical examination was followed by a series of laboratory biochemical investigations. For DNA extraction studies, venous blood samples were collected in tubes containing ethylenediaminetetraacetic acid (EDTA) and centrifuged immediately at 3000×g for 10 min (13).

Polymorphism analysis. Previously described methods were used for APE1 (14) and XRCC3 (15).

The primers used for polymerase chain reaction (PCR) for APE1/exon 5 polymorphism were forward: 5’-CTGTTTCATTTC TATAGGCTA-3’ and reverse: 5’-AGGAACTTGCGAAAGGCT TC-3’ from IDT (Integrated DNA Technologies Inc, Iowa, USA). These fragments were amplified using a 50 μL reaction mixture containing approximately 50-200 ng of template DNA, 0.2 μL of each primer, all four deoxyribonucleoside 5’ triphosphates (each at 0.2 mM), 2.5 mM MgCl2 and 2.25 U of Taq polymerase in 1× reaction buffer [50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100] (MBI Fermentas, Vilnius, Lithuania). The reaction was carried out with an initial melting step of 2 min at 95˚C, followed by 40 cycles of 1 min at 94˚C, 45 s at 57˚C, 45 s at 75˚C, and a final elongation step of 10 min at 72˚C. The final PCR product was expected to be 456 bp. After the usage of restriction endonuclease Bfa1, the final digested products were 315 and 141 bp.

For the XRCC3 gene, the TT genotype was found to be significantly more frequent in the patient group than it was in the control group (p=0.040) (Table I). For the XRCC3 gene, the TT genotype was found to be significantly more frequent in the patient group than it was in the control group (p=0.040) (Table I). Statistical analysis. Student’s t-test was used to determine whether or not significant differences in sex and ages existed between patient and control groups. Pearson’s Chi-square analysis was used to examine differences in genotype distribution between cancer patients and controls. Statistical analyses were performed with SPSS for Windows, standard version 7.5 software (SPSS Inc, Chicago, IL, USA).

Results

There were no statistically significant differences between patient (n: 45) and control (n:40) groups in regard to sex and age. The age, as mean±SEM, of the patient group was 60.81±2.02 and of the control group was 57.88±1.79.

For the APE1 gene, the AG genotype was found at a significantly higher frequency in the patient group than in the control group (p=0.002) (Table I). The patient group had significantly more G carriers (p=0.018) (Table II); but there was no statistically significant difference between the frequency of patients and control carrying the A allele.

Discussion

Reactive oxygen species were shown to contribute to the cardiovascular damage process in many ways (1, 2); in this study we aimed to focus on two DNA repair genes (APE1 and XRCC3) and evaluate whether their polymorphisms increased the tendency for myocardial infarct or not. For this reason, we took 45 myocardial infarct patients and 40 healthy control individuals. Both groups were matched in sex and age. Previously, similar studies were carried out for various kinds of cancer. But although cardiovascular diseases are known to be more common than cancer cases, this was
the effects of genetic tendencies, it would be better to
infarcts. But despite these findings, myocardial infarct is
genotype might increase the risk of creating myocardial
like likely to be a result of multifactorial conditions. To evaluate
analyze more related genes altogether in a larger population.

In our study, we found there was a greater APE1 G allele
carrying tendency in the patient group than in the control
group. The G allele may cause a decrement in AP endo
enzyme expression and cause a lack of strong repair
mechanisms; this would decrease the strength of defense to
ROS in these patients. This seemed to be valid especially in
heterozygous AG people. Other genotypes did not seem to
affect the tendency to create myocardial infarcts. We also
found that for the XRCC3 gene, the TT genotype was
significantly more frequent in patients than in the control
group, this indicates the increased tendency of TT homozygous people to create myocardial infarcts.

In conclusion, these findings could show the effects of
homozygosity and heterozygosity on phenotype. We found
that the XRCC3 gene TT genotype and the APE1 gene AG
genotype might increase the risk of creating myocardial infarcts. But despite these findings, myocardial infarct is
likely to be a result of multifactorial conditions. To evaluate
the effects of genetic tendencies, it would be better to
analyze more related genes altogether in a larger population.

References

1. Surekha RH, Srikanth BB, Jharna P, Ramachandra RV, Duyasagar RV and Jyothy A: Oxidative stress and total anti-
8. Ramana CV, Boldogh I, Izumi T and Mitra S: Activation of apurinic/apyrimidinic endonuclease in human cells by reactive
oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proc Natl Acad Sci USA 95: 5061-
14. Hu JJ, Smith TR, Miller MS, Mohrenweiser HW, Golden A and Case LD: Amino acid substitution variants of APE1 and XRCCI

Received January 28, 2008
Revised April 4, 2008
Accepted April 16, 2008