Hepoxilin Analogs, PBT-3 and PBT-4, Cause Apoptosis of Gleevec-resistant K562 Cells In Vitro

NA QIAO1, DENIS REYNAUD1, MOHAMED ABDELHALEEM2 and CECIL R. PACE-ASCIAK1,3

1Programme in Physiology and Experimental Medicine and 2Department of Laboratory Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON; 3Department of Pharmacology, Faculty of Medicine, University of Toronto, ON, Canada

Abstract. The use of Gleevec® in the treatment of leukemia has been widely accepted, although resistance to Gleevec is commonly observed. Gleevec represents a new direction in the development of target-focused chemotherapeutic agents in cancer. Gleevec inhibits the tyrosine kinase activity of Bcr-Abl, which is responsible for leukemic cell survival. We have previously shown that PBT-3 (racemic anti-10(R/S)-hydroxy-11,12-cyclopropyl-eicosa-5Z, 8Z,14Z-trienoic acid methyl ester) and PBT-4 (racemic syn-10(R/S)-hydroxy-11,12-cyclopropyl-eicosa-5Z 8Z,14Z-trienoic acid methyl ester), stable analogs of the hepoxilins, caused apoptosis of the human leukemic K562 cell line in vitro and in vivo. We also showed that PBTs inhibited the growth of tumors derived from the inoculation of immunodeficient mice with K562 cells and that the effect of PBTs was synergistic with that of Gleevec. We now show that the effect of PBT-3 and of PBT-4 is independent of that of Gleevec, demonstrating that Gleevec-resistant K562 cells retain their responsiveness to PBT treatment, resulting in apoptosis. These findings provide important information suggesting that the two compounds, PBT and Gleevec, can be used together in the treatment of leukemia. The PBTs may provide a new platform for the development of apoptotic drugs in cancer.

Leukemia is a heterogeneous disease characterized by malignant proliferation of cells of the hematopoietic system. Leukemic cells contain a Bcr-Abl chimeric fusion protein, the result of a reciprocal translocation between chromosome 9 and chromosome 22 referred to as the Philadelphia (Ph) chromosome. Bcr-Abl expression is considered a high-risk factor due to the poor treatment outcome (1, 2). Bcr-Abl has increased levels of tyrosine kinase (TK) activity and plays a role for increased leukemogenesis. The effective use of K562 cells as an in vitro model for leukemia studies is due to its expression of Bcr-Abl protein (3). K562 cells were derived from a Chronic myelogenous leukemia patient in blast crisis. Furthermore, K562 cells are resistant to apoptosis induced by chemotherapeutic agents. The anti-apoptotic effects of Bcr-Abl can be overcome by inhibiting its expression (4, 5) and/or its tyrosine kinase activity (6, 7). Gleevec has been hailed as a novel targeted drug for the treatment of leukemia (8). It targets tyrosine kinase (TK), an enzyme in leukemic cells that is responsible for the resistance of these cells to apoptosis (9). Apoptosis induction by Gleevec was associated with release of cytochrome c from the mitochondria and activation of downstream caspase (10) indicating that it can reverse the inhibitory effect of Bcr-Abl on the mitochondria.

Hepoxilins (syn- and anti-8-S/R-hydroxy-11,12-epoxy-5Z,9E,14Z-trienoic acid and syn- and anti-10-S/R-11,12-epoxy-5Z,8Z,14Z-trienoic acid) are small molecule oxygenated lipids derived from arachidonic acid (11). We have shown that PBTs, stable analogs of the hepoxilins (12), inhibit K562 cell proliferation and induce apoptosis in vitro and in vivo (13, 14). Now we report on a study comparing the effects of PBT-3 (racemic anti-10(R/S)-hydroxy-11,12-cyclopropyl-eicosa-5Z, 8Z,14Z-trienoic acid methyl ester) and PBT-4 (racemic syn-10(R/S)-hydroxy-11,12-cyclopropyl-eicosa-5Z 8Z,14Z-trienoic acid methyl ester) with those of Gleevec in parental K562 cells and in Gleevec-resistant K562 cells to determine whether the PBTs inhibit cell growth and promote cytochrome c release independent of the mechanism operated by Gleevec.

Materials and Methods

RPMI-1640, fetal bovine serum (FBS), antibiotics (penicillin and streptomycin), phosphate-buffered saline (PBS), trypan blue and trypsin-ethylenediamine tetraacetic acid (trypsin-EDTA) were purchased from Wisent Inc. (St. Bruno, Quebec, Canada) [Methyl-3H]-thymidine (25 Ci/mmol), was purchased from Amersham Life Science (Baie d’Urfe, Quebec, Canada), Dimethylsulfoxide (DMSO)
was purchased from Caledon (Georgetown, Ontario, Canada). The hexokinase analogs, PBT-3 and PBT-4, were prepared in our laboratory by total chemical synthesis as previously described (12). Gleevec was from Novartis Pharma and was obtained in pill form from our Hospital's pharmacy. Cell proliferation reagent WST-1 was purchased from Roche Applied Science (Laval, Quebec, Canada). All other chemicals and reagents were obtained from Sigma-Aldrich (Oakville, Ontario, Canada).

Cell culture. Human leukemia K562 cells, obtained from the Hematology Department of Hospital for Sick Children, were maintained as suspension cultures in RPMI-1640 medium containing 100 U/ml penicillin G, 100 µg/ml streptomycin, 10% (v/v) FBS in a humidified atmosphere of 5% CO₂ at 37 °C. To avoid cell overgrowth in the experiments that measured the effect of different times of PBT exposure, cells were collected, counted and resuspended in fresh medium at lower cell density, and the cell numbers were normalized accordingly.

Cell viability assay. Cells were plated at a density of 5×10⁴ cells/ml in RPMI 1640 with or without Gleevec or PBT. The ability of the cells to exclude Trypan Blue dye was used to assess cell viability.

Generation of Gleevec-resistant cell lines. K562 cell lines maintained in liquid culture were initially exposed to 0.1 µM Gleevec and were gradually exposed to increasing concentrations of Gleevec at the rate of 0.1 µM increment every 10 days of culture. After approximately 2 months, sublines of cells growing in 1 µM Gleevec were maintained continuously in culture at this dose of the inhibitor. Parental K562 cells were maintained in parallel cultures without Gleevec to be used as controls. Studies showed the modified cells to be resistant to the effects of Gleevec in terms of [Methyl-³H]-thymidine incorporation, while the parental K-562 cells behaved in a normal way.

Thymidine incorporation. Tumor cell growth and inhibition assays. Incorporation of [Methyl-³H]-thymidine (50,000 dpm/tube) into cell DNA was measured as described elsewhere [2]. K562 cells, starved overnight (0.5% FBS), were treated with various doses (0-30 µM) of PBT-4 and Gleevec in 1% FBS serum. DMSO was used as vehicle. At 6 h post-treatment incubation at 37 °C, cells were fixed and denatured, then harvested and passed through Whatman GF/C glass filter. Filters were washed and counted for radioactivity in a Beckman LS 3800 scintillation counter.

Cell proliferation assay. Cell proliferation assay was performed using WST-1 tetrazolium salt, which allows measurement of numbers of viable cells. Overnight starved cells (0.5% FBS), between 5×10³ and 5×10⁴, were washed twice in RPMI-1640 and plated in triplicate into microtiter-plate wells in 100 µl RPMI-1640 plus various doses of Gleevec and PBT-4 (0-55 µM). Control wells with the same concentrations of Gleevec or PBT-4 but without cells were set up in parallel. WST-1 (10 µl) was added to each well and the plates were incubated for 2 h at 37 °C. The plates were read in a microplate autoreader (VERSAmax microplate reader; Sunnyvale, California, USA) at 450 nm wavelength, background absorbance was at 600 nm. Results are expressed as the mean optical density of the 3-well set for each Gleevec or PBT-4 dose. All experiments were repeated 3 times.
compared with the DMSO control. These data indicated strong inhibition by PBT-4 in both parental K562 and Gleevec-Re-K562 cell lines, while Gleevec inhibited thymidine incorporation only in the parental K562 but not in Gleevec-Re-K562 cell lines.

Inhibitory effects of PBT-4 and Gleevec on parental K562 and Gleevec-Re-K562 cell proliferation. Figure 2 shows the dose-dependence of PBT-4 in both cell types indicating that the concentration of PBT-4 needed for a 50% reduction in the number of viable cells after exposure to the WST was 7 \(\mu M \); at a dose range of 7 \(\mu M \) to 28 \(\mu M \), the rate of proliferation was only reduced by an additional 10%. In contrast to PBT-4, Gleevec induced significant differences in growth inhibition between K562 and Gleevec-Re-K562 cells. Gleevec strongly inhibited cell growth in parental K562 cells even at 1 \(\mu M \), while at 10 \(\mu M \) of Gleevec, reduction amounted to little more than 50%. Between 20 \(\mu M \) to 40 \(\mu M \) of Gleevec, parental K562 cell growth was inhibited by 60% to 90%. In contrast, Gleevec-Re-K562 cells showed minimal response to doses of Gleevec from 1 \(\mu M \) to 20 \(\mu M \). These data support the data in Figure 1 showing the response of both cell lines (parental and Gleevec-Re-K562) to PBT-4 while Gleevec affects only parental K562 cells.

Western blot – cytochrome c analysis in Gleevec-resistant K562 cells. In order to investigate whether cytochrome c release is intact in the Gleevec-Re-K562 cells and to confirm that Gleevec is ineffective in the Gleevec-Re cells, we carried out a study in which these cells were incubated in the presence of Gleevec (control), PBT-3, and a combination of both drugs, and measured cytochrome c release from the mitochondria and its appearance in the cytosol. Figure 3 shows the results. Gleevec was mostly ineffective in releasing cytochrome c from the mitochondria (pellet), while PBT-3 was greatly effective. The combination of both drugs is really a representation of the effect of PBT-3. These results confirm the apoptotic effect of PBT in Gleevec-resistant K562 cells and demonstrate that: i) the cytochrome c release mechanism is still intact in these cells; and ii) that PBT induces apoptosis through the activation of the release of cytochrome c as previously shown in parental K562 cells (13).

Discussion

Recent reports have documented several promising strategies that target either the mRNA or protein encoded by the Bcr-Abl fusion gene, which is pathogenetically responsible for the malignant phenotype of CML and Bcr-Abl-positive adult acute lymphoblastic leukemia (ALL). Specific inhibitors of Bcr-Abl TK have undergone more comprehensive in vitro and in vivo evaluation. Among these, Gleevec has already been shown not only to induce apoptosis of Bcr-Abl-positive leukemic cells but also to display promising clinical activity against CML and adult ALL (3). There are several molecular mechanisms that have been implicated as being involved in Bcr-Abl-mediated resistance to the intrinsic or mitochondria pathway to apoptosis. Our finding demonstrates that PBT-4 strongly inhibits cell proliferation in Gleevec-Re-K562 cells, while Gleevec action is reduced in these cells. The mechanism of inhibition of cell growth and induction of apoptosis in parental K562 cells by PBT-3 was demonstrated in our previous study, i.e. PBT caused procaspase-3 cleavage and enhanced cytochrome c release from the mitochondria. Herein we show that PBT-3 retains its ability to enhance the release of cytochrome c from the mitochondria in the Gleevec-resistant cell line while response to Gleevec is suppressed, supporting our finding that PBTs retain their apoptotic action in the Gleevec-resistant cell line.

Resistance to chemotherapy is the major obstacle in the treatment of cancer. For the majority of anti-cancer drugs, apoptosis appears to be initiated by the intrinsic mitochondrial, or cytochrome c/caspase-3 pathway. Alternatively, this pathway could play a role in drug
resistance (15). Gleevec has provided a novel drug for leukemia treatment. This molecule is in fact operationally specific for neoplasias caused by the oncogenic tyrosine kinase Bcr/Abl, and holds promise for minimal toxicity to normal cells when compared to available cytotoxic drugs (16). But there is still the question of acquired resistance to Gleevec. With PBT-4 or PBT-3 no drug resistance was found. With doses of PBT-4 over 7 μM (Figure 1), most of the cells undergo apoptosis.

Because of Gleevec resistance, biologically active cytotoxic molecules have been considered as potential new therapies in the destruction of drug-resistant tumor cells. Some members, TNFα, CD95/FasL have already been characterized (17). The PBTs, analogs of the natural mediators hepoxilins, possess diverse functions including apoptosis of neoplastic cells, and anti-inflammatory and anti-thrombotic activities (18-20). The PBTs are active in vivo in mouse models of leukemia (K562 induced tumours) and function on their own and in synergy with Gleevec in controlling tumour growth in vivo (14). Hence, these compounds have features that may be ideal for development as novel therapeutics in cancer.

Figure 2. Cell viability of parental K562 cells and Gleevec-resistant K562 cells, i.e. Gleevec-Re-K562, as assessed in the WST-1 assay. Results are expressed as the mean OD 450 nm of triplicate cultures; this is directly proportional to the number of viable cells.

Figure 3. Western blot of Cytochrome c present in the mitochondrial (pellet) and cytosol fractions of Gleevec-Re-K562 cells treated with PBT-3 (28 μM), Gleevec (1 μM) or both to show that the cells still retain movement of Cytochrome c ONLY after treatment with PBT-3 but not Gleevec. Note presence of Cytochrome c in the mitochondria in control conditions (vehicle treated), and refractory release by Gleevec. However, a large release into the cytosol is observed with PBT-3. Tubulin detection serves as sample loading control.
Acknowledgements

This study was supported by funds from the Ontario Cancer Research Network (OCRN).

References