
Abstract. In eukaryotic cells, the endoplasmic reticulum (ER) is
the principal site for the folding and maturation of
transmembrane, secretory and ER-resident proteins. Functions
of the ER are affected by various intracellular and extracellular
stimuli, which include inhibition of glycosylation, reduction of
disulfide bonds, calcium depletion from the ER lumen,
impairment of protein transport to the Golgi, and expression of
mutated proteins in the ER. Under ER stress, unfolded/misfolded
proteins accumulate in the ER lumen, which induces conflicting
cellular activities: survival and apoptosis. To cope with this stress,
cells activate intracellular signalling pathways, such as the
unfolded protein response (UPR) and the ER-associated
degradation (ERAD). However, under conditions of severe ER
stress or when the UPR has been compromised, the cell may be
incapable of maintaining ER homeostasis, which may eventually
activate programmed cell death (PCD) pathways. Clinical data
support the potential of drugs that inhibit the normal functions
and homeostasis of the ER and the proteasome in treatment of
malignancies like cancer. It is therefore reasonable to assume that
manipulation of ER stress might enhance the efficacy of
chemotherapeutic drugs and provide new anticancer targets like
the ER and the proteasome.

In order to carry out the folding of transmembrane,
secretory and endoplasmic reticulum (ER)-resident
proteins, the ER has evolved as a specialized protein-folding
machine that promotes folding and prevents aggregation.
Co- and posttranslational modifications, including disulfide
bond formation and N-linked glycosylation, play an

important role in the folding and oligomeric assembly of
proteins (1). To assist in the folding of nascent polypeptides
and to prevent aggregation of folding intermediates, the ER
contains a high concentration of chaperones including the
glucose-regulated proteins (GRPs), calnexin (CNX),
calreticulin (CRT), peptidyl-prolyl isomerases (PPI), and
protein-disulphide isomerase (PDI) (2, 3). In addition to
their role in folding, some of these chaperones are
postulated to act as a quality control system to ensure that
only correctly folded proteins proceed to the Golgi for
further processing and secretion (4, 5) (Figure 1). There are
two major chaperone systems.

The first system comprises of the lectin-like chaperones
CNX and CRT, which bind to monoglucosylated N-linked
glycans and on unfolded regions of nascent glycoproteins.
As nascent polypeptides enter the lumen of the ER, they
are modified by N-linked glycans composed of two N-
acetylglucosamine, nine mannose and three glucose
molecules. The glucoses are almost immediately removed by
the action of glucosidase I and II enzymes. When the glycan
has been pared down to one single glucose, it becomes a
substrate for CNX and CRT. Removal of this last glucose
destroys the binding site for these chaperones, allowing the
nascent protein to be transported to the Golgi once
correctly folded (6, 7). ERp57, a member of the PDI,
appears to stabilize protein folding by catalyzing the
formation of disulfide bonds. However, when the protein is
not folded correctly, it becomes a substrate for UDP-
glucose/glycoprotein glucosyltransferase (UGGT), which
adds a single glucose to the protein that is recognized as a
binding site for CNX and CRT (8). The cycle will continue
to repeat itself until the nascent protein is folded correctly;
then the UGGT will not rebind and the protein can exit the
ER (6). Misfolded proteins are retained in the ER and
subsequently targeted for degradation by the ER-associated
degradation (ERAD) pathway (9). 

The second ER chaperone system is dependent on the
presence of unfolded regions of proteins containing
hydrophobic residues, which are recognized by the ER
chaperone GRP78/BiP (10). Glucose-regulated proteins
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(GRPs) were first described as a set of proteins whose
synthesis was enhanced when cells were deprived of glucose
(11). The best studied GRPs are GRP78 and GRP94.
GRP78 has been characterized in B-cells as part of the
immunoglobulin secretory machinery and is also known as
immunoglobulin heavy-chain binding protein (BiP), due to
its association with incompletely assembled subunits of
antibody molecules (12, 13). It resides primarily within the
ER (14-16) but it can also be found in the nucleus,
cytoplasm or at the plasma membrane. It can even be
released in cell culture medium (17). Although GRP78 is
constitutively expressed, its expression is enhanced up to 20-
fold in cells under a variety of stressful conditions or when
in the presence of agents that interfere with protein
glycosylation, folding, transport, and disrupt calcium
homeostasis (18, 19). 

GRP78 is responsible for maintaining the permeability
barrier of the ER translocon during the early stages of
protein translocation. The translocon is the proteinaceous
channel in the ER membrane to which a nascent peptide is
transferred for folding and assembly in the ER. Once the
nascent peptide chains reaches a length of 70 amino acids,
GRP78 is released from the translocon, opening the channel
to allow translocation of the protein into the luminal space.
As the nascent peptide enters the ER, it is often modified
by addition of N-linked glycans before folding. To ensure
appropriate folding, the molecular chaperones CNX, CRT,
and GRP78 bind and protect nascent chains until the
correct regions interact. GRP78 interacts with a wide variety
of unrelated nascent polypeptides that usually show a high
degree of hydrophobicity. Depending on the interplay
between the ER chaperones, some chaperones will stabilize
the nascent proteins, while others have a destabilizing
function (20). In addition, it has been established that
GRP78 binds to misfolded proteins and mediates their
retrograde translocation prior to proteasome degradation
(21-23). Recently, it has been shown that GRP78/BiP can
form a large multi-chaperone complex with GRP94, PDI,
cyclophilin B, Erp72, GRP170, and UGGT but not with
components of the CNX/CRT/Erp57. The complex can exist
and its organization is thought to maximize the local
concentration of chaperones and folding enzymes on
unfolded substrates (24). 

The functions of the ER can be affected by various intra-
or extracellular stimuli, so called ER stress. ER stress can
be induced by agents/conditions that interfere with protein
glycosylation (e.g., glucose starvation, tunicamycin (TUN),
glucosamine), calcium balance (e.g., A23187, thapsigargin
(TAPS), EGTA), disulfide bond formation (e.g., DTT,
homocysteine), and/or by a general protein overload of the
ER (e.g., viral and non-viral oncogenesis) (25, 26, 27).
Perturbations that alter ER homeostasis therefore disrupt
folding and lead to the accumulation of unfolded proteins

and protein aggregates, which are detrimental to cell
survival. As a consequence, the cell has evolved an adaptive
coordinated response to limit further accumulation of
unfolded proteins in the ER. This signalling pathway is
termed the unfolded protein response (UPR).

The complex network of physiological responses to ER
stress consists of three different mechanisms: (i)
translational attenuation to further limit misfolded
proteins (28); (ii) transcriptional activation of genes
encoding ER-resident chaperones such as GRP78/BiP (2);
and (iii) ERAD, which serves to reduce the stress and
thereby restores the folding capacity by directing misfolded
proteins present in the ER back into the cytosol for
degradation by the 26S proteasome (29). This integrated
intracellular signalling pathway transmits information
about the protein folding status in the ER lumen to the
cytoplasm and the nucleus via the activation of ER-stress
sensor molecules. If the protein folding defect is not
corrected, cells undergo apoptosis.

ER-stress Sensors 

The three major sensors/transducers of ER stress are the
double-stranded RNA-activated protein kinase-like ER
kinase (PERK), the inositol-requiring enzyme 1 (IRE1·/‚)
and activating transcription factor 6 (ATF6). Among these
ER-resident transmembrane proteins, IRE1·/‚ and ATF6
play a dominant role in mediating transcriptional regulation,
whereas PERK is mainly responsible for repressing global
protein synthesis. 

PERK is an ER-resident transmembrane serine/threonine
protein kinase which consists of an ER luminal stress-
sensing domain, a transmembrane domain and a cytosolic
domain with kinase activity that phosphorylates the ·
subunit of eukaryotic translation initiation factor 2 (eIF2·)
in response to ER stress (28, 30 31). Phosphorylation of
eIF2· reduces formation of translation initiation complexes
which normally lead to translation. This translational
control provides an efficient mechanism to reduce the
number of unfolded proteins in the ER. On the other hand,
phosphorylation of eIF2· can also indirectly control gene
transcription by positively regulating the translation of
transcription factors (TFs) such as ATF4, which in turn
leads to the up-regulation of factors like CHOP/GADD153,
GADD34, and ATF3 (32-35). 

IRE1 is an ER-transmembrane glycoprotein having 2
isoforms: IRE1· and IRE1‚. It consists of a N-terminal ER
luminal stress-sensing domain, a transmembrane domain
and a cytosolic domain with both serine/threonine kinase
and C-terminal endoribonuclease activities (36, 37). ER
stress initiates its dimerization and autophosphorylation to
activate its kinase and RNase activities. Two groups have
demonstrated that the mRNA of X-box-binding protein 1
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(XBP1) is a substrate for the RNase of IRE1 (38, 39). The
splicing of the mRNA of XBP1, a basic leucine zipper
(bZIP)-containing TF, removes a 26-nucleotide intron
leading to a potent TF that binds to the unfolded protein
response-responsive element (UPRE) and ER-stress-
responsive element (ERSE) sequence of many ER-stress
and UPR-target genes such as GRP78 and the ER-
degradation-enhancing ·-mannosidase-like protein
(EDEM). EDEM is an ER-resident transmembrane
protein which binds to misfolded glycoproteins with
mannose 8 structure and enhances the degradation of
misfolded proteins via the ERAD pathway (40). Thus, the
IRE1-XBP1 pathway is involved not only in the induction
of ER chaperones, but also in the capacity control of the
ERAD pathway.

p90/p110ATF6 is an ER-resident ATF consisting of a
cytosolic N-terminal (bZIP) domain, a transmembrane
domain, and a C-terminal ER luminal stress-sensing domain
(41). Upon ER stress, a mechanism known as regulated
intramembrane proteolysis (RIP) is activated (25, 41-45).
This mechanism involves TFs and anchoring partners that
are localized in one compartment and proteases that are
located in a different compartment. Generally, these TFs
are inserted into ER membranes and, in response to specific
stimuli, they translocate to the Golgi compartment where
they are cleaved by resident proteases thereby releasing a
N-terminal cytosolic domain which then shuttles to the
nucleus to effect transcription of specific target genes (42,
46-48). In case of ATF6, p90ATF6 and p110ATF6 transit to
the Golgi compartment where they are cleaved by Golgi
site-1 and site-2 proteases (S1P and S2P) to generate
p50ATF6 (41, 45, 49, 50). p50ATF6 then translocates to the
nucleus where it binds, together with the TF NF-Y, to the
ERSE of target genes including GRP78 and XBP1. 

Recently, Kondo et al. (51) discovered a novel ER-stress
sensor molecule, OASIS. It is an ER-resident transmembrane
protein containing the bZIP TF of the CREB/ATF family.
The molecule is cleaved at the membrane in response to ER
stress and its cleaved N-terminal cytoplasmic domain
translocates to the nucleus where it activates the transcription
of target genes that are mediated by ERSE and cyclic AMP-
responsive elements. Intriguingly, OASIS is induced at the
transcriptional level during ER stress in astrocytes of the
central nervous system, but not in other cell types. 

GRP78 is the master regulator of the activation of ER-
stress sensors. All sensors contain a luminal domain that
interacts with GRP78. Under normal conditions, GRP78
serves as a negative regulator of IRE1, PERK and ATF6.
Upon ER stress, GRP78 is released from the transducers
and binds to unfolded proteins. GRP78 release from IRE1
and PERK permits their homodimerization and activation
(30, 52). GRP78 release from ATF6 permits its transport to
the Golgi-compartment (44, 53).

Taken together, the signalling from the downstream
effectors of IRE1, PERK, ATF6 and OASIS merges in the
nucleus to activate transcription of ER-stress target genes
coding for molecular chaperones and folding catalysts that
increase the folding capacity of the ER, providing a
protective effect for cell survival.

ER Stress and the Ubiquitin-proteasome System
(UPS)

Cells are equipped with an abundant ubiquitin-proteasome
system (UPS) activity (54-56) which enables them to
respond to acute proteotoxic stress, reflecting the crucial
role of this system in protein quality control and cellular
protein homeostasis (57, 58). It is becoming increasingly
clear that there is a tight connection between protein quality
control in the ER and the UPS (59). 

During the ERAD process, proteins that fail the ER
quality control are transported back to the cytosol, where
they are rapidly ubiquitinated and degraded by the
proteasome (59-62). Ubiquitination of substrates is a multi-
step process that is dependent on a ubiquitin (Ub)-
activating enzyme (E1), a Ub-conjugating enzyme (E2) and
a Ub-ligase (E3) enzyme (58). E1 recruits ubiquitin in an
ATP-dependent process and adenylates its C-terminus.
After E2 has accepted ubiquitin from E1, E3 catalyzes the
transfer of ubiquitin from the E2 to the substrate. It is
thought that malfolded proteins are recognized by the CNX
cycle, allowing multiple rounds of folding to acquire correct
folding and that EDEM will extract malfolded proteins from
the CNX-cycle and feed them into the downstream ERAD
system. Finally, when ER stress persists, the ERAD process
is insufficient and programmed cell death (PCD) pathways
are activated. Recently, it was found that ER stress causes
accumulation of different UPS substrates in the ER, cytosol
and nucleus, bringing about a general dysfunction of the
ERAD followed by cell death (56).

ER Stress and PCD (Figure 2)

Although the UPR is a cytoprotective response, prolonged
ER stress can activate PCD through mitochondria-
dependent or mitochondria-independent pathways (63, 64).
Apart from the mitochondrium, the ER is now being
recognized as an organelle that can regulate ER-stress-
induced apoptosis, and even necrosis, which is believed to
be associated with several pathologies including diabetes
(35), Alzheimer's disease (65), Parkinson's disease (66), and
polyglutamine diseases like Huntington's and Machado-
Joseph disease (67, 68). 

The decision between cell survival and death is
presumably made during cell cycle arrest that is also
generated in response to ER stress due to decreased
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transcription of cyclin D1 (69). This delay may allow the
cell to determine whether adaptation is feasible or
whether to commit suicide. Several PCD pathways are
activated during ER stress. While attenuating global
protein synthesis, phosphorylation of eIF2· by PERK
promotes preferential translation of ATF4 mRNA, which
results in transcriptional induction of CHOP (C/EBP
homologous protein-10, also known as GADD153) (32,
35, 37, 70). CHOP is a bZIP transcription factor that
contains an ERSE in its promotor and is transcriptionally
induced by ATF4 (71) and ATF6 (70-72). It can form
heterodimers with members of the C/EBP and fos-jun
families (73, 74) and controls the expression of stress-
induced genes. Apart from its transcriptional induction by
ATF4/ATF6, CHOP is also activated by p38 mitogen-
activated protein kinase (p38MAPK) (75). Together 
with C/EBP family members, CHOP is involved in

mitochondrion-dependent cell death pathways. It is able
to transcriptionally down-regulate the levels of the anti-
apoptotic bcl-2 and up-regulate DR5, a member of the
death receptor protein family (76, 77). In addition, CHOP
leads to a depletion of the cellular glutathione levels (78)
and increases the levels of reactive oxygen species (ROS)
in the cell (79). This results in leakage of mitochondrial
cytochrome c, activation of cytosolic apoptotic protease
activating factor 1 (APAF-1) and stimulation of the
caspase-9 and caspase-3 cascade. 

ER stress can also activate general regulators of
apoptosis, including the bcl-2 and caspase families of
proteins. As there is endogenous bcl-2 present in the ER
membrane, there is evidence that this pool influences
homeostasis and apoptosis from the ER (80, 81).
Conversely, ER stress itself can activate several BH3-only
pro-apoptotic members of the bcl-2 family, including bim
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Figure 1. Schematic of ER functions under non-stress conditions. Partially adapted from Kaufman et al. (25), and Ma and Hendershot (119). a. Proteins
that are destined for synthesis in the ER are recognized, through signal peptides, by the signal recognition particle (SRP), which associates with the
ribosome. The complex diffuses to the translocon, where the SRP docks with the SRP receptor (SR). b. Passage of the growing peptide through the
translocon is coupled with the ATPase activity of GRP78. c. In the extremely crowded, calcium-rich, oxidizing environment of the ER lumen, resident
chaperones like GRP78, GRP94, GRP170, CNX, CRT, PDI, and ERp57 serve to facilitate proper folding of the nascent protein by preventing its
aggregation, monitoring the processing of the highly branched glycans, and forming disulfide bonds to stabilize the folded protein. d. Once correctly folded
and modified, the protein will exit the ER through coat protein (COP) II-coated vesicles and move on through the secretory pathway. e. Misfolded proteins
can associate with GRP78, CNX, PDI and EDEM for retrotranslocation to the cytosol, ubiquitination and digestion by the proteasome. GRP78 is the
master regulator of the activation of three ER-stress sensors - IRE1, PERK and ATF6. In non-stress conditions, the ER-stress sensors are associated
with GRP78, which keeps them in their inactive state.



(82), bik (83-86) and PUMA (87, 88). Also bax and bak
have been shown to regulate ER stress-induced apoptosis
from both the mitochondrial and ER membranes. In the ER
membrane, they regulate the level of lumenal calcium
through an interaction with the inositol triphosphate (IP3)
receptor (89-93). Accumulation of these pro-apoptotic

members may antagonize ER-membrane-resident anti-
apoptotic members such as bcl-xL and bcl-2, resulting in
structural changes of the ER, ER calcium release and/or
caspase-12 activation (63, 93). A recent study demonstrated
that bak mediates swelling and restructuring of the ER in a
bcl-xL-dependent manner (94). 
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Figure 2. Schematic of ER functions under stress conditions. Partially adapted from Ma and Hendershot (119). a. On accumulation of unfolded proteins
in the ER lumen, GRP78 releases from p90/p110ATF6. ATF6 moves to the Golgi compartment, where it is cleaved by the S1P and S2P proteases to yield
a cytosolic fragment. This p50ATF6 fragment migrates to the nucleus to activate the transcription of responsive genes, including XBP1, GRP78 and
CHOP. b. In parallel, IRE1 dimerizes and activates its endoribonuclease activity after its release from GRP78. It splices its substrate XBP1 mRNA to
remove a small intron, which changes the translational reading frame of XBP1 to yield a potent transcriptional activator that activates the transcription
of responsive genes, including GRP78. c. At the same time, PERK is activated to phosphorylate eIF2 on the ·-subunit at Ser51. As phosphorylation of
eIF2· reduces the functional level of eIF2·, the general rate of translation initiation is reduced. However, selective mRNAs can be preferentially translated
under these conditions. Translational up-regulation of ATF4 yields a potent transcriptional activator that activates the transcription of responsive genes,
including CHOP. d. While most BH3-only proteins are found in the cytosol or at the mitochondrion, bik is somewhat unique in that it is primarily
localized to the ER. Bik was identified as a binding partner for bcl-2 and its expression was found to be dependent of p53. It is suggested that p53 induces
and activates bik, followed by bax/bak signalling to release calcium from the ER as an upstream signal form apoptosis. Furthermore, it is thought that
the bik-induced release of ER calcium is taken up by mitochondria which leads to fission, cristae remodeling, and cytochrome c release. Also, bcl-2 and
bcl-xL can modulate ER calcium levels by binding the IP3 receptor. This interaction can be inhibited by bax/bak, consistent with the observation that
bax/bak can also regulate ER calcium levels. Perturbations of the calcium pools activate calpains in the cytosol, whose substrates include bax and bid
(which are activated), bcl-2 and bcl-xL (which are inhibited) and several caspases. ER-localized procaspase-12/-4 is converted to caspase-12/-4. Activated
caspase-12 then initiates a caspase cascade through cleavage of procaspase-9 and -3. This pathway is independent of Apaf-1 and mitochondrial
cytochrome c (cyt c) release. Calcium released from the ER is rapidly taken up by the mitochondria, where it may lead to collapse of the inner membrane
potential, and subsequent initiation of apoptosis. e. By sequestering IRE1, TRAF2 promotes clustering of and release from procaspase-12 upon ER stress.
f. Furthermore, procaspase-12 can be activated by caspase-7 after its relocation from the cytosol to the ER. g. Up-regulation of CHOP during ER stress
is mediated by ATF6 and the translational up-regulation of ATF4 and results in the down-regulation of the anti-apoptotic proteins bcl-2 and bcl-xL and
in ROS accumulation. Eventually, the disturbed balance between pro-apoptotic proteins, e.g. bad, bak and bax, and the anti-apoptotic bcl-2 proteins
and the increase in oxidative stress activate the intrinsic apoptotic pathway. h. Functionally, BH3-only proteins can be separated into: 1) activators that
bind to anti-apoptotic proteins or activate bax and bak to trigger cytochrome c release, and 2) sensitizers that only bind and antagonize anti-apoptocic
bcl-2 members to sequester them away from interfering with the activation of bax and bak. i. The ER resident proteins Bap31 and BAR can both interact
with bcl-2/bcl-xL via a domain separate from their caspase-interacting domain. Bap31 contains 3 transmembrane domains, a leucine zipper and a death
effector domain-like region that associates with certain isoforms of procaspase-8 modulating apoptosis. The BH3-only protein Spike promotes Bap31
cleavage, presumably to the pro-apoptotic form. 



Another BH3-only protein that is anchored in the ER
and is involved in the regulation of apoptosis at the ER is
Spike (95). Although the mechanism of its pro-apoptotic
effect is yet unknown, it is likely that dimerization with
partners among the bcl-2/bax family proteins integrated with
the ER, like mcl-1 (96) and bik (85), is one of the
possibilities. Another ER-resident protein, BI-1, has been
shown to associate with bcl-2 family members thereby
protecting cells from insults known to trigger ER stress (97,
98). Although the ER-resident protein, Bap31, lacks
homology with bcl-2/bax family proteins and contains no
BH3 dimerization domain, it binds bcl-2 and bcl-xL thereby
regulating apoptosis. Bap31 contains 3 transmembrane
domains, a leucine zipper and a death effector domain-like
(DED-L) region that associates with certain isoforms of
procaspase-8 (99). Depending on whether its cytosolic tail
is removed by caspases, it is associated with a pro-or anti-
apoptotic activity. The DED-L domain of Bap31 binds a
homologous DED-L domain in another ER-associated
protein, BAR (100). It is thought that both Bap31 and BAR
could promote caspase-8 activation, if induced to aggregate
in the ER membranes, through the formation of an ER-
associated 'apoptosome'. Apart from its DED-L domain,
BAR contains a separate region that binds bcl-2 and bcl-xL,
so it is speculated this separate binding domain might
supply a mechanism for preventing caspase activation (101).

Caspases are required for apoptosis and certain members
of this family of cysteine proteinases associate with the ER.
Murine caspase-12 is primarily localized on the cytoplasmic
side of the ER membrane. A number of mechanisms have
been suggested as being involved in the cleavage and
processing of caspase-12. Upon ER stress, procaspase-12
might autoactivate through a direct association with IRE1 and
TNF-receptor-activating factor 2 (TRAF2), although how ER
stress regulates the formation of this complex is yet unknown
(102, 103). Once activated, the catalytic subunit of caspase-12
is released in the cytosol where it cleaves procaspase-9 in a
cytochrome c-independent manner (104). However, caspase-
12 can also be processed indirectly via calpains, activated by
elevated cytoplasmic calcium levels during ER stress (102).
Calpains are a family of calcium-dependent cysteine proteases
of which two isozymes, Ì- and m-calpain, are ubiquitously
expressed (105). Unlike the caspases, which function only
during apoptosis, calpains have been implicated in several
processes involved in normal cellular metabolism and
physiology (106, 107), such as remodelling of the actin
cytoskeleton during cell motility (106). It is believed that,
under non-apoptotic conditions, calpain activity is controlled
by its inhibitor, calpastatin. However, during apoptosis, a
massive and sustained influx of calcium into the cytoplasm
might result in uncontrolled calpain activation that, together
with caspase activation, can lead to excessive proteolysis of
many substrates. Procaspase-12 can also be cleaved by

caspase-7. Rao et al. (108) demonstrated that ER stress
induces translocation of cytosolic caspase-7 to the ER surface
followed by cleavage of pocaspase-12.

Although caspase-12 may play an important role during
ER stress-induced apoptosis, it has recently been shown that
its expression is not required for apoptosis, as cells lacking
caspase-12 were not protected from apoptosis after
treatment with ER-stress agents (109). Furthermore, it has
been reported that caspase-12 can also be activated under
other apoptotic conditions, such as Fas-triggering (110). In
this regard, the relevance of caspase-12 to ER-induced
apoptosis has been questioned because of an absence of
caspase-12 in most humans. Human caspase-4, one of the
closest paralogs of rodent caspase-12, may associate with the
ER (111), raising the possibility that it can perform the
functions of rodent caspase-12 in the context of ER stress.

Signalling from the ER-stress transducers to the cell
nucleus can also be coupled to the activation of stress-
activated protein kinases such as JNK and p38MAPK (112,
113). Activated IRE1 is reported to recruit Jun N-terminal
inhibitory kinase (JIK) and TRAF2 during ER stress. This
leads to activation of apoptosis-signalling kinase 1 (ASK1),
JNK and mitochondria/APAF-1-dependent caspases. Apart
from IRE1, Liang et al. (114) demonstrated recently that
PERK may be required for activation of JNK and p38MAPK
and expression of immediate early genes like c-myc and egr-1,
which have been shown to be transcriptionally up-regulated
during TAPS-induced ER stress (35, 115-118). 

Another pathway that may initiate cell death due to ER
stress is the ER-overload response (EOR), which results from
over-accumulation of proteins in the ER membrane increasing
calcium-permeability and activation of the NFκB-pathway.
However, this response will not be discussed in this review.

ER Stress and Cancer

Having accumulated mutations that overcome cell-cycle and
apoptotic checkpoints, the main obstacle to survival faced
by a cancer cell is the restricted supply of nutrients and
oxygen (119). Cancer cells respond by producing pro-
angiogenic factors to initiate formation and attraction of
new blood vessels to the tumour. However, this is often not
sufficient to provide optimal oxygen and nutrients to the
tumour or to dispose of wastes (120). As a result, a range of
cellular stress response pathways, including the UPR, are
activated, regulating the balance between cancer cell death,
dormancy, and aggressive growth.

Many aspects of the UPR are cytoprotective and several
studies indicate that activation of the UPR might have a
crucial role in tumour growth. Indeed, increased expression
of XBP1, ATF6, CHOP, GRP78/BiP, GRP94, and GRP170
have been reported in breast tumours, (121), hepatocellular
carcinomas (122), gastric tumours (123), and oesophageal
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adenocarcinomas (124). However, prolonged activation of
the UPR can initiate apoptosis, which could serve to protect
the host (119). 

At present, it is unclear where the balance between
cancer cell death, dormancy and aggressive growth lies in
tumour development. Recent studies revealed a role for the
UPR during angiogenesis and dormancy. It was shown that
the pro-angiogenic glycoprotein, vascular endothelial growth
factor (VEGF) is up-regulated during ER stress thereby
promoting survival. Translation of VEGF mRNA is
stimulated during ER stress through an ATF4-dependent
pathway (125) and controlled by GRP170, an ER-resident
Hsp 70 family member up-regulated during ER stress and
hypoxia (126). Alternatively, if a tumour fails to induce
angiogenesis, it can exit the cell cycle and become dormant.
There are data indicating that the relative activation levels
of two mitogen-activated protein kinase (MAPK) family
members – the extracellular-signal-regulated kinases
(ERKs) and p38MAPK – can affect tumour progression
(127, 128). Although activation of p38MAPK during ER
stress has not been thoroughly examined, one study
reported that treatment of cells with ER-stress inducers like
azetidine also activated p38MAPK (112). A second
characteristic of the UPR that can contribute to dormancy is
the G1 arrest in response to inhibition of cyclin D1
translation, which is downstream of PERK (69). As
mutations in cancer cells often inactivate their apoptotic
potential, persistent activation of the UPR in tumour cells
could function to promote cell-cycle arrest and dormancy
instead of apoptosis. Therefore, during early stages of
tumour development, ER stress could either benefit the
tumour by increasing angiogenesis or protect the host by
inducing dormancy. On the other hand, the induced
dormant state can also protect tumour cells from apoptosis
and allow them a second chance for tumour growth if
conditions change. It seems likely that the interplay between
various signalling pathways within the tumour and the
microenvironment around the tumour will dictate whether
apoptosis, growth arrest or proliferation will occur (119). 

Although the UPR is generally viewed as a cytoprotective
response, prolonged ER stress can activate apoptosis
through both mitochondria-dependent and -independent
pathways (63, 64). It would seem that prolonged ER stress
should render cancer cells more vulnerable to apoptotic cell
death. However, it is unclear how tumour cells adapt to
long-term ER stress in vivo. It is known that some of the
mitochondria-dependent pro-apoptotic components used
during ER stress are mutated or their expression levels are
altered in cancer cells. Therefore, in spite of the evidence
for activation of apoptotic components by the UPR
pathway, they might be ineffective in tumours, allowing
them to benefit from the long-term cytoprotective effects of
the UPR (119).

New Anticancer Drugs that Target the ER

For many years, two major pathways of PCD were believed
to induce apoptosis namely the intrinsic pathway, mainly
controlled at the level of the mitochondria, and the extrinsic
pathway, regulated by the binding of specific death ligands
to their receptors on the cell surface. However, a number of
recent studies have provided convincing evidence that PCD
cascades can also be initiated at other sites within the cell,
in particular, at organelles such as the ER and the Golgi-
apparatus. Chemical ER-stress inducers like tunicamycin,
thapsigargin and brefeldin A are reported to induce cell-
death via a disturbance of ER homeostasis, although in
distinct ways. Tunicamycin induces an accumulation of
unfolded proteins due to a blockage of the formation of
N-glycosidic linkages by the inhibition of the transfer of
N-acetylglucosamine 1-phosphate to dolichol monophosphate.
Thapsigargin is a potent, cell-permeable, IP3-indepentent
intracellular calcium releaser that inhibits the calcium-
ATPase, thus disrupting intracellular free calcium levels and
disturbing the ER (129-131). Brefeldin A is a fungal
metabolite produced by Penicillium brefeldianum and known
to inhibit protein secretion in mammalian and other
eukaryotic cells by interterfering with the function of the
Golgi-apparatus. It blocks the secretory pathway and
induces ER stress by disrupting the movement of material
from the ER to the Golgi-apparatus (132-135). The effect
of brefeldin A was tested by Carew et al. on B-chronic
lymphocytic leukemia (B-CLL) cells and on multiple
myeloma (MM) cells after they observed that B-CLL cells
appeared to have a far more developed ER network than
normal B-lymphocytes (136, 137). This made them suggest
that the ER may be of great importance for the survival of
B-CLL cells. As MM cells are the malignant counterparts
of plasma cells having great secretory activities, they also
contain a well developed ER-Golgi network which makes
them attractive cells to target with ER-stress-inducing
agents. Firstly, they observed an induction of apoptosis with
brefeldin A in MM cell lines and primary B-CLL cells. In
B-CLL cells, the observed effect was comparable in
fludarabine-refractory and non-refractory cells which
indicates that the mechanisms of resistance to fludarabine
and brefeldin A do not overlap. Apoptosis was associated
with activation of the Golgi-resident caspase-2 and the
caspases-8, -9 and -3, a blocked secretion of the pro-survival
proteins VEGF (Vascular Endothelial Growth Factor) and
APRIL (a proliferation-inducing ligand) and a severe
dilation of the ER.

The importance of the ER-Golgi secretory machinery
as a therapeutic target in B-cell malignancies is also
suggested by the role of the UPR in the B-cell
development. Already in the pro-B-cell stage, IRE1 is
needed for successfull VDJ-rearrangement (137). During
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plasma cell differentiation, both the IRE1 and
ATF6/XBP1 arm of the UPR are activated and necessary
(138, 139). These observations made targeting of the ER
in B-cell malignancies very attractive and the induction of
a terminal UPR a logical pathway to cell death. This
terminal UPR-induction can be considered as an
alternative way to induce cell death apart from the
classical intrinsic and extrinsic apoptotic pathways
especially in B-CLL cells which have a defective
apoptosis. However, although the reported results with
brefeldin A on B-CLL and MM are offering new
therapeutic perspectives, its clinical relevance should still
be evaluated in future trials.

Apart from chemical inducers of ER stress, we recently
discovered that plant-derived chemicals like the hop-derived
flavonoid xanthohumol (X) can also induce ER stress and
apoptosis. Via a proteomic approach (2-D gel electrophoresis
and MALDI-TOF-MS/MS), we identified GRP78 and
demonstrated an up-regulation of its transcription and
expression in X-treated compared to solvent-treated breast
cancer cells (unpublished data). The X-induced ER stress
involved that the activation of IRE1, ATF6 and PERK and
was associated with apoptotic events like processing of
caspases, down-regulation of anti-apoptotic Bcl-xL and Mcl-
1, and PARP cleavage. Interestingly, the effect seems to be
selective for human breast cancer cells as human primary
normal breast epithelial cells were not affected. Moreover,
susceptibility to the X-induced apoptosis appeared to
correlate with the GRP78 expression levels. The next
challenge is to evaluate if these promising chemicals are
suitable clinical candidates. 

Conclusion

In higher organisms, ER-stress signalling is crucial for the
development or maintenance of differentiated tissues that are
specialized in secretion. It is therefore an import issue in the
development of new anticancer strategies to determine the role
of ER stress and its mediators in normal cell development and
malignancies. Furthermore, an important question is if ER
stress plays a critical role in the acquisition of apoptosis-
resistance to chemotherapy. Further characterization of ER-
stress markers in cancer models and ER-stress inducers in the
clinic will help us to determine the physiological roles of UPR
and ER stress during tumour development and its therapeutic
potential. 
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