
Abstract. The human insulin-like growth factor-1 (IGF-1) gene
gives rise to multiple, heterogeneous mRNA transcripts through
a combination of multiple transcription initiation sites, alternative
splicing and different polyadenylation signals. These IGF-1
mRNA transcripts code different isoforms of the precursor
peptide of IGF-1 (IGF-1Ea, IGF-1Eb and IGF-1Ec or MGF in
human skeletal muscle), which also undergo post-translational
modification. There is increasing interest in differential expression
and implication of IGF-1 isoforms in the regulation of muscle
fiber regeneration and hypertrophy following mechanical
overloading and damage. The identification of a locally
expressed, loading- or damage-sensitive IGF-1 isoform in skeletal
muscle was one of the most attractive developments in the
context of the autocrine/ paracrine actions of IGF-1. The concept
that the competing processes of cellular proliferation and
differentiation and the increased protein synthesis required for
muscle repair or hypertrophic adaptation are regulated by a
differential expression and by distinct roles of IGF-1 isoforms is
discussed in the present review.

There is a growing awareness that in certain cell types generally
called mechanocytes, such as osteoblasts and skeletal muscle
cells, gene expression is greatly influenced by mechanical signals
(1, 2), although very little is known about the mechanisms
linking the mechanical stimulus with gene expression. Similar
to bone, skeletal muscle has the ability to adapt to an increased

mechanical load by changing its mass and phenotypic
expression via mechanisms that seem to be intrinsic to the
muscle (3-5). Exercise is one of the most powerful stimuli for
inducing structural, metabolic and functional re-organization of
skeletal muscle cells. Research has mainly focused on the
phenotypic nature of these adaptations and disproportionately
fewer studies have systematically examined the role of specific
gene expression or the expression profile of various genes in
skeletal muscle adaptability (6-9) (see also review by Fluck and
Hoppeler 10). It has been recognized (5, 11) that
overexpression of certain growth factors largely mediate the
intrinsic ability of skeletal muscle to develop hypertrophy in
response to mechanical overload (12, 13) and to regenerate in
response to metabolic or mechanical damage following
unaccustomed or excessive exercise (5, 14, 15). 

Cellular processes of myofiber regeneration and
hypertrophy are enabled by the activation, proliferation and
subsequent differentiation of quiescent mononuclear muscle
stem cells (also called satellite cells or muscle precursor
cells). These processes appear to be modulated by the
autocrine (i.e. direct stimulation of protein synthesis) and/or
paracrine (satellite cell proliferation, differentiation and
fusion) activity of locally produced insulin-like growth factor
1 (IGF-1) (3, 11). In particular, there is an increasing
interest in differential expression and implication of IGF-1
isoforms (IGF-1Ea, IGF-1Eb and IGF-1Ec) in the
regulation of muscle fiber regeneration and hypertrophy
following mechanical overloading and damage, however,
this topic has received less notice in the literature.

In the present review, the focus has been directed on the
specific context of such a potentially differential role of
IGF-1 on skeletal muscle regeneration and adaptation.

IGF-1 Isoform Complexity 

The human IGF-1 gene originally called somatomedin C
spans a region of about 90 kb of genomic DNA (located on
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the long arm of chromosome 12) and contains six exons
(16), which give rise to multiple, heterogeneous mRNA
transcripts by a combination of: a) multiple transcription
initiation sites (alternative promoter usage), b) alternative
splicing and c) different polyadenylation signals (17, 18).
These multiple IGF-1 mRNA transcripts code different
IGF-1 isoforms of the precursor peptide of the IGF-1,
which also undergo post-translational modification (19). 

More specifically, the different transcription initiation sites
lead to two different classes of IGF-1 isoforms: class 1
transcripts have their initiation site(s) on exon 1 (promoter
1), whereas class 2 uses exon 2 as leader exon (promoter 2).
Exons 1 and 2 are differentially spliced to the common exon
3, producing class 1 (exon 1 to exon 3), or class 2 (exon 2 to
the exon 3) mRNA transcripts. All possible combinations
between promoter usage and terminal exon (5 or 6) can occur
in different transcripts, i.e. a class 1 but also a class 2 IGF-
1Ea and IGF-1Eb isoforms can be expressed (20, 21), as
described in detail below. Transcripts initiating at promoter 1
are widely expressed in extra-hepatic tissues (local isoforms),
whereas transcripts initiating at promoter 2 are common in
the liver (circulating isoforms), which are thought to be more
growth hormone-dependent (19, 22). However, it is possible
that the two promoters are not mutually exclusive and the
production of more primary transcripts by certain hormones
could probably result in even higher expression of local
isoforms (22, 23). It has been reported that the use of
promoter 1-derived transcripts could be associated with the
synthesis of paracrine IGF-1 and may promote the formation
of the truncated IGF-1 peptide or influence interactions with
IGF binding proteins (IGFBPs) (24).

Alternative splicing of the IGF-1 gene, whereby exons are
spliced in different combinations from the primary RNA
transcript, also results in different IGF-1 isoforms that
contain either exon 5, generally classified as "IGF-1Eb", or
exon 6 and are classified as "IGF-1Ea" (21, 24). Transcripts
that containEb are thought to be more abundant in the
liver, whereas transcripts contain either Ea are usually
expressed in extra-hepatic tissues (25). Use of exon 5, i.e.
the IGF-1Eb isoform, may be linked to an endocrine role of
IGF-1, while the preferential use of exon 6, i.e. IGF-1Ea
isoform, may be associated with local IGF-1 function (26). 

In human skeletal muscle as well as in other tissues or cell
lines, e.g. human liver, HepG2 cells (27), alternative splicing
of the IGF-1 gene also generates a third isoform, the IGF-1
Ec, which corresponds to IGF-1Eb in rodents and contains
both exon 5 and 6 (27). It results from an splice acceptor site
in the intron preceding exon 6 and its cDNA differs
structurally from its liver IGF-1Ea isoform by the presence of
the first 49 base pairs from exon 5 (52 bp in the rat). It results
in a different carboxy (C)-terminal peptide sequence due to a
reading frame shift, which leads to a different mode of action
compared with IGF-1Ea or IGF-1Eb isoform (23, 28, 29).

This isoform named mechano growth factor (MGF) because it
was found to be markedly up-regulated in exercised and
damaged skeletal muscle (17, 22, 30, 31).

The biological significance of IGF-1 splice variants is
unknown and the molecular and physiological mechanisms
that regulate their expression are unclear, however, they
probably reflect an underlying complexity of IGF-1 actions
through its various isoforms (42). The IGF-1Ea isoform is
similar to the main systemic (endocrine) IGF-1Ea produced
in liver, with a similar exon sequence (32), while MGF
seems to be designed for autocrine/paracrine mode of
action (28), (discussed in detail below). The expression of
IGF-1Eb isoform was first defined in the liver (33) and
recently in the human skeletal muscle (23), however, its role
in muscle is yet unknown. 

The different IGF-1 mRNA transcripts encode several IGF-
1 precursor proteins, which differ in the length of the amino-
terminal (signal) peptide and the structure of the extension
peptide (E-peptide) on the carboxy-terminal end (19).

IGF-1 polypeptides also contain a B amino-terminal
domain, A and C domain and a D carboxy-terminal domain,
sharing 62% homology with proinsulin which does not
contain the D carboxy-terminal domain. The coding
information for the mature IGF-1 peptide resides in the B,
C, A and D domains (34, 35). The mature IGF-1 peptide is a
70-amino acid long single chain polypeptide with three intra-
chain disulfide bridges and molecular weight 7,649 Da (19). It
results from post-translational modification through protease
cleavage of precursor polypeptides, by which the signal and
the E-peptide are removed. It has been proposed that the E-
peptide of the IGF-1 precursors may act as independent
growth factor (36). The 5’ end of exons 1, 2 and 3 encodes
for the signal peptide of the prohormone (precursor IGF-1),
since they all contain distinct translation initiation codons
(AUG). In rodents and probably in humans, as the structure
of the IGF-1 gene is highly conserved in mammals, exon 1
can also undergo alternatively undergo spicing (start sites 1
and 2), thereby further increasing the heterogeneity of IGF-
1 mRNA transcripts (37). Exons 3 and 4 code the mature
peptide. The first 16 amino acids of the E-peptide (i.e. the
amino-terminal portion of the extension peptide) are coded
by exon 4. Exons 5 and 6 encode, by alternative splicing,
distinct portions of the E-peptide (called the E domain) with
alternative carboxy-terminal sequences of the extension
peptide and they also contain termination codons and 3’-
untranslated regions. Exon 6 contains different
polyadenylation sites and in humans, as opposed to rats, exon
5 also has a polyadenylation site (27). The presence of several
polyadenylation sites in the 3’-untranslated sequence of the
exon 5 and 6 introduces further post-transcriptional
modification of the IGF-1 mRNA transcripts, which have
different sizes. The length of the IGF-1 mRNAs appears to
inversely influence their half-life (19, 24).
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Post-translational cleavage of the IGF-1 precursor
protein produces the signal, the mature and the E-peptide
and two other protein products that have been identified in
the human brain: a truncated IGF-1 isoform (-3N:IGF-1)
that lacks the first tree amino acids of the NH2-terminal of
the B domain probably due to alternate signal peptides, and
the tripeptide GPE (glycyl-prolyl-glutamate) corresponding
to the aminoterminal end of mature IGF-1 (38).

Four different transcription start sites are present in exon 1.
Three of them have been studied (sites 2, 3 and 4) and their
positions relative to the translational initiation codons (i.e.
Met-48 and Met-25 located in exon 1, and Met-22 located in
exon 3), can give rise to three distinct signal peptides from
class 1 (exon 1 to exon 3) mRNA of the IGF-1 gene (see
excellent review 19). Between two translation start sites
contained in an mRNA, preference is given to the upstream
site (39). Translation of mRNAs initiated at the three
transcription start sites mentioned above produced IGF-1
precursor polypeptides with 48, 25 and 22 amino acids long
signal sequences (19, 32, 39). From class 2 (exon 2 to exon 3)
transcripts, three transcription start sites and their upstream
position relative to the translational initiation codon Met-32
(which is located in exon 2) give rise to IGF-1 precursor
polypeptides with 32 and 22 amino acid-long signal sequences
(19, 39). It has been found, both in vitro and in vivo, that
translational efficiency of IGF-1 mRNA and post-translational
modification of the IGF-1 precursor peptide of rats are
affected by the length and the structure of the 5’-untranslated
regions: the smaller the length of the 5’-untranslated regions,
the greater the translational efficiency, and the greater the
number of the amino acids contained in the signal peptide the
lesser is the extent of a glycosylation process (39, 40).

Alternatively, the splicing of exons at 3’-end of IGF-1 mRNA
precursors increases the variety of IGF-1 transcripts and IGF-1
isoforms translated from these transcripts. Three mRNA
variants, produced by alternative splicing of the 3’-end, have
been identified in humans encoding three different E-peptides.
Exon 4 to exon 6 splicing leads to an mRNA sequence that
encodes the Ea-peptide, which contains 35 amino acids. The
first 16 amino acids, which are common in all three different E-
peptides, are encoded by the exon 4 and the remaining 19 are
encoded by exon 6. The human Ea-peptide shares 91%
homology with the mouse Ea-peptide (19, 32). Splice variant of
exon 4 to exon 5, firstly identified in human liver (33) and more
recently in skeletal muscle (23), yields the Eb-peptide (19). This
extension peptide contains, apart from the 16 common amino
acids encoded by the exon 4, 61 additional amino acids encoded
by exon 5 resulting in the Eb-peptide, with a 77 amino-acid
length. This isoform of the IGF-1 precursor appears to have a
nuclear and nucleolar localization signal (reviewed in 19). The
third mRNA splice variant is an exon 4-5-6 variant, also first
identified in human liver (27) but in skeletal muscle as well (28).
It contains exon 4, only 49 bp from exon 5 and then exon 6 and

produces an E-peptide with a predicted length of 40 amino
acids, i.e. 16 amino acids from the exon 4, 16 from the exon 5
and 8 amino acids from the exon 6, termed as Ec-peptide (19,
27). The human Ec extension peptide shares 73% homology
with the rat Eb-peptide, which is its potential counterpart (27).
It was thought to occur by use of a cryptic IGF633 donor splice
site, located 49 bp downstream from the 5’-end of the exon 5
and deviates from the vertebrate 5’-donor splice site consensus.
When this cryptic IGF633 donor splice site is not used, the
alternative splicing of exon 4-5 occurs, i.e. the Eb extension
peptide (27). The predicted molecular weights of the three
different isoforms of the IGF-1 precursor peptide (based on the
amino acid sequence derived from the three different IGF-1
mRNA transcripts) are: 17-17,3 kDa (153-156 aa) or 20,6 kDa
(184 aa) for the pre-pro-IGF-1Ea, 21,8 kDa (195 aa) for IGF-
1Eb pre-pro-peptide and 15,6 kDa (139 aa) for pre-pro-IGF-
1Ec. Finally, the existence of an N-linked glycosylation site in
the Ea-peptide which is absent in the Ec-peptide might reflect
a differential biological action of the IGF-1Ea isoform
mediated by this post-translational modification of the Ea-
peptide (19, 34).

In general, the complexity introduced by the transcriptional
and splicing variants, post-transcriptional regulation and post-
translational modifications of the IGF-1 gene (41), giving rise
to various IGF-1 isoforms, probably indicates their different
biological roles, particularly in human skeletal muscle
following different stimuli or under various conditions.

One of the most attractive aspects recently developed is
the potential differential role of the IGF-1 isoforms in
muscle regeneration and adaptation processes following
skeletal muscle overload and damage (3, 4, 42). There is
evidence from animal studies that different modes of
exercise (i.e., lengthening, shortening or isometric
contractions) result in differential expression responses of
IGF-1 isoforms and in similar levels of compensatory
hypertrophy (43). It will be of interest to determine if all
isoforms of IGF-1 activate satellite cell proliferation, gene
transcription, or protein translation, and if they act through
the same or distinct signalling pathways. Therefore, there is
a need for a more systemic approach to IGF-1 isoforms in
the context of IGF-1 autocrine/paracrine and systemic
action in skeletal muscle.

Autocrine/Paracrine Action of IGF-1 in Skeletal
Muscle

Two major contexts have been developed in the literature
concerning the role of IGF-1 in skeletal muscle: a) IGF-1 as a
component of the growth hormone (GH)/IGF-1 axis in the
regulation of muscle growth via metabolic and anabolic actions
of IGF-1 and b) the role of IGF-1 in mitogenic and myogenic
processes during muscle development, regeneration or
hypertrophy (3, 5, 11, 19, 44-47).
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With respect to the GH/IGF-1 axis, circulating or locally
produced IGF-1 in target tissues mediates the muscle
growth-promoting actions of GH (23, 48-51), although there
is evidence that these GH actions on skeletal muscle occur
at least partly independently of IGF-1 up-regulation (52).
Circulating IGF-1 is mostly derived from the liver, but also
from skeletal muscle and adipose tissue (53), and is thought
to act in an endocrine manner, while circulating GH mainly
controls its levels. However, circulating IGF-1 should be
considered as a marker of GH action in the liver rather than
a "second messenger" of GH action (54). Regulation of local
production of IGF-1 may be tissue-specific concerning the
molecular mechanisms by which its synthesis is modulated
(18). The sustained local overexpression of IGF-1 was
shown to promote myofiber regeneration and hypertrophy
and to increase levels of myogenic regulatory factors and
contractile protein mRNAs (46, 55, 56). On the other hand,
the increase of serum IGF-1 with exogenous administration
of GH or IGF-1 does not appear to stimulate myofiber
hypertrophy in the absence of mechanical loading (57).
During intensive exercise, most of the circulating IGF-1 is
derived from the active muscles (4, 52), while following
muscle damaging exercise, locally produced IGF-1 by the
exercised muscles was found to increase with concominant
increases (58), or no changes (59) in circulating IGF-1.
Furthermore, the proportional expression of different IGF-
1 isoforms may be regulated by the local concentrations of
growth hormone (GH) and IGF-1 itself (23, 24).

An interesting aspect in the context of autocrine/ paracrine
function of IGF-1 is whether the overexpressed IGF-1
protein by the muscle cells is available only to the  cells from
which it derives (autocrine action) or whether this protein
acts on the adjacent cells (paracrine action), e.g. on the
muscle satellite cells, as it was proposed (17, 60), or even
enters the circulation acting in an endocrine manner (19). In
the case of autocrine/paracrine action, IGF-1 should leave the
muscle fiber to bind IGF-1 receptors on the external surface
of the membrane of the same muscle cell or activate a
signaling pathway via a different receptor, as it was proposed
for MGF in satellite cells or myoblasts proliferation (17, 60).
Moreover, it would be essential to know whether the IGF-1
isoforms expressed in human skeletal muscle are finally
released in the circulation as different (IGF-1 Ea, Eb and Ec)
peptides, or whether the final peptide that enters the
circulation after an extracellular endoproteolysis of the IGF-
1 prohormone (18), is only the mature IGF-1 peptide. 

In general, use of exon 5 (IGF-1Eb isoform) may favor
an endocrine role of IGF-1, while use of exon 6 (IGF-1Ea
isoform) may be associated with local, autocrine/paracrine
IGF-1 action (26). As mentioned above, the main systemic
(endocrine) IGF-1 isoform is (class 2) IGF-1Ea, which is a
predominant isoform expressed in liver and is similar to the
predominant (class 1) IGF-1Ea isoform locally expressed in

skeletal muscle and in other tissues (22, 46). Probably, the
latter also has a systemic or endocrine mode of action (4).
To distinguish this particular isoform expressed in muscle
from the main systemic IGF-1 isoform, terms such "local
muscle-specific" (mIGF-1) isoform (42, 46) or "muscle liver
type" (L.IGF-1) isoform (22, 29) have also been adopted. 

In contrast to the aspect of GH-dependent action of IGF-1,
the context of GH-independent, autocrine/paracrine function
of IGF-1 on skeletal muscle has recently been widened (3, 4,
61). One of the most attractive developments in the concept of
the autocrine/paracrine signaling regulated by IGF-1 was the
identification of a locally expressed IGF-1 isoform in skeletal
muscle in response to mechanical damage or in response to
changes in the loading state of muscle (e.g. mechanic overload),
called the mechano growth factor (MGF) (22, 28, 29). This
isoform is encoded by the exon 4-5-6 splice variant and,
although its signal peptide has not been specified, it presumably
corresponds to the human IGF-1 Ec isoform (19). It was
hypothesized that MGF is probably the end product of
mechanotransduction signaling pathways generated by and
imposed upon skeletal muscle, however, questions about the
specific exercise-induced stimuli that up-regulate MGF
expression have not yet been answered, e.g. is muscle fiber
membrane damage or mechanical overloading of muscle fiber
responsible for the MGF production (30)? Nevertheless, it has
been shown that skeletal muscle stretch is a main mechanical
stimulus for changing gene transcription (62) and up-regulation
of protein synthesis (63). This isoform was markedly up-
regulated in response to both overload and damage and was
thought to be the factor that controls local tissue repair,
remodeling and maintenance (4, 30). However, expression of
MGF has also been detected in resting skeletal muscles of
humans (and rats), though at much lower levels than IGF-1Ea
(mIGF-1) (22, 64), or following immobilization (30). It has also
been reported that a single ramp stretch resulted in MGF
expression, whereas a lower cyclical stretch regimen resulted in
the expression of IGF-1 Ea but not of MGF (4). In general, the
absolute mRNA levels of MGF in skeletal muscle appear to be
much lower than those of IGF-1Ea (17, 22). Taking all these
data into account, it could be suggested that the expression of
MGF in muscle must be examined in more detail. Moreover, a
third IGF-1 isoform, IGF-1Eb, was also found to be expressed
in human skeletal muscle in response to mechanical
overloading. IGF-1Eb mRNA encoded by the exon 4-5 splice
variant was found to be up-regulated following resistance
training (23). However, further studies are required in order to
elucidate its specific biological role in skeletal muscle. 

It should be emphasized that skeletal muscle produces both
a generalized tissue-type IGF-1Ea isoform and the loading- or
damage-sensitive MGF with differential regulation at the RNA
level and different time courses, suggesting distinct roles of
these isoforms (17, 64, 65). Unlike the IGF-1Ea isoform, MGF
is not glycosylated, therefore it is smaller and probably has a
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shorter half-life and seems to be designed for an
autocrine/paracrine mode of action (4, 28). C-terminal MGF
peptide lacks the domain present in the full-length peptide
responsible for the binding of the IGF-1 receptor (66). It was
found that the MGF E domain is probably mediated via a
different receptor, since its action was not inhibited by blocking
the IGF-1 receptor with a specific antibody (60). A synthetic
peptide, which was generated from a unique region of MGF
sequence, was used to raise a polyclonal antiMGF antibody in
the rabbit. This antibody was found by immunoblotting to be
specific only to MGF and not to IGF-1Ea (mIGF-1) (30).
Furthermore, by using a proteomics approach, the specific E
domain of MGF splice variant was found to result in binding to
a different binding protein and so to a different mode of action
compared to the IGF-1Ea isoform. The muscle-specific protein
that binds MGF is expected to stabilize it and to localize its
action within the muscle (since it would be unstable in the
unbound form) and also to acts as a time-release mechanism
(4, 30). In a bound state, MGF peptide was also detectable in
resting muscles, probably as a residual MGF from an earlier
muscle activity, reflecting the delayed release function of the
MGF binding protein (4). Taking all these factors into account,
it was argued that MGF acts as an independent autocrine
factor (4, 60). 

The fact that cells in the overloaded skeletal muscle apart
from the IGF-1 also produce other factors of the IGF-1
regulatory system, such as IGFBPs, gives further support to
the concept that an autocrine/paracrine IGF-1 system is active
in skeletal muscle and is sensitive to the loading conditions of
the muscle (11, 31, 64, 67). IGF-1 action is modulated by a
family of seven IGFBPs (42). In overloaded or damaged
skeletal muscle and in cultured myoblasts, IGFBB3 expression
was associated with myoblast differentiation, IGFBP-4 with
myoblast proliferation, IGFBP-5 with muscle differentiation
and IGFBP-6 seems to play a role during the quiescence
phase of myogenesis (42, 44, 59, 68). In general, IGFBPs
increase the IGF-1 half-life in the circulation and would be
expected to modulate and control the extent of IGF-
dependent cellular effects via regulation of the IGF-1 free
concentration and its local bioavailability in the muscle,
probably via competition with type I IGF receptor (IGF-1.R
for IGF-1 binding. They also provide tissue specificity for the
local action of IGF-1 (5, 42, 59, 69, 70).

There is evidence that locally produced autocrine/
paracrine IGF-1 may be important in the skeletal muscle
regeneration process. The known effects of IGF-1 on
skeletal muscle cells will be examined below in order to
provide insight into the potential role(s) of this factor in
muscle regeneration. Some of the processes that are known
to be stimulated by IGF-1 during myofiber regeneration
also promote muscle adaptation and hypertrophy following
muscle overloading11, since it was observed that over-
expression of IGF-1 causes hypertrophy (46, 62). 

IGF-1 immunoreactivity was detected in satellite cell and
in the cytoplasm of myoblasts and myotubes during skeletal
muscle regeneration (71-73). IGF-1 gene expression is low
in myoblasts and decreases slightly with their differentiation
(74). It has been proposed that a slight decrease of IGF-1
gene expression in myoblasts during differentiation may be
related to the reduced IGF-1.R gene expression. Thus, the
mitogenic effect of IGF-1 may first delay the onset of
myogenesis and subsequently stimulate myogenesis and
promote differentiation (5, 74, 75). It appears that IGF-1
can stimulate myogenesis in the absence of proliferation
(76). As mentioned above, in the case of exercise-induced
adaptation and hypertrophy response, it seems to be a
myogenic component, where myoblasts derived from
satellite cells fuse with the existing myofibres, as they would
with the damaged myofibres following injury (77-79). The
requirement for additional nuclei to support both the
regeneration and hypertrophy processes appears to be met
via the proliferation, differentiation and fusion of satellite
cells with the damaged, but still viable, myofibres or with
the enlarging myofibres (80-82). 

Among the well-characterized growth factors, only IGF-1
was consistently reported to promote each of these
processes (11, 44). Increased mechanical loading or damage
of skeletal muscle leads to satellite cell proliferation,
differentiation and fusion and these myogenic processes in
skeletal muscle are stimulated by IGF-1. It is postulated that
IGF-1 isoforms are produced and released by myofibres in
response to increased loading or muscle damage (3). It has
also been shown that IGF-1 was produced by satellite cells
in regenerating skeletal muscles (72). A relatively acute, but
not chronic, overexpression of IGF-1 was shown to increase
the number of times that satellite cells can proliferate via
PI3K signal transduction pathway (83, 84). 

IGF-1 gene and, more specifically, its isoform
expression is seen as an early event in exercise-induced
muscle overload or damage (17, 22, 23, 79) and IGF-1
mRNA and protein were detected in newly replicating rat
skeletal muscle following injury (85). A general, unspecific
effect of IGF-1 on muscle metabolism is the stimulation of
protein synthesis, by acting rapidly on the rate of
polypeptide chain initiation and by a slower action on
mRNA synthesis (86). Furthermore, different roles for the
MGF and the IGF-1Ea (mIGF-1) isoforms were suggested
in the processes of myoblast proliferation and
differentiation (60). To examine the biological activity and
the potential local action of MGF, a plasmid gene
construct containing MGF cDNA was transferred into
myocytes in culture and also by intramuscular injection in
vivo, under the control of muscle-specific regulatory
sequence. It was found that, two weeks after direct
injection, the mean fiber size of the injected muscle
increased by 25% and its wet weight by approximately 20%
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compared with the noninjected contralateral muscle or
other controls (30, 87). In contrast, viral introduction of
IGF-1Ea (mIGF-1) took 4 months to result in a 20%
increase in muscle mass (88), indicating that MGF is more
potent than IGF-1Ea in initiating and enhancing muscle
hypertrophy (89). In culture experiments with C2C12
mouse myoblast cell line, a predicted synthetic MGF
peptide was used and the muscle cell lines were
transfected with either the MGF or IGF-1Ea (mature
human IGF-1) peptide (60). It was found that MGF
activated and proliferated mononucleated myoblasts 3 days
post-transfection, but prevented their fusion to form
myotubes. However, it should be noted that such a
synthetic MGF peptide was reported to be rapidly
degraded in serum or tissue fluids (66). To date, there is
very little information or evidence regarding the presence
of the MGF peptide in vivo, since there was only a mention
of the detection of MGF peptide in a bound state with its
bounding protein in muscles (4). On the other hand, it was
found in the same study that IGF-1Ea increased cell
proliferation, although at a lower rate than MGF and also
promoted their terminal differentiation into myotubes
(60). In other experiments, it was shown that mIGF-1
(IGF-1Ea) also enhance stem cell-mediated muscle
regeneration (46, 90).

Both in vivo and in vitro studies revealed that MGF was
rapidly activated and subsequently depressed in damaged or
overloaded muscles, indicating that this IGF isoform, and
more specifically its E domain, probably act as a separate
growth factor (60). It was suggested that it is responsible for
satellite cell activation (17, 65), for the prolongation of
myogenic cell proliferation and for depression of their
terminal differentiation into myotubes (22, 60). In contrast,
IGF-1Ea appeared to have a more delayed expression
profile, to increase the mitotic index, to enhance terminal
differentiation and to promote fusion of the myogenic cells
(17, 60). It has been shown that post-mitotic expression of
IGF-1 induced dramatic morphological changes in
hypertrophic myofibres, with accumulation of actin and
formation of nuclear rings within the body of fibres (76).
Both, the MGF and IGF-1Ea isoform, appear to up-
regulate protein synthesis since they both share the same
mature peptide (exon 3 and 4) which promotes protein
synthesis. This role is mediated predominantly by IGF-1Ea,
since most of the mature IGF-1 peptide is derived from
IGF-1Ea, whereas the E domain of the MGF peptide is
thought to be involved in the activation of satellite cells (17,
22). It was suggested that MGF is much more potent than
IGF-1Ea in inducing rapid hypertrophy (17).

It was found in animal studies, that these two IGF-1
isoforms not only act as different growth factors, with
apparently different function, but that they also have
different expression kinetics (17, 22, 64). The MGF

transcript showed a relatively rapid increase and peaked 24
h, probably even earlier, following mechanical (or chemical,
by bupivacaine injection) muscle damage (17) or mechanical
overloading of muscle (64) and it declined within a few days,
whereas IGF-1Ea expression peaked 7 and 2 days following
muscle damage (17) and mechanical overloading (64),
respectively. The initial pulse of MGF expression following
muscle damage was thought to activate the satellite cells,
providing the extra nuclei required for the repair process,
while an up-regulation of protein synthesis also is promoted.
The later expression of IGF-1Ea further up-regulates protein
synthesis to complete the repair and/or the hypertrophy
process (17, 91). Moreover, it was suggested that the
impaired regenerative ability of old skeletal muscle is
probably a result of the down-regulation of IGF-1 system
and particularly the decreased MGF mRNA responses to
muscle overloading and the lower levels of IGF-1.R
compared to young muscles (65). However, IGF-1.R
number, affinity and binding capacity were found to increase
in skeletal muscle of old mice following exercise (92).

The imposition of a second bout of resistance exercise
on skeletal muscle was shown to result in sustaining
increases of MGF and IGF-1Ea transcripts. These increases
were more pronounced where the rest intervals between
the two exercise bouts were longer (i.e. 48 h versus 24 h or
8 h rest) (64). These results indicated a likely summation
of IGF-1 responses to the repeated stimuli, with a potential
optimum time-point to perform a second bout so as to
facilitate greater responses (64). It was hypothesized that
signaling mechanisms may enter a refractory period after
an exercise bout that blunts the response to a shortly
repeated second bout, whereas an optimum rest interval
between the exercise bouts protects muscle (64). It was
reported that long-term (12 weeks) voluntary exercise did
not affect the expression levels of IGF-1 but decreased its
circulating levels in rats (93). These findings were
attributed to a marginal role of IGF-1 in the adaptation
process of rat skeletal muscle during chronic exercise (93).
In another study, using gene-array technology for
simultaneous analysis of the expression of 184 different
genes in human skeletal muscle following cycling exercise,
it was found that more than 85% of the analyzed genes
reducted in abundance. It was suggested that an inhibition
of the transcription process or a degradation of mRNA
might occur during or after the exercise, before initiation
of the selective transcription initiates (94).

It is important to point out that, current studies provide
information on IGF-1 isoforms mainly at the mRNA level,
since the available techniques restrict or do not allow the
identification and differential quantitation of the different
IGF-1 isoforms at the protein level. The development of
epitope-specific antibodies for distinguishing the different
IGF-1 peptides and both their production and distribution is
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needed for a more definitive analysis of IGF-1 expression in
skeletal muscle following different exercise stimuli (19). 

In humans, there is little information about the
expression kinetics of IGF-1 or its different isoforms
following exercise-induced mechanical overloading or
damage of skeletal muscle, since the potential to observe
the responses over time requires a number of biopsy
samples from the same (exercised) muscle. Various
responses in IGF-1 transcriptional levels have been reported
following resistance exercise. An early decrease in IGF-1
mRNA levels was found 1 to 12 h following isometric or
dynamic (eccentric-concentric) contractions (67, 95),
whereas an increase in IGF-1 mRNA levels was reported 48
h following eccentric (lengthening) contractions (59). No
changes in IGF-1 mRNA levels were found 24 h after
electromyostimulation resistance exercise (31). More
specifically, regarding the particular expression of IGF-1
isoforms in skeletal muscle, it was observed that MGF
increased 2.5 h after resistance exercise (22) and 24 h after
electromyostimulation resistance exercise in spinal cord
injury patients, but not in controls (31, 67). IGF-1Ea
isoform at the mRNA level seemed to remain unchanged
2.5 h after resistance exercise (22), or to be down-regulated
during the initial part of recovery from resistance exercise
(1-48 h post exercise) (95). In addition, all IGF-1 isoforms
expressed in human skeletal muscle (IGF-1 Ea, b and c)
were found to be increased 24 h after the completion of a
resistance training program (23), while IGF-1Ebc (IGF-1Eb
and IGF-1Ec isoforms) mRNA levels were unaffected 1-48
h following resistance exercise (95). Finally, in contrast to
the results from animal studies (64), the imposition of a
second bout of resistance exercise 24 or 72 h after the
second bout resulted in an increase in MGF mRNA levels
only in spinal cord injury patients (31, 67).

Conclusion

Different IGF-1 isoforms coded by multiple IGF-1 splice
variants, which also undergo post-translational modification,
appear to be sensitive to muscle loading or damage
conditions. However, the precise biological and functional
characterization of IGF-1 isoforms in skeletal muscle are
particularly important, in terms of elucidating the specific
signaling pathways that promote both the competing
processes of cellular proliferation and differentiation in
muscle regeneration and hypertrophy. Moreover, it is
possible that regulation of local production of IGF-1
isoforms may be tissue-specific concerning the molecular
mechanisms by which synthesis is modulated. It remains a
challenge to elucidate and identify the specific stimuli and
mechanotransduction signaling mechanisms by which IGF-1
isoform synthesis is modulated at the skeletal muscle
cellular level. 
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