
Abstract. Classical Hodgkin lymphomas (cHL) have now
been recognized as B-cell lymphomas with some exceptional
cases of T-cell origin. In recent years, there has been
accumulating evidence that Hodgkin and Reed-Sternberg
(H/RS) cells, the presumed neoplastic-cell population in cHL,
are characterized by a profound disturbance of the cell cycle
and apoptosis regulation. The constitutive activation of the
nuclear factor (NF)-kB pathway, which is considered to be
involved in the proliferation and survival of H/RS cells.
Moreover, substantial evidence that H/RS cells have defective
cell cycle and apoptosis regulation has been provided by studies
showing that these cells are characterized, in a large proportion
of cases, by alterations of the p53, Rb and p27 tumor
suppressor pathways, overexpression of cyclins involved in the
G1/S and G2/M transition such as cyclins E, D2, D3, A and
B1, overexpression of cyclin-dependent kinases such as CDK1,
2 and 6 and overexpression of anti-apoptotic proteins such as
c-FLIP, bcl-xl, c-IAP2, X-linked IAP and survivin. Recent
studies suggest that interleukin 13 (IL-13) is an important
growth and survival factor in H/RS cells. Furthermore, the
Epstein-Barr Virus (EBV), which is present in H/RS cells in
about 30-50% of cHL, has been shown to affect the cell cycle
and apoptosis regulation in cHL. The present review
summarizes data with respect to the cell cycle and apoptosis
deregulation in cHL.

Hodgkin lymphoma, which accounts for approximately 30%

of all lymphomas, is composed of two different entities: the

rare lymphocyte predominant Hodgkin lymphoma and the

more frequent classical Hodgkin lymphoma, representing

approximately 95% of all Hodgkin lymphomas (1, 2).

Hodgkin and Reed-Sternberg (H/RS) cells, the neoplastic-

cell population in classical Hodgkin lymphoma (cHL),

constitute only a minor component of the tumor, whereas

the majority of the malignancy is composed of a mixed

inflammatory infiltrate variably composed of lymphocytes,

eosinophils, macrophages, plasma cells and fibroblasts (1, 2).

A central issue in cHL research was the cell(s) of origin

of H/RS cells. Evidence has accumulated that H/RS cells

harbor clonally rearranged and somatically mutated

immunoglobulin genes, indicating their derivation, in most

cases, from germinal center (GC) B-cells (3-6). Under

normal conditions, GC B-cells, that lack a functional high-

affinity antibody, undergo apoptosis in the germinal center.

H/RS cells show a characteristically defective B-cell

differentiation program, lose the capacity to express

immunoglobulin and, therefore, should die (3-6). However,

H/RS cells escape apoptosis and instead proliferate (3-6).

These findings raised the questions of how H/RS cells resist

apoptosis, acquire self-sufficiency in growth signals and

proliferate. Therefore, many studies focused on the

mechanisms regulating cell cycle and apoptosis in H/RS

cells and provided evidence that these cells are

characterized by a profound disturbance of the cell cycle

and apoptosis regulation (7-35). In this respect, of particular

importance is the constitutive activation of the nuclear

factor (NF)-kB pathway in HL-cell lines and neoplastic

tissues, which is considered to be involved in the

proliferation and survival of H/RS cells (3-6, 12-16).

Moreover, substantial evidence that H/RS cells have

defective cell cycle and apoptosis regulation has been

provided by studies showing that these cells are

characterized by alterations of the p53, Rb and p27 tumor

suppressor pathways (17-34), overexpression of cyclins

involved in the G1/S and G2/M transition such as cyclins E,

D2, D3, A and B1 (11, 26, 29, 33-35), overexpression of
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cyclin-dependent kinases such as CDK1, 2 and 6 (33) and

overexpression of the anti-apoptotic proteins c-FLIP, bcl-xl,

c-IAP2 and survivin (3-6, 23, 28, 33). Furthermore, recent

evidence suggests that interleukin 13 (IL-13) is an important

growth and survival factor in H/RS cells (36). Finally, the

Epstein-Barr Virus (EBV), which is present in about 30-

50% of cHL (1-6), has been shown to affect the cell cycle

and apoptosis regulation in cHL (33). The present review

summarizes data with respect to the cell cycle and apoptosis

deregulation in cHL.

Cell cycle and apoptosis

The basic concepts regarding cell cycle and apoptosis

regulation in normal and pathological lymphoid cells are

reviewed in references 37-44. 

The cell cycle regulation is achieved through a family of

serine/threonine kinase holoenzyme complexes, consisting

of regulatory cyclin subunits, that bind to and activate

catalytic cyclin-dependent kinases (CDK) (37, 38). Cyclins

are expressed in a cell cycle-dependent manner and are

divided into two main functional families. The G1/S family

includes the cyclins D1, D2, D3 and E, which are important

for the passage of cells through the G1-phase and their

entry into the S-phase. The G2/M family includes cyclin A,

which is involved in DNA synthesis, S-phase completion and

preparation for mitosis and cyclins B1 and B2, which control

the onset, sequence of events and completion of mitosis.

Cyclins D complex with either CDK4 or CDK6 in the early

G1-phase and they regulate the activity of the restriction

point that controls the transition through the late G1-phase.

The cyclin E/CDK2 complex acts at the G1/S boundary.

Accumulation of the cyclin E/CDK2 complex depends on

the E2F transactivation of the cyclin E gene and on

ubiquitin-mediated degradation of the protein. Once the

cell enters the S-phase, cyclin E is degraded and the

activation of CDK2 is taken over by cyclin A. The cyclin

A/CDK2 complex is important for the initiation and the

maintenance of DNA synthesis. Activation of CDK2 by

cyclin A is necessary for the continuation of the S-phase.

Toward the end of the S-phase, cyclin A activates CDK1,

thereby signaling the completion of the S-phase and the

initiation of the G2-phase. The G2/M transition is triggered

by the cyclin B/ CDK1 complex (mitosis promoting factor),

which achieves its full biological activity by the nuclear

translocation of the complex and is maintaned up to the

metaphase–anaphase transition in mitosis. Cyclin-dependent

kinase inhibitors (CDKI) negatively regulate the kinase

activity of the complexes composed of cyclins and CDKs.

There are two known families of CDKIs. The INK4 family

includes four genes (p16/INK4A, p15/INK4B, p18/INK4C

and p19 (p14)/INK4D), which bind to CDK4 and 6 and

prevent D-type cyclin binding and activation. The CIP/KIP

family includes three genes (p21/CIP1, p27/KIP1 and

p57/KIP2), which target CDK 2, 4 and 6. Important roles in

the control of the cell cycle progression are played by the

p53, Rb and p27 tumor suppressor pathways (37, 43). The

p53 (p14-Hdm2-p53-p21) pathway regulates cell cycle arrest

in G1- and G2- phases. P53-dependent G1/S arrest can be

mediated through p53-mediated induction of p21 and p53-

dependent G2/M arrest can be mediated by repression of

the promoters of cyclin B1 and CDK1. The activity and the

stability of p53 protein is regulated via interactions with

proteins such as Hdm2, which acts as ubiquitin ligase for

p53, allowing targeting of p53 to the ubiquitin-mediated

proteolytic network. The enzymatic activity of Hdm2 is

controlled by p14; complexes of p14/ Hdm2 proteins are

devoid of ubiquitin ligase activity and thus stabilize p53

protein. Central to the Rb (p16-cyclin D-CDK4/6-Rb)

pathway is the regulation of phosphorylation of the Rb

protein (pRb). Hypophosphorylated pRb binds and

inactivates transcription factors, notably the E2F-DP,

important for the transition from G1- to S- phase;

phosphorylation of pRb by CDK 4/6 kinases results in

release of the E2F-DP and subsequent initiation of gene

transcription. One of the genes induces by the E2F-DP is

cyclin E, which also phosphorylates pRb. Central to the p27

(p27-cyclin E-CDK2) pathway is the CDKI p27, which may

act as a mediator of G1 arrest. P27 is phosphorylated by

cyclin E-CDK2 and this modification signals the proteolytic

degradation of p27 protein via ubiquitination-proteasomal

degradation; in this process, SKP2 mediates degradation of

p27 by acting as ubiquitin ligase for p27 protein. 

Apoptosis is morphologically defined by alterations

including cell shrinkage, nuclear fragmentation and

chromatin condensation. Apoptosis can be initiated by two

alternative convergent pathways; the extrinsic pathway,

which is mediated by cell surface death receptors and the

intrinsic pathway, which is mediated by mitochondria (39-

42). In both pathways, cysteine aspartyl-specific proteases

(caspases) are activated that cleave cellular substrates,

resulting in the characteristic morphological and biochemical

alterations of apoptosis. The extrinsic pathway involves cell

surface death receptors belonging to the Tumor Necrosis

Factor-Receptor (TNF-R) family including TNF-R1,

Fas/CD95, Death Receptor (DR) 3, DR4, DR5 and DR6,

which have in common an intracellular death domain (DD)

required for apoptotic signal transduction; the specific

ligands for the TNFR family belong to the TNF family

including TNFa, Fas-ligand, lymphotoxin (LT)-a, Apo-3-

Ligand and TNF Related Apoptosis Inducing Ligand

(TRAIL) (39-42). Binding of a death ligand to a death

receptor induces activation of the death receptor; once

activated, death receptors recruit adaptor proteins [e.g. Fas

associated death domain (FADD) for the case of Fas/CD95],

which contain a DD and a death effector domain (DED).
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The DED of the adaptor proteins interact with the DED of

the apoptosis initiator enzyme procaspase 8. The resulting

complex, consisting of trimerized death receptor (e.g. Fas

/CD95), adaptor protein (e.g. FADD) and procaspase 8, is

called the death inducing signaling complex (DISC).

Procaspase 8, after recruitment in the DISC, is activated by

auto-proteolytic cleavage into caspase 8. The intrinsic (or

mitochondrial) pathway is induced in response to stress

stimuli such as DNA damage caused by chemotherapeutic

agents, UV- or Á-irradiation or withdrawal of survival signals

such as growth factors, cytokines or hormones (39-42). The

intrinsic pathway is triggered by stimulation of the

mitochondrial membrane (e.g., by translocation into

mitochondria of the bcl2 family of proteins, resulting in

alterations in the mitochondrial membrane permeability)

and the consequent release of cytochrome c and other

apoptogenic factors from mitochondria. Cytochrome c

recruits the caspase adaptor molecule called APAF1

(apoptotic protease-activating factor-1) and the apoptosis

initiator enzyme procaspase 9. Together, cytochrome c,

APAF1, procaspase 9 and ATP form a complex called

apoptosome. Procaspase 9 is activated by auto-proteolytic

cleavage into caspase 9. The extrinsic and intrinsic pathways

of apoptosis signaling are intimately connected and both

pathways converge into a common pathway causing the

activation of effector or executioner caspases 3, 6 and 7.

Interestingly, in some cells (type I cells) the amounts of

active caspase 8 are sufficient to induce apoptosis by the

death-receptor pathway, but in other cells (type II cells)

these amounts are not sufficient and mitochondria are used

as amplifiers. In type II cells, activation of the intrinsic (or

mitochondrial) pathway is mediated by the bcl2 family

member bid protein, which is cleaved by active caspase 8,

translocates to the mitochondria, releases cytochrome c and

leads to the formation of apoptosome. The apoptotic

machinery is tightly regulated and various proteins control

the apoptotic process at different levels. Important roles in

the regulation of apoptosis are played by the FLIP proteins

(FADD-like interleukin-1 ‚-converting enzyme-like protease

[FLICE/caspase 8]-inhibitory proteins), the bcl2 family of

proteins and the IAP proteins (inhibitor of apoptosis

proteins) (39-42). The FLIP proteins may regulate the

extrinsic pathway by binding to the DISC, thereby inhibiting

the activation of procaspase 8. The bcl2 family comprises

both pro-apoptotic (e.g., bax, bak, bok, bad, bik, bim, bid)

and anti-apoptotic (e.g., bcl2, bcl-xl and mcl1) members. The

anti-apoptotic bcl2 family members may regulate the

intrinsic pathway by preventing the mitochondrial release 

of cytochrome c. The IAP family of proteins (e.g., XIAP, 

c-IAP1, c-IAP2, NAIP, ML-IAP, ILP2, survivin) may

suppress apoptosis by binding to and inhibiting caspases, or

may act as E3-ubiquitin ligases promoting the degradation

of the caspases that they bind. 

Cell cycle and apoptosis deregulation in classical
Hodgkin lymphomas 

Central issues in Hodgkin lymphoma research were the

questions of how H/RS cells resist apoptosis and acquire

self-sufficiency in growth signals. H/RS cells are considered

to derive, in most cases, from GC B-cells (3-6). However,

H/RS cells lose the capacity to express immunoglobulin and,

therefore, should die; nevertheless, H/RS cells escape

apoptosis and instead proliferate (3-6). Indeed, H/RS cells

are characterized by a high growth fraction as shown by the

immunohistochemical overexpression of Ki67 (MIB1),

which stains cells in all cycle phases except G0 (21, 27, 33).

This suggests that a large number of H/RS cells enter the

cell cycle. However, the expression of proliferation-related

antigens in H/RS cells is associated with absence of normal

progression through mitosis (10). As a result, H/RS cells do

not rapidly outnumber the reactive component, which

represents the overwhelming majority of the tumor tissue.

To explain this phenomenon, it was suggested that H/RS

cells have defective cytokinesis (8-11). Indeed, a number of

studies using flow cytometric, histological and immuno-

histochemical methods reported that H/RS cells display

aberrant cell cycle features such as S-phase disorder,

frequent aneuploidy and abortive mitoses, with arrest at the

metaphase-ana/telophase transition leading to the formation

of characteristic multinucleated cells and/or considerable

cell deletion, often in the form of mummified cells (7-11). 

Moreover, substantial evidence that H/RS cells have

defective cell cycle regulation has been provided by studies

showing that these cells are characterized by immuno-

histochemical overexpression of cyclin-dependent kinases

(CDK) such as CDK1, 2 and 6 and cyclins such as cyclins

D2, E, A and B1, whereas overexpression of cyclin D3 is less

frequent and overexpression of cyclin D1 is rather

uncommon in most studies (11, 26, 27, 29, 33-35). 

Immunohistochemical overexpression of cyclin D1 in

H/RS cells is uncommon in cHL (2-20%) (27, 29, 33, 35),

suggesting that cyclin D1 may not support the proliferation

of H/RS cells in most cHL. 

Immunohistochemical overexpression of cyclin D2 in

H/RS cells is a prominent feature of most cHL (70%-80%)

(27, 34). This expression pattern differs strongly from the

low levels of cyclin D2 expression in reactive lymph nodes

and most B-cell malignancies (except B-cell chronic

lymphocytic leukemias and lymphoplasmacytic lymphomas)

(34, 43, 45, 46). Up-regulation of cyclin D2 expression in

H/RS cell lines has been shown to result from constitutive

activation of NF-kB and activator protein (AP)-1 in H/RS

cells (13, 15, 16). On the basis of the immunohistochemical

and the in vitro findings, it was suggested that

overexpression of cyclin D2 may support the proliferation

of H/RS cells (13, 15, 16, 27). 
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Immunohistochemical overexpression of cyclin D3 in

H/RS cells was observed in 30%-58% of cHL (27, 33, 35).

This range of expression shows similarities to that observed

in diffuse large B-cell lymphomas (47-49). Overexpression

of cyclin D3 in H/RS cells might reflect their increased

proliferative activity, since cyclin D3 is the principal D-type

cyclin mediating G1 progression in human B-cells (43) and

cyclin D3 expression in H/RS cells was positively correlated

with the expression of cyclin A, cyclin B1, cyclin D2, MIB1

(Ki67), CDK1 and CDK6 (27, 33). 

Immunohistochemical overexpression of cyclin E in H/RS

cells is a striking feature of most cHL (82%-90%) (27, 33,

35). This expression pattern differs strongly from the low

levels of cyclin E expression in reactive lymphoid tissue and

other lymphomas (47, 50). Overexpression of cyclin E in

H/RS cells may, at least partially, explain cell cycle

aberrations in cHL in view of the findings that high levels

of cyclin E expression impair S-phase progression, increase

chromosomal instability and polyploidy and maintain CDK2

activity whose down-regulation is required for exit from

mitosis (51, 52). Increased expression of cyclin E in H/RS

cells may reflect their increased proliferative activity, since

cyclin E overexpression in H/RS cells was positively

correlated with the expression of CDK2, MIB1 (Ki67),

cyclin A and cyclin B1 (33). 

Immunohistochemical overexpression of cyclins A and B1

in H/RS cells is a common feature of most cHL (90-95%)

(26, 27, 33). This range of expression shows similarities to

that observed in diffuse large B-cell lymphomas (53).

Overexpression of cyclins A and B1 may, at least partially,

explain the abortive mitoses of H/RS cells (8), since cyclin A

can delay chromosome alignment and anaphase (54) and

the cyclin B1/ CDK1 complex (mitosis promoting factor) is

involved in chromosome condensation, nuclear membrane

breakdown and mitotic spindle formation (55). In this

respect, the cyclin B1/CDK1 complex (mitosis promoting

factor) was profoundly deranged in H/RS cells, as evidenced

by: a) the markedly low fraction of large atypical cells

expressing cyclin B1 simultaneously in the cytoplasm and

the nucleus, and b) the absence of correlation of the

fraction of large atypical cells expressing cyclin B1

simultaneously in the cytoplasm and the nucleus with the

anaphase/telophase indices (56). 

Immunohistochemical overexpression of cyclin T1 in

H/RS cells is common in cHL (57). The expression of the

cyclin T1/CDK9 complex was found to be related to the

differentiation program and the cell cycle status in normal

and malignant B-cells. Indeed, cyclinT1 and CDK9 proteins

are highly expressed in normal and malignant precursor and

germinal center B-cells, which are characterized by

increased proliferation, whereas these proteins were

undetectable in normal mantle cells and plasma cells, as

well as in mantle cell and marginal cell lymphomas (57).

Immunohistochemical overexpression of the cyclin-

dependent kinases (CDK) 1, 2, 6 and 9 in H/RS cells is

common and may reflect their increased proliferative

activity, since the expression of CDK1, CDK2 and CDK6 in

H/RS cells was positively correlated with the expression of

cyclin D3, cyclin E and Ki67 (MIB1) (33, 57). Moreover,

since the activation of CDK6 may induce the transcription

of p18 through E2F1 activation (58), the concomitant CDK6

high expression and p18 low expression in H/RS cells

suggests impairment of this autoregulatory network in cHL

(32). Interestingly, there is a link between cell cycle arrest

and terminal B-cell differentiation (59). The p18

requirement in terminal B-cell differentiation is specific

since other CDKIs such as p19, p21 and p27 cannot

compensate the p18 deficiency (59). Therefore, the link

between cell cycle arrest and terminal B-cell differentiation

in H/RS cells may, at least in part, be related to the

defective B-cell differentiation status of these cells (60-62).

Some studies sought to ascertain whether groups with

distinct cellular kinetic properties could be delineated in

cHL. Spina et al. (10) revealed the existence, independently

of histological subtype, of two distinct large groups of HL

with different kinetic event index (kinetic event index

=mitotic index + DNA fragmentation index). Bai et al. (27)

revealed the existence of 2 cluster solution for the

proliferation profile (combined expression values counted

for the proliferation-associated proteins Ki67, cyclin A and

cyclin B1), thereby permitting clear separation of cHL into

distinct groups with low and high proliferative activity. The

identification of distinct clusters with respect to the

proliferation profile indicates that groups with distinct

cellular kinetic properties can be delineated in cHL. 

The mechanisms which could underlie the aberrant cell

cycle features of H/RS cells have been investigated by

studies using immunohistochemical and molecular biology

methods. Evidence has been provided that cell cycle

deregulation in H/RS cells may be due, at least in part, to

alterations in the p53 (p14-Hdm2-p53-p21), Rb (p16-cyclin

D-CDK4/6-Rb) and p27 (p27-cyclin E-CDK2) tumor

suppressor pathways (17-33). 

Inactivation of the p53 pathway in H/RS cells has been

suggested because of the very frequent immuno-

histochemical overexpression of p53, Hdm2 and p21

proteins, which differs strongly from the low levels of

expression of these proteins in reactive lymphoid tissue (18-

23, 26-30, 33). This inactivation does not appear to result

from p53 gene mutations (17, 22), but rather from Hdm2

protein overexpression in H/RS cells, which has been

associated with the presence of alternative transcripts of

Hdm2 lacking the adhesion to p14 (ARF), its inhibitory

protein (30). Indeed, immunohistochemical studies showed

absence of Hdm2/p14 nucleolar complexes and revealed

different localization of Hdm2 (nucleoplasm) and p14
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(nucleoli) in H/RS cells (30). In some cases of cHL,

overexpressed Hdm2 protein was related to Hdm2 gene

amplification (20). The absence of Hdm2/p14 nucleolar

complexes and the binding of overexpressed Hdm2 protein

to overexpressed p53 protein in H/RS cells may be sufficient

to inactivate the p53 pathway and may explain the very low

frequency of p53 gene mutations in cHL (30). High p53

expression in H/RS cells was associated with high MIB1,

cyclin A, cyclin B1, cyclin E, CDK6 and p21 expression,

suggesting that overexpressed p53 protein in H/RS cells is

unable to induce cell cycle arrest (18, 21, 27, 28, 33). This is

likely to reflect the p53 inactivation in H/RS cells, which

impairs the induction of p53-transactivated genes involved

in the G1/S and G2/M checkpoints (36, 37, 56, 63, 64). With

respect to the G1/S checkpoint, p53 induces cell cycle arrest

by inducing the expression of p21 (36, 37). However, since

H/RS cells in most cHL had the p53+/p21+ phenotype and

p53 is inactivated, it is possible that p21 up-regulation is

p53-independent in cHL (37, 38, 41). With respect to the

G2/M checkpoint, p53 down-regulates the expression of

cyclin B1 and CDK1 by repression of their promoters and

up-regulates the expression of 14-3-3Û, which modulates the

subcellular localization of cyclin B1/CDK1 complexes, as the

binding of 14-3-3Û to CDK1 results in retention of the

kinase in the cytoplasm (56, 63, 64). Thus, p53 inactivation

may, at least partially, explain the cyclin B1/ CDK1

overexpression and the disturbed nuclear localization of

Mitosis Promoting Factor components (cyclin B1 and

CDK1), which are both features of H/RS cells (33, 57). 

Inactivation of the Rb pathway in H/RS cells has been

suggested because of the frequent immunohistochemical

underexpression of p16 and p18 proteins, while

immunohistochemical underexpression of Rb protein was

less frequent (21, 24, 27, 28, 31-33). This inactivation could

result from p15/INK4b, p16/INK4a and p18/INK4c

promoter region hypermethylation (p16 promoter region

homozygous deletion and mutations are rare), cyclin D [1, 2,

3] overexpression and/or CDK6 overexpression in H/RS

cells (21, 24, 27, 28, 31-35). 

Inactivation of the p27 pathway in H/RS cells has been

suggested because of the frequent immunohistochemical

underexpression of p27 protein and the overexpression of

cyclin E and CDK2 proteins (27, 29, 33). This inactivation

could result from increased p27 protein degradation

mediated by SKP2, which acts as ubiquitin ligase for p27

(33). Indeed, since SKP2 is overexpressed in 84% of cHL

and is inversely related to p27, high expression of SKP2 may

mediate degradation of p27 protein in H/RS cells (33). High

p27 expression in H/RS cells was associated with high cyclin

A, cyclin E, CDK2 and CDK6 expression (27, 33),

suggesting aberrant p27 expression since normal cycling

lymphoid cells have very low levels of p27 protein (43, 65-

68). This might be due to inactivation of overexpressed p27

protein because of binding to D-type cyclins, in view of the

findings that p27-cyclin D3 nuclear colocalization was

detected in a subset of aggressive B-cell lymphomas showing

concomitant high p27/cyclin D3 expression and high growth

fraction (65). In this context, p27 might be protected from

CDK2-mediated degradation because of p27 sequestration

in cyclin D3/CDK4 complexes (65). 

Besides cell cycle arrest, p53 and other cell cycle

regulators are also involved in the regulation of apoptosis

(37, 38, 41, 43, 44). DNA damage induces p53 protein,

which mediates cell cycle arrest through p53-mediated

induction of p21; in the case of ineffective repair of the

DNA damage, p53 may induce apoptosis through up-

regulation of the pro-apoptotic bax protein and down-

regulation of the anti-apoptotic bcl2 protein (37-39, 41).

Thus, it is possible that in cHL the inability of the

overexpressed wt p53 protein to induce cell cycle arrest may,

alternatively, lead to activation of the p53-induced apoptotic

program. However, no immunohistochemical correlation

was found between p53, bax and bcl2 protein expression

status in cHL (23, 28, 33). Interestingly, high p21 and p27

protein expression in H/RS cells was associated with low

apoptotic index, suggesting that these CDKIs have a

protective role against apoptosis (29). 

Deregulated expression of various apoptosis-associated

molecules is common in cHL and, in recent years, evidence

has accumulated that the constitutive activation of the NF-

kB pathway in H/RS cells is of particular importance for

explaining the apoptosis deregulation in cHL (3-6, 69-84).

NF-kB consists of dimers of subunits belonging to the family

of REL/NF-kB proteins (c-REL, p65/RELA, RELB,

p50/p105 and p52/p100) (69, 70). These dimers bind to a

common sequence motif known as the NF-kB site. NF-kB

transciptional activity is regulated by members of the

inhibitor of the kB (IkB) family of proteins, which bind to

NF-kB dimers and retain them in the cytoplasm (69, 70).

Exposure to various extracellular stimuli (e.g., pro-

inflammatory cytokines) activates the IkB kinase (IKK)

complex which phosphorylates NF-kB-bound IkB. This

targets IkB for ubiquitin-dependent degradation and allows

the liberated NF-kB dimers to translocate to the nucleus (69,

70). Constitutive activation of NFkB has a central role in the

pathogenesis of cHL by up-regulating an anti-apoptotic (e.g.,
c-FLIP, bcl-xl, c-IAP2, TRAF1, Bfl1/A1, IEX-1) and

proproliferative (e.g., cyclin D2) gene expression program in

H/RS cells (3-6, 13, 15, 16, 27, 33, 85-89). In addition, NFkB

up-regulates the expression of IL13 and CD40, which play a

critical role in B-cell proliferation and are involved in the

pathogenesis of cHL (3-6, 13, 15, 36). The introduction of a

dominant–negative mutant of IkBa (which irreversibly keeps

NFkB bound in the cytoplasm) into H/RS cells resulted in

their massive apoptosis (12, 15). Immunohistochemical

studies have shown nuclear localization of NFkB in H/RS
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cells, thereby confirming its constitutive activation (14, 33,

71, 72). Several studies have provided explanations for the

constitutive nuclear activity of NFkB in H/RS cells (73-85).

Briefly, constitutive activation of NF-kB in H/RS cell

precursors can be achieved: a) in a ligand-dependent fashion

through various TNFR family members (through autocrine

secretion of the cytokines TNF-a and LT-a, both of which

bind TNFR, activation of CD30 by surrounding CD30L-

positive eosinophils and mast cells, activation of CD40 by

surrounding CD40L- positive T-cells or activation of RANK

by RANKL on H/RS cells); and b) in a ligand-independent

fashion through autonomously active CD30, CD40, RANK

(Receptor activator of NF-kB) and Notch 1 signaling

pathways, through the action of Epstein Barr Virus (EBV)-

encoded LMP-1 protein, by mutations of the IKBA gene

leading to inactivation of IkB-a protein, or by amplification

of the NFkB/REL locus (3-6, 73-84). 

Activation of NF-kB through various TNFR family

members is mediated by the Tumor Necrosis Factor

Receptor-associated factor (TRAF) molecules (90, 91).

TRAFs are adapter proteins that bind to the cytoplasmic

region of TNFR family members and recruit other proteins

to form an active signaling complex that ultimately triggers

the activation of the IkB kinase complex (IKK) (91). To

date, six distinct TRAF molecules have been identified,

termed TRAF1 through TRAF6 (91). TRAF 1, 2, 5 and 6

with appropriate TNFRs induce NF-kB activation (91).

TRAF 1, 2 and 5 bind TNFRII, CD30, CD40, RANK and

LMP1; TRAF6 binds to CD40 and RANK (91). It should

be noted that the function of TNFRI and CD95/Fas is not

primarily mediated by TRAF binding, but through

association of their death domain with molecules such as

FADD, TRADD and RIP (39, 40). With respect to cHL,

TRAF1, 2, 5 and 6 are expressed in H/RS cell lines and

TRAF1 and 2 are commonly expressed in H/RS cells in cHL

tissues, as shown by immunohistochemistry (92-96). 

The identification of c-IAP2 as a NF-kB-dependent

apoptosis inhibitor in H/RS cells is of interest since these

cells express simultaneously high levels of active caspase 3

(97-99). In addition, H/RS cells express the apoptosis

inhibitors survivin and X-linked IAP (XIAP), which also

belong to the IAP family (33, 100). Thus, it is possible that

the c-IAP2, survivin and XIAP expression in H/RS cells may

protect these cells from caspase 3-mediated apoptosis. Most

of the NF-kB-dependent regulators of apoptosis identified

in H/RS have anti-apoptotic functions, except Fas/CD95

(15). In addition, inactivating CD95 gene mutations were

found in only 10% of cHL (101, 102). Furthermore, CD95

and CD95 L immunohistochemical expression is strong in

H/RS cells and surrounding lymphocytes, respectively, in

most cHL (98, 103). Thus, CD95 activation in H/RS cells

should have promoted apoptosis. However, the anti-

apoptotic c-FLIP (FADD-like IL-1b converting enzyme

inhibitory proteins) is overexpressed in cultured H/RS cells

and H/RS cells in cHL tissues (97, 98). Thus c-FLIP may be

one of the molecules inhibiting the effects of Fas/CD95

activation in H/RS cells. 

Besides NF-kB, another family of transcription factors,

found to be constitutively active in cHL and which may

influence the cell cycle status of H/RS cells, is the signal

transducer and activator of transcription (STAT) family

(104, 105). STATs are activated by cytokine signaling

through the activation of Janus kinase (Jak) family

members, which phosphorylate the STAT family (104, 105).

STATs are located in the cytoplasm and their tyrosine

phosphorylation leads to STAT dimerization and

translocation of the activated transcription factor to the

nucleus (104, 105). Seven members of the STAT family have

been so far identified; STAT1, 2, 3, 4, 5 and 6, and each is

activated by a distinct set of cytokines (104, 105). STAT3,

5a and 6 are constitutively activated in H/RS cells and the

expression of STAT1 and 3 is associated with high

proliferative index and high expression of CDK1, 2 and 6 in

H/RS cells (15, 33, 106, 107). STAT 3 is activated by several

cytokines such as IL-6, 10, 2, 7, 9 and 15 (108). STAT3

phosphorylation in cHL was independent from signaling

through the IL-6 receptor and subsequent activation of Jak,

indicating disruption of normal regulatory networks (106).

This finding may be explained by the recurrent amplification

of the Jak2 genomic locus in cHL (76). Nuclear

phosphorylated-STAT3 immunohistochemical expression,

indicating constitutive STAT3 activation, was found in H/RS

cells in 85% of cHL tissues, but it was not specific for cHL

since such expression was also found in most NHL and

reactive cells within cHL (107). STAT 5 is activated by

several cytokines such as IL-2, 4, 7, 9, 15, 3 and 5 (108).

Nuclear phosphorylated-STAT 5 immunohistochemical

expression, indicating constitutive STAT5 activation, was

found in H/RS cells in 25% of cHL tissues; this suggests that

STAT 5-dependent cytokines are not involved as autocrine

growth factors in most cHL (107). STAT 6 is activated by

the cytokines IL-4 and 13 (108). Nuclear phosphorylated-

STAT6 immunohistochemical expression, indicating

constitutive STAT6 activation, was found in H/RS cells in

78% of cHL tissues, but rarely in reactive cells and other

NHL (107). Expression of phosphorylated STAT6 was

shown to depend on IL-13 signaling in HL cell lines (107).

In addition, IL-13 and IL-13 receptor have been detected in

H/RS cells in cHL by in situ hybridization and

immunohistochemistry and have been found to be

important for proliferation of H/RS cell lines (109-111). The

aforementioned findings indicate that IL-13 is an autocrine

growth factor for H/RS cells and suggest that constitutive

activation of STAT6 through IL13 may contribute to the

H/RS cell proliferation (107-111). Furthermore, IL-13 may

be involved in the pathogenesis of cHL in cooperation with
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CD40, since IL-13 and CD40 activation promote B-cell

survival through induction of the anti-apoptotic molecule

bcl-xl (112) that is commonly expressed by H/RS cells in

cHL tissues (33, 86, 87). 

Besides NF-kB and STATs, another transcription factor,

found to be constitutively active in cHL and which may

influence the cell cycle status of H/RS cells, is the

transcription factor AP1 (16). AP1 is composed of homo or

heterodimers formed by related Jun (c-Jun, Jun B, Jun D),

Fos (c-Fos, Fos B, Fra1, Fra 2) and ATF (activating

transcription factor) family proteins (113, 114).

Transcription of AP1 family members is stimulated by

extracellular signals which trigger activation of the mitogen

activated protein kinase (MAPK) families; these include the

c-Jun/NH2-terminal kinase (JNK) family, the extracellular

signal regulated kinase (ERK) family and the p38 MAP

kinase family (113, 114). Under physiologic conditions,

activation of the MAPK cascades by surface receptor/ligand

interactions is involved in regulating proliferation, apoptosis

and differentiation (113, 114). In H/RS cells, a MAPK-

independent constitutive activation of AP1 with strong c-Jun

and Jun B immunohistochemical expression was revealed

(16). Jun B expression was under the control of NFkB,

whereas c-Jun was up-regulated in an autoregulatory

process in H/RS cells (16). AP1 target genes in H/RS cells

comprise cyclin D2 and the proto-oncogene c-MET, which

are both strongly expressed in H/RS cells (16). Interestingly,

the c-MET/Hepatocyte growth factor pathway has been

suggested as important for the survival of H/RS cells (115).

Furthermore, the MEK/ERK pathway was aberrantly active

in HL cell lines (116). This pathway is shared by CD30,

CD40 and RANK and activation of the respective receptors

increases ERK phoshorylation and promotes the survival of

HL cell lines (116). Inhibition of this pathway was found to

induce G2/M arrest or apoptosis and was associated with

modulation of the expression of the apoptosis regulators

bcl2, mcl1 and c-FLIP in HL cell lines (116).

Epstein-Barr Virus (EBV) and cell cycle/apoptosis
deregulation in classical Hodgkin lymphoma 

EBV has been associated with the pathogenesis of cHL in

about 30-50% of cases (117-149). In normal host epithelial

and lymphoid cells, EBV infection induces two types of

infection, i.e. lytic infection with production of infective

virions and latent infection, in which no infective virions are

produced and only a limited number of EBV genes are

expressed (118-121). On the basis of in vitro and in vivo
data, three patterns of EBV latency have been described:

type I latency, expressing only Epstein-Barr nuclear antigen-

1 (EBNA-1) gene (Burkitt lymphoma); type II latency,

expressing EBNA-1, latent membrane protein-1, 2A and 2B

(LMP-1, 2A and 2B) genes (cHL, NK/T-cell lymphomas,

undifferentiated nasopharyngeal carcinomas); and type III
latency, in which all EBNA (EBNA-1, 2, 3A, 3B, 3C, LP)

and LMP (LMP-1, 2A, 2B) genes are expressed

(lymphoblastoid cell lines [LCL]) (118-122).

Using molecular histology methods, EBV has been

detected by DNA and/or RNA in situ hybridization in H/RS

cells in about 30-50% of cases in Western countries;

moreover, the EBV-encoded LMP1 and LMP2A proteins

have been revealed by immunohistochemistry in H/RS cells

in 30-50% of cHL cases (125-145). Using microarrays, the

gene expression profile of cHL cell lines was similar to that

of EBV-transformed B-cells (4). 

Of particular importance for the pathogenesis of cHL is

the detection of the EBV-latency proteins LMP1 and LMP-

2A in H/RS cells, since these proteins are associated with

EBV-mediated activation, transformation and deregulation

of the cell cycle and apoptosis machineries of EBV-infected

B-cells (118-124). LMP1 mimics a constitutively active

CD40 receptor, a signaling pathway leading to the activation

of the NF-kB through the TRAF pathway (118-124).

Besides NF-kB, LMP1 also mediates activation of other

signaling pathways such as AP1 activation through the

JNK/c-Jun pathway, ATF2 (activating transcription factor

2) activation through the p38/MAPK pathway and Jak-

STAT pathway activation through binding and activation of

Jak3 (119-121). LMP1 may also mediate down-regulation of

CD99, which leads to the generation of H/RS cells and

induction of the cytokines IL-6 and IL-10, which might be

involved in the EBV-induced growth activities (108, 119-

126). LMP2A has effects on signal transduction by

obstructing pathways that are triggered by ligation of the B

cell antigen receptor complex (BCR) (119-122). Recently,

important evidence supporting the involvement of LMP2A

in the pathogenesis of cHL has been provided by the

findings that LMP2A expression increases the expression of

genes associated with cell cycle induction and inhibition of

apoptosis (Ki67, cyclin A, PCNA, bcl-xl, survivin) and

decreases the expression of B-cell specific factors (CD19,

CD20, CD22, CD79a, Blk, Bnlk, Pax5, PU.1) (122). Since

many of the LMP2A-induced alterations in gene expression

were similar to those described in H/RS cells, it was

suggested that LMP2A expression in EBV-infected B-cells

may lead to the induction and the maintenance of an

activated, proliferated state that ultimately result in cHL

(122). 

The cell cycle/apoptosis protein expression profiles in

EBV-positive and EBV-negative cases of cHL have been

extensively analyzed by immunohistochemistry resulting in

conflicting results (9, 19, 21, 23, 25, 26, 28, 33, 35, 89, 92,

132, 141, 143, 144, 148, 149). Moreover, no correlation was

found between the EBV status and apoptotic index as

detected by the TUNEL method (9, 29, 33). Interestingly, a

recent study of 288 cases of HL showed that EBV-positive
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cases of cHL presented a different cell cycle/apoptosis

immunohistochemical profile consisting of increased

expression of STAT1 and STAT3 and decreased expression

of p53, Hdm2, p27, cyclin E, CDK6 and bcl-xl proteins (33).

This study demonstrated, in a large series of cHL, that EBV

infection induces profound alterations in the cell

cycle/apoptosis profile of H/RS cells (33).

Important mediators of the EBV-induced growth activity in

cHL may be the EBV-induced cytokines (108). EBV induces

the synthesis of various cytokines in B cells and, among them,

IL-6 and IL-10 are important for the growth of EBV

transformed cells (108, 150-154). Both IL-6 and IL-10 may be

regulated by LMP1 via NF-kB and the p38 MAP kinase

pathways (155-158). There is evidence that pathways activated

by IL-6 and IL-10 (for example the Jak family of tyrosine

kinases) are involved in lymphocyte growth and transformation

(104, 105). The STATs, which are one substrate of the Jak

family, are active in EBV immortalized cells and LMP1 can

activate a STAT reporter which binds at least STAT1, STAT3

and STAT5 (159, 160). In addition, EBV-positive cHL are

associated with immunohistochemical overexpression of

STAT1 and STAT3 proteins (33). Therefore, STAT1, STAT3

and STAT5 may be involved in EBV-induced proliferation. 

The cytokine profiles in EBV-positive and EBV-negative

cases of cHL have been analyzed by immunohistochemistry

and in situ hybridization (150, 151, 161). Two of these

studies have shown a significant correlation between higher

numbers of IL-10- and IL-6- expressing H/RS cells and

positive EBV status in cHL (150, 151). In contrast, no

difference in the percentage of IL-2-, IL-4- and IFN-Á-

expressing H/RS cells was observed between EBV-positive

and EBV-negative cases of cHL (151). Another

immunohistochemical study reported higher numbers of IL-

12-expressing reactive cells in EBV-positive cHL (161).

Relationships between B-cell differentiation
program and apoptosis in classical Hodgkin
lymphoma 

Recent evidence suggests links between the relationships

between the B-cell differentiation program and apoptosis in

cHL. Indeed, the occurrence of somatic deleterious

(crippling) mutations in the immunoglobulin genes of H/RS

cells in about 25% of the B-cell cHL cases has led to the

hypothesis that these cells are derived from pre-apoptotic

GC B-cells (3, 162). More recent studies showed that the

gene expression profile of cHL cell lines is characterized by

the overexpression of genes, which are components of the

activated DLBCL gene expression signature (cyclin D2,

CD44, IRF4/MUM1, IkBa, c-FLIP, CCR7 and TNFa) (4,

13, 15, 16, 163, 164). In addition, a part of the cHL

phenotype is based on NFkB-regulated genes (cyclin D2,

IRF4/MUM1, IkBa, c-FLIP and CCR7) and both cHL and

activated DLBCL show NFkB constitutive activation, which

induces an anti-apoptotic and proproliferative gene

expression program in these tumors (3, 4, 163, 164).

Furthermore, cHL do not display features of GC-DLBCL,

as shown by the low or null expression of typical GC B-cell

differentiation proteins (e.g., bcl6, CD10), the expression of

the post-GC protein CD138 and the lack of ongoing

mutations of the immunoglobulin genes in H/RS cells (3, 4,

60, 165-167). Thus, although cHL in most cases are derived

from GC B-cells, they display a B-cell differentiation

phenotype more similar to that of activated DLBCL (4).

The lack of the GC B-cell differentiation phenotype in

H/RS cells may be part of a general down-regulation of the

B-cell lineage phenotype (3, 4, 60-62, 168-170). Thus, there

is an open question as to whether the loss of the GC B-cell

phenotype is related to the suggested pre-apoptotic origin

of H/RS cells in which down-regulation of the GC B-cell

markers occurs during neoplastic transformation or reflects

a normal stage of the B-cell differentiation program (3, 4).

In view of recent findings that the activated B-cell

differentiation immunohistochemical immunophenotype is

associated with decreased apoptosis profile in DLBCL (171-

174), further studies on the expression of apoptosis

regulators are required to clarify this relation in cHL.

Clinical relevance of the expression of cell cycle
and apoptosis regulators in classical Hodgkin
lymphoma 

Many studies have analyzed the clinical relevance of the

expression of cell cycle and apoptosis regulators in cHL using

immunohistochemistry or gene expression profiling (21, 23,

33, 143, 144, 149, 175-178). In addition, a few studies

analyzed the clinical relevance of the apoptotic index as

detected by the TUNEL method (33, 144, 179). Shorter

survival was significantly associated with high proliferation

index (Ki67), high expression of the proliferating cell nuclear

antigen (PCNA), high expression of bcl2, bcl-xl, bax and p53,

low expression of Rb and caspase 3 and high apoptotic index

(21, 23, 33, 143, 144, 175-177). By gene expression profiling,

the good outcome cHL were characterized by up-regulation

of genes involved in apoptosis induction (APAF, bax, bid,

caspase 8, p53, TRAIL) and cell signaling, including

cytokines and transduction molecules (IL-10, IL-18, STAT3),

while the bad outcome cHL were characterized by up-

regulation of genes involved in cell proliferation (Ki67) and

by down-regulation of tumor suppressor genes PTEN

(Phospatase and Tensin homolog deleted on chromosome

10) and DCC (Deleted in Colorectal Cancer) (178). In

several studies, LMP1 expression was shown to have a

favorable influence on the outcome of patients with cHL (21,

143, 145, 149), whereas in other studies no correlation was

found between EBV status and prognosis of cHL (23, 33).
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Conclusion

There is a strong body of evidence that H/RS cells of cHL

are characterized by a profound disturbance of the cell cycle

and apoptosis regulation. In this respect, of particular

importance are the constitutive activation of the NF-kB

pathway, alterations implicating various components of the

p53, Rb and p27 tumor suppressor pathways and the activity

of the IL-13/IL-13R autocrine growth loop. Furthermore,

the Epstein-Barr Virus (EBV), which is present in H/RS

cells in about 30-50% of cHL, has been shown to affect the

cell cycle and apoptosis regulation in cHL. 
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