
Abstract. Sphingomyelin metabolism generates anticancer
signals such as ceramide and sphingosine that may inhibit cell
proliferation, and induce differentiation and apoptosis.
Changes of sphingomyelin metabolism are found to be
associated with tumorigenesis in various tissues and a
particular link between sphingomyelin metabolism and colon
cancer has been indicated. The effects of several anticancer
drugs on sphingomyelin metabolism have been examined
recently and there is an increasing interest in discovering new
drugs taking sphingomyelin as a target. The present review
outlines the sphingomyelin metabolism pathway, introduces the
evidence linking sphingomyelin to colon cancer, and
summarizes the anticancer drugs and dietary factors that affect
the metabolism of sphingomyelin and, thus, the production of
the anticancer messengers in the colon. 

Lipid metabolites, formed from the mammalian cell

membrane in response to cell stimuli or in the intestinal

lumen by hydrolytic enzymes, exert numerous physiological

functions. There is currently an increasing interest in the

biological effects of lipid messengers such as eicosanoids,

glycerolipids, sphingolipids, fatty acids and fatty acid amides.

Of the various lipids, sphingolipids may be particularly

important as a source of multiple signalling molecules, with

impact on cancer development, particularly colon cancer.

The formation and action of sphingolipid metabolites have

become attractive targets for drug research. This short

review first outlines sphingolipid metabolism in the intestinal

tract and then focuses on anti colon cancer compounds that

affect sphingolipid metabolism.

Metabolism and signalling effects of sphingolipids 

Sphingolipids are composed of a long chain sphingosine

backbone, a fatty acid linked to sphingosine at the amino

group, and a head group that attaches to sphingosine by

substitution of the terminal hydroxyl group. Due to the

difference in the length of sphingosine, the saturation

degree of the fatty acids and the structure of the head

groups, more than 400 sphingolipids have been identified

in humans. Although sphingolipids are present in dietary

products, most sphingolipids can be synthesized and

metabolized in the body, as outlined in Figure 1. The

synthesis of all sphingolipids is initiated by a condensation

of serine and palmitoyl-CoA. After a series of reactions

including reduction, acylation and desaturation, ceramide

is formed. Ceramide is located in the centre of the

sphingolipid metabolism network. It can gain a

phosphocholine head group from phosphatidylcholine and

generate sphingomyelin (SM), which is an abundant

sphingolipid in the body. It can also be glycosylated and

form glycosphingolipids, which may contain different

sugars including glucose, galactose, lactose and

oligosaccharides. Both SM and some glycosylceramide can

be degraded to ceramide by sphingomyelinase (SMase)

and glucosidase, respectively. If not going to the synthesis

pathway, ceramide will be hydrolyzed by ceramidase to

sphingosine, which can be phosphorylated to sphingosine-

1-phosphate. Ceramide can also be phosphorylated or

acylated to form ceramide-1-phosphate and 1-O-

acylceramide, respectively. The major breakdown products

of sphingolipids are phosphoethanolamine and

palmitaldehyde, which can be reutilized for synthesis of

phosphatidylethnolamine and fatty acid, respectively. 

It is well known that the metabolism of sphingolipids

generates biologically active signals that affect cell

proliferation, differentiation and apoptosis. Of these

metabolites derived from sphingolipids, ceramide, sphingosine

and sphingosine-1-phosphate have been intensively studied.

Generally speaking, ceramide and sphingosine are

antiproliferative molecules that inhibit cell growth, stimulate
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cell differentiation and induce apoptosis, whereas sphingosine-

1-phospate promotes cell survival and inhibits apoptosis, and

therefore is mitogenic (1) (Figure 2). The mechanisms of the

effects of these lipid messengers involve specific protein

phosphatases, protein kinases and proteases, which change the

expressions or activities of many downstream key molecules

and transcriptional factors such as JNK, Akt, MAPK, pRb, c-

jun, c-myc, NF-kB and caspases. This review does not cover
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Figure 1. Outline of the metabolism pathway of sphingolipids. Abbreviations: ACS: acylceramide synthase, CDase: ceramidase, CDK: ceramide kinase,
GCD: glucosidase, GCS: glucosylceramide synthase, SMase: sphingomyelinase, SMS: sphingomyelin synthase, SPK: sphingosine  kinase, SPL:
sphingosine-p lyase, SPT: serine palmitoyltransferase.



this area and readers are recommended to refer to several

excellent review articles published recently (2-5). 

Link of sphingolipids to colon cancer

Although the generation of both antiproliferative and

proliferative molecules from sphingolipid metabolism

indicates a role of sphingolipids in cancer development, a

potential link of sphingolipids particularly to colon cancer

has emerged. The first indication of such a link is provided

by Brasitus et al. (6), who showed that accumulation of SM

in rat colon preceded tumour development after injection

of 1,2-dimethylhydrazine (DMH), a chemical colon

carcinogen. Similar results were obtained in human studies

(7), where SM was determined in lymph nodes of colon

cancer patients, and higher SM levels were found in the

positive nodes than in the negative nodes. The increase in

SM in the diseased tissues may reflect an inhibited

hydrolysis of SM, as the ceramide levels were reduced by

50% in human colon cancer (8). 

Dillehey et al. first demonstrated that dietary SM

inhibited the formation of aberrant crypt foci and increased

the ratio of adenoma to carcinomas in mice treated with

DMH (9). This anticancer effect was thereafter confirmed

and extended in several other studies showing that

administration of other types of sphingolipids also inhibits

colonic tumorigenesis (10-14). Since sphingolipids are not

absorbed intact (15-16), the sphingolipid-induced anticancer

effect is probably derived from breakdown products such as

ceramide and sphingosine. This is confirmed by both in vivo
studies, which showed that administration of ceramide

mimicked the effect of SM feeding (13), and in vitro studies,

which showed anticancer effects of ceramide and

sphingosine on colon cancer cells (17). 

In the intestinal tract, there are enzymes responsible for

hydrolysis of sphingolipids (18), of which two are considered

to be most important. The first one is alkaline SMase, which

is specifically expressed in the intestinal mucosa as an ecto-

enzyme (19). The enzyme is able to hydrolyze both SM in

the gut lumen and on the cell membrane and is the key

enzyme responsible for digestion of dietary SM (16, 20, 21).

The enzyme levels are highest in the middle of the small

intestine and lower in the colon. Due to the release of the

enzyme into the lumen and its protease resistance, a

substantial amount of active enzyme passes with the luminal

content into the colon. The enzyme may have an inhibitory

effect on colonic tumorigenesis. We found that the purified

enzyme inhibits cell growth and DNA biosynthesis (22) and

that the activity of the enzyme decreases in colon cancer

tissues (23-24). The reduction occurs in precancer

conditions, as about 20% reduction was demonstrated in

long-standing human ulcerative colitis (25), a disease with

high risk of colon cancer, and 50% reduction was found in

colon sporadic adenomas. At this stage, the activities of acid

and neutral SMases were unchanged (23). The reduction of

alkaline SMase is further enhanced when adenomas are

transformed to carcinoma and the enhancement is

associated with reductions of other SMase activities. The

mechanism for reduced activity of alkaline SMase in colon

cancer is not fully understood. However, an alternative

splicing of the enzyme has been demonstrated in HT29

cells, which totally inactivates the enzyme activity (26).

Reduction of alkaline SMase may render the mucosa

increasingly susceptible to carcinogenic factors. Another

enzyme, that is important for sphingolipid hydrolysis in the

gut, is intestinal neutral ceramidase, which was recently

purified and characterised (27). The intestinal ceramidase

distributes along the intestinal tract in parallel with alkaline-

SMase (28) and is the major enzyme that catalyzes the

breakdown of ceramide in the gut (16, 29). The expression

and activity of ceramidase in colon cancer have not been

studied in detail. In the intestinal brush border, there is a

lactose-phlorizine hydrolase which cleaves glucosylceramide

and galactosylceramide to generate ceramide, but has little

effect on gangliosides (30-33). In addition, there are several

types of glycosylceramidase and glycosidases which are

mainly bacterial in origin (33-35). The contribution of these

enzymes to the formation of ceramide from cerabrosides

and the impact on colonic tumorigenesis are interesting

topics for future investigation. 
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Figure 2. The biological effects of major sphingolipid metabolites. 



Anticancer effects of dietary sphingolipids

The potential link of sphingolipids to colon cancer has

stimulated the discovering of novel compounds to prevent or

treat colon cancer. Dietary supplementations of sphingolipids

including SM, glucosylceramide, lactosylceramide, ceramide,

ceramide conjugates and plant sphingolipids have been tested

in animal studies for their anticancer effects (9, 13, 14, 36-38).

Almost all these compounds were found to be effective in

terms of inhibiting the formation of aberrant crypt foci, the

migration and proliferation of crypt cells, and the development

of adenoma and carcinoma, indicating that the effective

component is most probably ceramide or sphingosine, the

backbone of all sphingolipids. The dietary sphingolipids were

found to be effective in both preventing tumor initiation and

progress (37). Age may reduce the sensitivity of colonic cells

to supplementary sphingolipids (36). Apart from inhibiting

tumor development, dietary SM has been shown to enhance

the efficacy of anticancer drugs as well. In nude mice the

effects of 5-FU on xenografts of colon cancer HT29 and

in vivo 19: 293-300 (2005)
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Figure 3. Compounds that affect the colonic sphingolipid metabolism. ▲ : Stimulation; ▼ :Inhibition.



HCT15 cell lines was enhanced by administration of SM (39).

SM has also been shown to protect colonic cells against the

toxic effects of compounds such as deoxycholate (40). For the

newborn, SM in the milk stimulates the differentiation and

maturation of the intestine (41). 

Compounds that stimulate ceramide synthesis in
the colonic cells

Ceramide is located at the centre of sphingolipid metabolism.

The levels of ceramide in the organs are affected by several

pathways: the de novo synthesis triggered by serine

palmitoyltransferase, the formation of SM and

glucosphingolipids by SM synthase and glucosylceramide

synthase, the generation from hydrolysis of SM and

glucosylceramide by SMase and glucosidase, and the clearance

by ceramidase, ceramide kinase and the acylceramide synthase

(Figure 1). Scientists have been trying to find agents that

affect some of the pathways in the hope of increasing the

ceramide levels and inhibiting cancer progress.

The first drug found that affects ceramide metabolism

was daunorubicin, which increased ceramide levels in P388

and U937 cells. The effect can be blocked by fumonisin B,

the ceramide synthase inhibitor (42), indicating a

stimulatory effect of the drug on the biosynthesis of

ceramide. Since daunorubicin is not a main anticancer drug

against colon cancer, it is unknown whether it also has a

similar effect on colon cancer cells. Fenretinide (4-HPR),

a synthetic retinoid, has been shown to strongly increase

the ceramide levels in neuroblastoma cells and other cells

including colon cancer HT29 cells and LoVo cells (43),

with less efficacy in colon cancer cells than neuroblastoma

cells. However, the effect can be enhanced by combination

with safingol, which is an inhibitor of protein kinase C and

sphingosine kinase, and which has structural similarity to

sphingosine. Camptothecin is a drug on the first line in

chemotherapy against colon cancer. Recently,

camptothecin and its derivatives were found to increase

ceramide levels in HT29 cells and the effects were

decreased by the inhibitors of serine palmitoyltransferase

and ceramide synthase (44). 

Compounds that enhance hydrolysis of
sphingolipids in the colon

Ceramide can be generated by hydrolysis of sphingolipids,

mainly SM by the enzyme SMase. Non-steroidal anti-

inflammatory drugs (NSAID) such as aspirin, sulindac,

piroxicam and indomethacin are well known to have anti

colon cancer effects with a mechanism related to inhibition

of cyclooxygenase (Cox) (45). There are two isoforms of

Cox. Cox1 is constitutively expressed, whereas Cox 2 is an

inducible enzyme overexpressed in many cancer and

inflammatory tissues. Several studies have recently

indicated that NSAID may affect hydrolysis of SM by

increasing the activity of SMase. Inhibition of Cox will

increase the levels of arachidonic acid, which can stimulate

neutral SMase activity in HL-60 cells (46) and enhance the

activity of purified alkaline SMase from rat intestine (47).

5-Aminosalicylic acid (5-ASA) is a type of anti-

inflammatory drug with fewer side-effects as compared with

NSAID. 5-ASA has chemopreventive effects on colorectal

cancer by a mechanism related to inhibition of NF-ÎB,

MAP kinase, JNK and DNA oxidative damage (48). In

animal studies, we found that administration of 5-ASA for

10 days increased alkaline SMase levels selectively in the

colon by 78% (49). Several plant compounds with anti-

inflammatory properties, such as ursolic acid and boswellic

acid, strongly inhibit cell proliferation and induce apoptosis

of colon cancer cells via a mechanism dependent on

caspase 8 activation (50, 51). These compounds mildly

increase alkaline SMase in cancer cells (49, 51); the

mechanism remains elusive. Since both ursolic and

boswellic acids are pentacyclic triterpanoids, these studies

may provide useful information towards the discovery of

novel drugs that enhance alkaline SMase activity. 

Ursodeoxycholic acid (UDCA) is a type of bile salts

naturally occurring in human bile in a relatively small

amount. Differing from other types of bile acid, UDCA has

a cytoprotective effect and has been shown to inhibit colon

cancer development in animal studies (52), cell culture

studies (53), and in patients with primary sclerosing

cholangitis (54). We previously found that, when rats were

given UDCA for 10 days, the activity of alkaline SMase in

the colonic mucosa increased dose-dependently (55),

accompanied by a mild increase in neutral SMase and a

reduction of acid SMase activities. The changes of alkaline

SMase correlates positively with the activity of caspase 3,

the key enzyme that executes apoptosis (56). The changes

are a consequence of direct stimulation, since we recently

found that UDCA increases the expression of alkaline

SMase in Caco-2 cells (unpublished data). 

μ-Sitosterol is a type of phytosterol widely present in

plants and vegetables. Cell culture studies found that ‚-

sitosterol, when incubated with HT29 colon cancer cells,

inhibited cell growth and stimulated apoptosis associated

with a reduction of SM (57) and an increase in ceramide

(58), indicating that the hydrolysis of SM was stimulated.

Earlier animal studies showed that ‚-sitosterol

supplementation of the diet inhibited colon cancer

development induced by topical exposure of N-methyl-N-

nitrosourea (59). Although a large scale cohort study for 6.3

years in the Netherlands did not support a beneficial effect

of plant sterol intake (60), the role of ‚-sitosterol intake in
vivo in the changes of sphingolipid in the colon of humans is

still worthy of investigation. 
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Other dietary compounds affecting sphingolipid
metabolism in the colon.
Whether one can modify SM metabolism and increase the

ceramide formation in the colon by intake of dietary

compounds is an interesting topic for investigation. An earlier

study showed that ingestion of corn oil increased ceramide

levels in the rat colon compared with fish oil (61). Arachidonic

acid, although it increases the activities of neutral and alkaline

SMases in a cell-free system (46), had no detectable effect on

SMase activity in the colon when supplemented in the diet

(62). Red meat is considered a noxious factor for colon cancer

development. The cancer-promoting effect of red meats is

probably not related to the influence on SM hydrolysis, as

feeding red meat did not change any SMase activity (62).

However, whether these dietary compounds affect the de novo
ceramide synthesis is not known. 

We recently demonstrated that the expressions of alkaline

SMase and ceramidase are significantly affected by fiber and fat

in the diet. Psyllium is a type of water soluble fiber derived from

Plantcago ovata, and is partly broken down in the colon by

bacterial flora. Feeding mice with a semi-synthetic diet

containing 10% psyllium for 4 weeks significantly increased

alkaline SMase activity and decreased neutral ceramidase

activity in the colon (63). The increase in alkaline SMase activity

is associated with an increased expression of the enzyme protein.

The reciprocal changes of alkaline SMase and neutral

ceramidase could elevate the levels of ceramide in the cells and

promote apoptosis. In agreement with this speculation, both

caspase 3 activity and enzyme protein were significantly

increased by psyllium feeding and the changes were in positive

correlation with that of alkaline SMase. Differing from psyllium,

the water insoluble fiber cellulose did not show a significant

effect on SMase or caspase 3 activity in the colon (64). In

contrast to psyllium, a high fat diet (53% energy) significantly

decreased the expression of alkaline SMase activity by 64%

without a significant effect on that of neutral ceramidase (63).

The effects of fat can not be reversed by administration of

cellulose (65), though partly by that of psyllium (63).

Poly-drug strategy

Ceramide is in the centre of the sphingolipid metabolism

network and can be readily metabolised. Apart from the

generation of sphingosine, that still has anticancer properties,

the metabolism of ceramide by other pathways such as

formations of SM, glycosylceramide, ceramide-1-phosphate

and 1-0-acylceramide will decrease the levels of ceramide and

thus attenuate its anticancer effect. Of particular importance

is that cancer cells often have high ability to form

glucosylceramide (66, 67) and the over-glycosylation of

ceramide is associated with multiple drug resistance in many

cells including colon cancer cells (68). An up-regulation of

multidrug resistance protein 1 has been recently found to be

caused by glucosylceramide (69). A poly-drug strategy,

therefore, must be considered in fighting cancer by taking

ceramide metabolism as a target. Glucosylceramide synthase

can be inhibited by several calcium blockers such as verapamil

and tamoxifen and by cyclosporin A (67, 70). Several ceramide

analogs have been synthesized and shown to inhibit either

ceramide glycosylation or ceramidase activity (8, 71) and used

in colon cancer studies. For detailed discussion of these

aspects, readers are recommended to read the excellent

reviews recently written by Radin (72, 73). 

The identification of compounds that inhibit colon cancer

based on sphingolipid metabolism is just beginning. Figure 3

summarizes the major compounds and their functions

discussed in this review. We foresee rapid progress in this field

when the metabolism and function of different sphingolipids

have been better understood, and the detailed signalling

transduction pathways related to metabolites of sphingolipid

have been established. 
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