
Abstract. The identification and cloning of the extracellular
calcium sensing receptor (CaR) has provided a new conceptual
framework in which we can better understand the interactions
between extracellular calcium and the many cell types which
express the CaR. The role of the CaR in regulating extracellular
calcium ion homeostasis has been well established, as has its
role in genetically determined disorders such as Familial
Hypocalciuric Hypercalcaemia (FHH). This recently acquired
knowledge has incited the discovery of new compounds which
function as positive allosteric modulators of the CaR (named
calcimimetics) and which are under clinical investigation for
potential use in primary and secondary hyperparathyroidism.
Research into the properties of the CaR produced an
overwhelming influx of data but key questions have remained
unanswered. We summarize the currently available information
about the function of the CaR, underlining the significant
progress which has been made in deciphering its role in
pathological disorders and in drug development. 

The calcium receptor (CaR), whose presence in parathyroid

cells had been speculated on for several years before its first

cloning in 1993, is a receptor expressed in a vast array of

cells which demonstrates the ability to recognize  changes

in the extracellular Ca2+ ([Ca2+]o) and respond by

generating intracellular Ca2+ ([Ca2+]i) increases. The CaR

belongs to family C of the G-protein coupled receptors

(GPCRs), whose members (metabotropic glutamate

receptors (mGluRs) 1-8, vomeronasal receptors (VRs),

mammalian taste receptors, fish odorant receptors and Á-

aminobutyric acid type B receptors (GABABRs)) share the

common topology of an enormous claw-like extracellular

NH2-terminus (1,2). GPCRs are receptors which interact

with G-proteins and are characterized by the presence of a

core consisting of 7 transmembrane ·-helices, which form 3

intra- and 3 extra-cellular loops. Family C receptors,

including CaRs, are believed to have evolved from the

fusion of bacterial periplasmic binding proteins (PBPs) and

nutrient transporting proteins (2). 

CaR: structure-function relationships

The human CaR gene (Figure 1) lies within the long arm of

chromosome 3 and consists of 7 exons (3,4). CaRs can be

either located intracellularly, as newly synthesized, non-

glycosylated protein molecules, or as immature, non-fully

processed receptors, or expressed on the plasma membrane,

predominantly as dimers. In parathyroid cells the CaR

resides within caveolae, which are defined as specialized,

flask-shaped plasma membrane microdomains with a high

concentration of signal transducing molecules and proteins

such as caveolin 1 or the scaffolding protein filamin.  

The CaR's extracellular domain (ECD) consists of ~612

amino acids, among which are 11 Asn residues which serve

as N-glycosylation sites (Table I). At least 3 Asn residues

must be glycosylated in order to ensure CaR expression on

the plasma membrane (1,5). The enormous NH2-terminus

consists of a bilobed construction which resembles a Venus

Flytrap and is thus called the VFT domain, and a cysteine-

rich domain. The VFT lobes (I and II) are connected by 3

strands, forming a hinge, which enables the VFT to adopt a

closed configuration post to the binding of the CaR's

primary agonist, Ca2+. The VFT domain's conformational

change causes a subsequent rotation of each VFT of the

dimer relative to the other around an axis perpendicular to

the dimer interface (5-8). 

Lobe I of the VFT domain contains 4 loops of undefined

structure. Loop I is probably required for proper protein

folding and for the formation of the VFT and forms part of
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the dimer interface (5,7). Loop II, in addition to its essential

role in protein folding and processing, contains residues

Cys129 and Cys131, which interact with their homologue

residues in the other CaR of the dimer, resulting in the

formation of intermolecular disulfide bonds, which account

for the covalent basis of CaR dimerization. Furthermore,

loop II is thought to impose structural constraints upon the

dimer, which limit its ability to adopt the closed active

configuration after Ca2+ binding (7-10). Loop III is of no

functional significance, whereas the intramolecular disulfide

bond between Cys437 and Cys449 within loop IV is critical

for protein folding and VFT formation (7). The VFT

domain contains a plethora of Cys residues, between which

additional intramolecular disulfide bonds are believed to be

formed, also contributing to protein folding (11,12). 

The cysteine-rich domain is a short (84 aa) sequence

enriched with 9 highly conserved Cys residues and plays a

pivotal role in the transmission of the VFT rotation signal to

the receptor's transmembrane domain (TMD) (5,11,13).

Signal transmission through the Cys-rich domain is probably

achieved as a result of non-covalent interactions between

the latter and the VFT domain (12). 

CaR dimerization (Table II) is primarily accomplished

through the formation of 1 or 2 intermolecular disulfide bonds

between Cys129 and Cys131 of each monomer (1,10,14,15).

However, it is considered that intermolecular non-covalent

interactions between the monomers' distal 6 transmembrane

helices and proximal COOH-termini contribute to the CaR

dimerization as well. Interestingly, CaR-mGluR1a

heterodimers have been recognized and heterodimerization

has been speculated to occur as a result of intermolecular

reactions similar to those seen in homodimerization (16).

CaRs can be functional even when they are expressed as

monomers. Nevertheless, some of the most interesting

aspects of CaR activation are attributed to its constitutive

expression as a dimer. Dimerization has been proved to

confer functional complementation upon the CaR (i.e. only

one fully functional ECD and a flawless TMD and COOH-

terminus are required for the expression of the dimer's

biological activity (5,17)). This remarkable property is partly

responsible for the receptor's synergistic model of activation

by Ca2+ and can ensure that heterodimers consisting of

monomers with different inactivating mutations maintain

their ability to sense [Ca2+]o changes (1,18). 
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Figure 1. Diagram depicting human CaR gene transcription and mRNA translation. Exons 1A and 1B code for alternative 5’-untranslated regions, which
are spliced post-transcriptionally to the 5’-untranslated region coded for by exon 2. Exons 2-6 code for the gigantic CaR extracellular NH2-terminus and
only exon 7 codes for the receptor’s transmembrane domain and intracellular COOH-terminus. P1 and P2 are promoters situated upstream of exons 1A
and 1B, respectively. Each promoter’s transcription is subjected to tissue-dependent regulation. Vitamin D-response elements (VDREs) reside within the
CaR gene promoters and account for the basis of the CaR up-regulation by vitamin D. 



The CaR, whose affinity for Ca2+ is relatively low, binds

its primary agonist in the VFT domain of the NH2-terminus

(1,5,19,20). Multiple Ca2+ binding sites are probably present

in the receptor's ECD and there has been speculation that

an additional binding site might exist in the TMD. Divalent

and trivalent cations (Mg2+, Gd3+), cationic compounds

(neomycin) and organic polycationic compounds (spermine,

polyamine, amyloid-‚-peptide, poly-L-arginine) can also

activate the CaR in vitro by interacting with acidic residues of

the ECD and TMD (3,21,22). In addition, L-amino acids are

thought to interact with a binding site formed by residues of

both monomers and situated very close to the Ca2+ binding

site, resulting in the CaR's allosteric activation or

stereoselective enhancement of the receptor's affinity for its

physiological agonists (19,20). Although the CaR binds both

Ca2+ and L-phenylalanine at similar sites within the ECD,

it is unique in its ability to respond to these different agonists

by generating different types of [Ca2+]i oscillations, each of

Msaouel et al: Extracellular Calcium Sensing Receptor (Overview)

741

Table I. CaR structure-function relationships.

Structural determinants Function

NH2-terminal 11 Asn residues – CaR expression on the plasma membrane

extracellular N-glycosylation sites

domain (ECD) Lobe I of the VFT domain ñ proper protein folding

~612 amino acids ñ formation of the VFT structure

ñ formation of the dimer’s interface

ñ constriction of CaR activation

Cys129 and Cys131 Covalent basis of CaR dimerization

Ca2+ binding sites CaR activation by Ca2+

Acidic residues acting CaR activation by

as binding sites ñ divalent and trivalent cations (Mg2+, Gd3+)

ñ cationic compounds (neomycin)

ñ organic polycationic compounds 

(spermine, polyamine, amyloid-‚-peptide, 

poly-L-arginine)

L-amino acid binding sites CaR allosteric activation by L-amino acids or 

enhancement of CaR’s affinity for Ca2+

Cysteine-rich domain Transmission of the "Ca2+ binding" signal to the TMD

Transmembrane  Transmembrane helices ñ Protein processing

domain (TMD) ñ CaR expression on the plasma membrane

~250 amino acids ñ CaR stability

ñ Signal transduction along the receptor

Distal 6 helices Non-covalent basis of CaR dimerization

Extracellular loops 2 and 3 Limitation of CaR activation

"Calcimimetics" interaction sites Signal magnification and increase of CaR’s affinity for Ca2+

Acidic residues acting as binding sites CaR activation by Ca2+, Gd3+, polycationic 

compounds (only in the presence of calcimimetics)

PKA phosphorylation sites Unknown

PKC phosphorylation sites Possibly similar to Thr888

COOH- Proximal COOH-terminus Non-covalent basis of CaR dimerization

terminal His879 and Phe881 ñ CaR expression on the plasma membrane

intracellular ñ COOH-terminus interaction with cascades of 

domain (ICD) intracellular signal transduction

~216 amino acids

Thr888 – PKC phosphorylation site Inhibition of the COOH-terminus interaction with G-proteins

PKA phosphorylation sites Unknown

PKC phosphorylation sites Possibly similar to Thr888

892-end sequence Limitation of CaR expression

907-997 sequence Interaction with filamin

868-886 sequence CaR desensitization process

877-888 sequence Activation of Ca2+ influx



which accounts for a distinct intracellular signal. In fact,

CaR activation by Ca2+ causes high frequency sinusoidal

[Ca2+]i oscillations, whereas L-phenylalanine interaction

with the CaR results in lower frequency transient [Ca2+]i

oscillations (23). 

The CaR's TMD is necessary for the protein's processing,

expression on the plasma membrane and stability, and plays a

pivotal role in signal transmission along the receptor (24). The

TMD receives the VFT rotation signal and alters the 7 ·-

helices' disposition in turn, passing on the signal to the

COOH-terminus or leading to direct interaction of the 3

intracellular loops with G-proteins (25,26). Extracellular loops

2 and 3 contain four highly conserved acidic residues, which

have been speculated to impose conformational limitations

upon the TMD (25,27). In the presence of subthreshold

[Ca2+]o, the so called "calcimimetics" (NPS R-568, NPS R-

467) interact allosterically with the TMD, resulting in signal

magnification and a subsequent increase in the CaR's affinity

for Ca2+ (20, 21, 25, 28, 29). Besides interacting with

calcimimetics, the CaR TMD is probably able to bind Ca2+,

Gd3+ and polycationic compounds (22,25).

The CaR COOH-terminus consists of 216 amino acids,

but only a very short sequence (874-888) of the intracellular

domain's (ICD) proximal region is required for the

receptor's biological activity (1,24,30). This sequence

contains residues His879 and Phe881, which have been

recognized as critical for the CaR expression on the plasma

membrane and the COOH-terminus interaction with

intracellular cascades of signal transduction. In addition, it

bears sites responsible for the activation of Ca2+ influx as

well as residues which participate in CaR's desensitization

process (31,32). However, the remainder of the COOH-

terminus should not be considered as lacking functional

significance, for it contains a site which interacts with

filamin, and residues without which the CaR would be

overexpressed on the cell surface, having a major impact on

Ca2+ homeostasis (24,33-35). 

Thr888 is a protein kinase C (PKC) phosphorylation site

within the CaR ICD (one should take into consideration the

fact that the CaR intracellular loops and COOH tail contain

2 protein kinase A (PKA) phosphorylation sites of unknown

physiological relevance and a total of 5 PKC

phosphorylation sites) (1,21,31). Thr888 phosphorylation by

PKC inhibits the COOH-terminus interaction with G-

proteins and the subsequent mobilization of [Ca2+]i stores

(1,31). Thus, it is believed that basal PKC activity is

responsible for the CaR's ability to respond to activation

with [Ca2+]i oscillation motifs rather than permanent

[Ca2+]i increases. This type of response is both a

mechanism of intracellular signalling and a means of

protection from the increased [Ca2+]i cytotoxic effects (36). 

The CaR owes its non-redundant role in Ca2+ homeostasis

to its ability to sense very small changes of the [Ca2+]o, which

is attributable to a highly synergistic model of receptor

activation (Hill coefficient ~3-4) (1,21,32). This property,

which is unique to the CaR and compensates for the low

affinity Ca2+ binding by the VFT domain, has been suggested

to be a consequence of CaR homodimerization or to result

from the existence of multiple Ca2+ binding sites or to be the

outcome of synergistic G-protein activation (18,22,32). 
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Table II. Important features of the CaR.

Dimerization -A result of 1 or 2 intermolecular disulfide bonds and 

intermolecular non-covalent interactions.

-It confers functional complementation upon the CaR.

Agonist binding -Multiple Ca2+ binding sites in the VFT domain and at least 

one Ca2+ binding site in the TMD

-Polycationic compounds interact with acidic residues within the receptor’s ECD and TMD

-L-amino acids interaction site within the receptor’s ECD

Ability to recognize distinct agonists -CaR responds to L-amino acids binding with low frequency transient [Ca2+]i oscillations

-CaR responds to Ca2+ binding with higher frequency sinusoidal [Ca2+]i oscillations

Synergistic model of activation -Hill coefficient ~3, despite the receptor’s low affinity for Ca2+

-The result of

ñ the existence of multiple Ca2+ binding sites

ñ G-protein synergistic activation

ñ the CaR homodimerization

-CaR’s ability to sense minimal changes in the [Ca2+]o

PKC phosphorylation -Thr888 phosphorylation by PKC inhibits COOH-terminus interaction with G-proteins 

-Basal PKC activity produces [Ca2+]i oscillation motifs instead of 

permanent [Ca2+]i increases

-Generation of distinct responses to different agonists and protection 

from increased [Ca2+]i cytotoxity are attained



CaR expression in tissues involved in systemic calcium
homeostasis 

As has been extensively demonstrated, CaR is a widely

distributed receptor (37,39-41), but its presence in tissues

which participate in Ca2+ homeostasis makes further

elucidation of its exact role compelling.

Parathyroid cells: CaR is present in parathyroid cells (37,38)

and regulates the secretion of parathyroid hormone (PTH)

(42), the proliferation of parathyroid cells (43,47), the

transcription of PTH mRNA (42) through a variety of

secondary messengers such as phospholipase C (PLC),

phospholipase A2 (PLA2), phospholipase D (PLD), the

mitogen-activated protein kinase (MAPK) pathway and

inhibition of cyclic AMP (cAMP) (46,47,49,50).

C cells: The discovery of the presence of CaR in C cells (41)

was followed by the clarification of the pathway leading to

the secretion of calcitonin (CT), a hormone of secondary

importance in systemic Ca2+ homeostasis. (51)

Kidney cells: CaR transcripts have been found in the renal

tubules of rats, using reverse transcription-polymerase chain

reaction (RT-PCR) and immunohistochemistry (40,55), and

some of its possible functions have already been described:

kidney homeostasis of Ca2+ is co-regulated by CaR (57,59);

CaR activation specifically regulates PTH-suppressible

phosphate absorption (56); CaR participates in the

regulation of salt and water excretion (58); CaR affects

1,25(OH)D3 production in the cells of the proximal duct

(75); CaR is responsible for the renal tubular damage

caused by aminoglycosides (44); CaR is expressed in acid-

transferring cells (55); CaR could play an important role in

hypercalcaemia-induced polyuria (73), possibly through  an

increase in ET-1 production (71).

Intestine: Although CaR mRNA and the protein are

expressed in several types of cells of the small and large

intestine (53), its exact role is not clear. However, the fact

that it could have an influence on cancer cells in the large

intestine makes further investigation vital (60).

Placenta: Syncytiotrophoblasts and cytotrophoblasts express

CaR (72) and their responses to elevations of [Ca2+]o and

[Ca2+]i and their participation in the secretion of

parathyroid hormone related peptide (PTHrP) (48), suggest

the presence of intracellular secondary messengers similar

to those of the parathyroid cells. 

Bone cells

Osteoblasts: CaR is present in osteoblasts (54). It is well

known that increased levels of Ca2+ induce proliferation

and chemotaxis in osteoblasts, and a number of

intracellular secondary messengers have been identified;

activation of PLC (isoforms ‚, Á), which correlates CaR to

the nucleus and to mitosis (45), expression of a Ca2+-

dependent Na+ channel (61), regulation of the activity of

a Ca2+-activated K+ channel (62), activation of the JNK

pathway and up-regulation of several mitogenic genes (74)

and its expression in stromal cells (63) which may secrete

paracrine factors, are ways through which [Ca2+]o may

affect osteoblasts. Finally, an extracellular cation-sensing

receptor with distinct cation specificity has been

discovered, possibly explaining the response of osteoblasts

to strontium (76).

Osteoclasts: Osteoclasts and their precursors express CaR

and respond to Ca2+ agonists or elevated Ca2+ (64), but the

intracellular pathway involved in transmitting these

messages remains mostly unknown (65) and other calcium

sensing pathways may play a more active role (70, 77).

Osteocytes: Osteocytes are osteoblasts which are no longer

participating in bone formation and are encased within the

substance of the bone. They too respond to Ca2+ agonists

and antagonists (elevation of [Ca2+]i) (78), but it is not

known whether CaR plays an important role in these

processes. In fact, there are suggestions of a calcium sensing

mechanism similar to that seen in osteoclasts.

Chondrocytes: The activation of CaR in the growth plate

accelerates longitudinal bone growth by stimulating growth

plate chondrogenesis (66). Increase of Ca2+ in the

microenvironment of osteoblasts results in their

differentiation, suppresses aggrecan, type II and type X

collagen and alkaline phosphatase mRNA levels (67, 69),

while concentrations of other molecules such as

osteopontin, osteocalcin and osteonectin are increased (68).

The role of chondrocytes in bone formation, especially

during fetal development, is critical, so it is important that

further research be conducted to discover whether Ca2+

agonists and antagonists have significant effects on the

growth plate and especially the developing embryo.

CaR expression in tissues uninvolved in systemic
calcium homeostasis

Although the brain is not directly involved in controlling the

systemic level of [Ca2+]o, sensing of local changes in

[Ca2+]o is an important aspect of brain cellular physiology.

The presence of CaR in numerous regions of the brain, such

as the subfornical organ, olfactory bulbs, hippocampus,

hypothalamus, corpus striatum, cerebellum and the

ependymal zones of the cerebral cortex (39,79-81) implies

that it has a role in local Ca2+ homeostasis and in other

cellular processes. CaR-expressing brain cell populations

include neurons, oligodendrocytes, astrocytes and microglia

(82-86).

In addition, expression of CaR has been demonstrated in

rodent fibroblasts and ovarian surface epithelial cells,

suggesting the possibility that extracellular calcium levels

might influence the rate of cell proliferation (87-88). CaR
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is required to mediate calcium signaling involved in human

keratinocyte differentiation (89-93) and modulates local

calcium homeostasis in human lens epithelial cells (94).

Cardiac tissue is known to be very sensitive to calcium

homeostasis and recent CaR detection in rodent cardiac

monocytes may imply an important role in the modulation

of cardiac function under both normal and abnormal

conditions (95). The presence of CaR in the ductal

epithelial cells of the normal human breast has been

demonstrated (96), mice mammary glands express high CaR

levels during lactation, adjusting PTHrP and calcium

secretion in response to CaR signalling (97). Moreover,

CaR is involved in a mechanism which regulates

adrenocorticotropic hormone (ACTH) secretion and the

presence of an increased concentration of CaR may be of

significance in the behaviour of human pituitary adenomas

(98-99). A recent study revealed the presence of CaR in

melanotrope cells of the South African clawed toad Xenopus
Laevis (100). The receptor has also been localized in human

gastrin-secreting G-cells and pancreatic ‚-cells (101). CaR

expression throughout the gastrointestinal tract, including

colon mucosa, suggests multiple potential roles for the

receptor in gastrointestinal biology, such as epithelial cell

differentiation and regulation of fluid transport (102-104). 

Red blood cell precursors, megakaryocytes, blood

platelets, monocytes and macrophages express relatively

high CaR levels, while white cell precursors express

relatively low levels of the receptor (105). It has been

suggested that the presence of CaR on monocytes and

macrophages may imply a role for it in chemotactic

responses (106). Hepatic CaR expression may be important

for a variety of liver functions such as bile and liprotein

secretion, prevention of cholestasis, resistance to toxicity

and regeneration (107).

Study of the CaR in non-mammals suggests that CaR had

diverse functions earlier in evolution. It has been shown that,

in fish, CaRs provide internal signals for sensing alterations

in environmental water salinity (108). This suggests the

possibility that the presence of CaR in some of the above

human tissues may be nothing more than vestigial, especially

at sites where expression is very low (109).

Diseases caused by abnormalities in the human CaR

In addition to the clarification of the normal mechanism of

calcium ion homeostasis, the cloning of the CaR also

contributed to the understanding of the pathophysiology of

the receptor by facilitating the recognition of conditions in

which the response of the CaR to Ca2+ is altered (110). Such

conditions as Familial Hypocalciuric Hypercalcaemia (FHH),

Neonatal Severe Hyperparathyroidism (NSHPT) and Auto-

somal Dominant Hypocalcaemia (ADH) are a consequence

of structural or functional abnormalities of the CaR.

Familial Hypocalciuric Hypercalcaemia (FHH) is an

autosomal dominant disorder which is characterized by

mild, lifelong, asymptomatic hypercalcaemia. The

hypercalcaemia is evident from the first week of life and

may range anywhere from a borderline increase in the level

of ionized calcium to marked hypercalcaemia (total serum

calcium up to 3.5 mmol/L). Borderline hypermagnesaemia

(0.95-1.1 mmol/L) is present in up to 50% of cases and

serum phosphate values are normal or slightly reduced.

Renal calcium excretion is at the lower range of normal or

below normal with 75% of patients demonstrating 24h renal

calcium excretion of less than 2.5 mmol and 95% less than

5.0 mmol (111,112). These low levels of renal calcium

excretion in the face of elevated serum calcium levels

contrast sharply with the high levels of excretion seen in

patients with primary hyperparathyroidism.

The management of FHH is conservative. Surgical

intervention, such us total parathyroidectomy, will not cure

the hypercalcaemia and, since the disorder runs a benign

course, surgery is not indicated and patients should not be

put on a low calcium diet (112).

Aetiology: Most of the families with FHH have

heterozygous mutations in the CaR gene which are

inherited with an autosomal dominant pattern and almost

100% penetration. Many of them are point mutations which

tend to cluster in the extracellular region of the receptor. In
vitro studies of mutant CaRs have demonstrated either

relative or total absence of receptor activity. Using linkage

analysis, FHH was initially associated with genetic locus

3q21-24 and, for the majority of affected families, the

abnormality is located on chromosome 3 (112-114). The

remaining affected families, who do not have a mutation in

the CaR coding location, may have an abnormality in a non-

coding region or a mutation in one of the genetic loci

connected with FHH and situated on chromosome 19 (some

families have been shown to have abnormalities at locations

19p13.3 and 19q13) (115). This variety of causative

abnormalities currently prevents the use of a genetic test for

the diagnosis of the condition.

Differential diagnosis: A careful family history should be

taken from any patient found to have asymptomatic

hypercalcaemia with specific reference to abnormal blood

test results and any history of parathyroid surgery amongst

family members. To exclude the diagnosis of FHH, urinary

excretion rates of calcium and creatinine are measured. In

FHH the excretion of calcium is typically low and almost

always less than 100mg/24h (variation: 30 to 80), while the

clearance ratio of creatinine/calcium is usually less than 0.01

(111,117). The distinction of FHH from primary

hyperparathyroidism is important in order to avoid

unnecessary hyperparathyroidectomy.

Neonatal Severe Hyperparathyroidism (NSPHT) is a

manifestation of homozygous CaR loss-of-function

in vivo 18: 739-754 (2004)
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mutations (115) and is a rare disorder characterized by

extreme hyperparathyroidism and its associated bony

changes occurring in infancy. In such cases the first few days

of life are marked by growth retardation, hypotonia,

constipation and respiratory distress. Bony changes include

undermineralisation, sub-periosteal erosion, metaphyseal

destruction of the long bones and ribs, rib-cage deformity

and craniotabes. There may be severe hypercalcaemia with

total serum calcium levels oscillating between 5 and 7

mmol/L, however, some infants may present with lower

values. The circulating PTH is elevated (often to five times

the normal level), serum phosphate is normal or reduced,

serum magnesium normal or increased, bony alkaline

phosphatase elevated and urinary calcium excretion normal

or reduced (112). Treatment of infants with severe NSHPT

requires surgical ablation of all parathyroid tissue in the first

or second month of life because delay results in increasingly

severe bony abnormalities (including further deformity of

the bones of the thorax) and eventually in death from

emaciation and respiratory distress.

The clinical syndrome of NSHPT in a non-homozygous

form has been noted sporadically in members of FHH-

affected families, caused by a compound heterozygous

mechanism whereby a different inactivating mutation was

inherited from each parent, or as a result of de novo
heterozygous mutations of the CaR gene exerting a

‘dominant’ negative effect (116).

Pathophysiology: In FHH and NSHPT, there is alteration

of function of both the parathyroid glands and the kidneys

as a result of altered sensitivity to serum calcium levels. This

is the result of the partial or total lack, respectively, of the

normal alleles controlling the development of the CaR

receptor (117). As a consequence of altered receptor

sensitivity to serum calcium levels, normal and elevated

levels of serum calcium are perceived as low by the

parathyroid glands which continue to secrete PTH, thus

further raising the level. In other words the calcium set-

point, i.e. the calcium level necessary to trigger PTH

secretion, is set higher (Figure 2) (118). Similarly the

kidneys see normal and elevated levels of serum calcium as

low and fail to excrete appropriate amounts in the urine,

leading to hypocalciuria and continued maintenance of high

serum calcium levels. This renal insensitivity to elevated

serum calcium levels explains the failure of total

parathyroidectomy to offer significant clinical benefit in

FHH. The different ‘doses’ of mutant CaR gene involved

are responsible, on the one hand, for the relative mildness

of the clinical features of FHH and, on the other hand, for

the seriousness of the presentation of NSHPT (119).

Autosomal Dominant Hypocalcaemia (ADH), like FHH

and NSHPT, results from genetically-determined mutation

of the CaR, but, in contrast, in this case the CaR is

abnormally sensitive to serum calcium levels, causing failure

of PTH secretion even in the presence of low levels of

serum calcium. In other words, the calcium set-point is set

lower (120). In addition, the kidney also sees even low levels

of serum calcium as elevated and continues to release

calcium into the urine, resulting in hypercaliuria and

perpetuating the hypocalcaemia. ADH-affected individuals

may have only mild hypocalcaemia, but seizures can occur,

especially in younger patients and especially during febrile

episodes. There is a tendency towards hyperphosphataemia,

although serum phosphate may be in the normal range.

Serum magnesium levels may be at the lower end of the

normal range or subnormal in untreated individuals,

illustrating the fact that the CaR can also act as a

magnesium sensor. Serum intact PTH levels are usually

within the normal range. Urinary calcium excretion is higher

than in typical hypoparathyroid patients, despite the fact

that PTH levels in hypoparathyroid patients are lower than

in ADH-affected individuals (121). Because of the marked

hypercalciuria, there is a risk of renal complications such as

nephrocalcinosis, renal stones and impaired renal function.

Renal tubular cells, excessively inhibited from reabsorbing

calcium by the overactive calcium receptors, sustain the

hypercalciuria (112). Thus, caution should be used to avoid

overtreatment of ADH with vitamin D (and its metabolites)

or calcium supplements.

In addition to the inherited disorders and de novo
mutations of the CaR known to alter calcium homeostasis,

other mechanisms may be playing a part. Deranged

extracellular calcium sensing may arise from antibodies
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Figure 2. Qualitative depiction of the steep inverse sigmoid relationship
between plasma Ca2+ concentration and PTH secretion in normal
individuals, in ADH and in FHH. The set-point is the plasma Ca2+ at
which half the maximal PTH response occurred. The normal range of
ionized calcium is 1.1-1.3 mmol/l (grey area). Changes in set-point or
"calciostat" produce major changes in PTH release at any given Ca2+

level. In FHH the loss of function mutations in the CaR gene lead to
generalized resistance of varying degrees to extracellular calcium, hence
the set-point is elevated. The opposite phenotype, ADH is associated with
gain of function mutations in the CaR gene leading to hyper-
responsiveness to extracellular calcium. The PTH release is reduced in
inappropriately low levels of Ca2+ and the set-point is resetting downwards
producing stable hypocalcaemia.



probably acting on an epitope in the extracellular region of

the receptor. In some families affected by disordered

calcium homeostasis, there may be circulating anti-CaR

antibodies with in vivo blocking activity. In these families

the linkage analysis for the detection of mutations was

negative and parathyroid glands removed from one

individual with autoimmune hypercalcaemia were reported

to have no observable cellular infiltrate, suggesting that this

type of antibody could have an isolated stimulatory effect

on PTH secretion (122). There are also two reported cases

of ADH and one of  NSHPT which have occurred in

patients with Bartter syndrome (123,124).

The above studies have greatly expanded awareness of

the role played by the CaR in disease, including both

genetically determined disorders (FHH, NSPT and ADH)

and acquired autoimmune parathyroid conditions (125).

Activation of the CaR by Ca2+ and other agonists

Type I calcimimetics: Extracellular calcium does not

constitute the sole activator of the CaR. On the contrary,

years of research have led to the conclusion that the CaR

constitutes a non selective receptor that responds to a wide

variety of divalent and polyvalent cations (Table II) (126).

These divalent/polyvalent cations were the first substances

that were identified to activate the CaR (besides Ca2+) and

were thus named Type I calcimimetics due to their ability

to mimic the action of extracellular calcium. In light of the

new facts that have emerged, it seems that the CaR plays a

key role in divalent mineral ion homeostasis and models

have been proposed to explain the interactions, as

demonstrated by Hebert et al., who examined the putative

role of the CaR in the distal nephron (127). 

Investigation of the physiological role of Type I

calcimimetics has also provided convincing explanations for

the toxicity exhibited by certain polyvalent cation

compounds such as aminoglycosides (AGA) and polyamines

(44,128,130). Neomycin, tobramycin and gentamicin are

notorious for their nephrotoxicity. Most AGA

nephrotoxicity occurs in the proximal tubule where the CaR

is located on the luminal membrane (129). McLarnon et al.
convincingly demonstrated that CaR constitutes a target for

various AGAs and that their potency correlates with their

pH-dependent charge (130). 

L-amino acids: As mentioned previously, the CaR belongs

to the family of metabotropic glutamate receptors

(mGluRs) (a subfamily of GPCRs). The CaR is closely

related to mGluR subtypes 1·, 3 and 5 and GABAB

receptor. Conigrave et al. demonstrated that the CaR can

be allosterically modulated by specific L-amino acids

(131,132). Specific amino acid residues in the extracellular

domain of the CaR have been identified as having an

important role in the detection of L-phenynalanine (19).

Further investigation of the L-amino acid sensing properties

of the CaR may reveal a role for this receptor in amino acid

metabolism. 

Type II calcimimetics: Unfortunately, Type I calcimimetics

have no clinical significance in the sense that they cannot be

used in the treatment of calcium homeostasis disorders due

to their poor specificity for the CaR. The need for novel

approaches to the treatment of primary and secondary

hyperparathyroidism led researchers to the discovery of

Type II calcimimetics which lack the polyvalent cation

structure of their Type I counterparts. In this case, the term

"calcimimetics" is not used literally since these new

compounds do not mimic the action of extracellular

calcium. Instead they function as positive allosteric

modulators and therefore bind to the receptor causing an

allosteric modulation, thereby increasing the receptor’s

sensitivity to Type I calcimimetics (133,137). Type II

calcimimetics, therefore, have no effect without the

presence of [Ca2+]o. It has been suggested that this action is

mediated through their binding to the seventh

transmembrane domain of the CaR. Research on related

family 3 GPCRs, such as mGluRs and GABAB, have

strongly indicated that the site of action for positive

allosteric modulators resides in the 7 transmembrane

domain (TMD) of the receptor (22,25,152). Specifically,

Knoflach et al. demonstrated that residues in the third and

fifth transmembrane helices of the TMD were critical for

selective response to positive allosteric modulators of

mGluR1 (135). Recent findings have underscored the

importance of the cell surface-proximal portion of the TMD

in the action of the Type II calcimimetic NPS R-568 (136).

Glu837 seems to play an important role in R-568 recognition

by the CaR as demonstrated by Hu et al. (25). 

Clinical trials using NPS R-568: First generation Type II

calcimimetics are predominantly phenylalkylamine

derivatives. Preclinical data suggested that compound R-568

inhibited the secretion of PTH from parathyroid cells (138).

Silverberg et al. demonstrated that the administration of R-

568 resulted in dose-dependent inhibition of PTH secretion

and consequentially a reduction of serum ionized-calcium

levels in postmenopausal women with primary

hyperparathyroidism (138). Clinical studies were also

conducted in patients suffering from secondary

hyperparathyroidism (139,140). The first study was open-

labelled and included 7 patients (139). The trial was

conducted over a 2-day period. The patients were divided

into a low and high dose group. Patients receiving 120 mg

or 200 mg of NPS R-568 experienced a more than 60%

decline in PTH levels after the administration of the drug.

In a second study, Goodman et al. conducted a randomized

double-blind, placebo-controlled trial to evaluate R-568’s

efficacy in patients suffering from severe secondary

hyperparathyroidism (140). The serum PTH levels before

in vivo 18: 739-754 (2004)
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treatment in the study group varied between 303 and 

1130 pg/mL. After administration of R-568, serum PTH

levels declined in all patients and values continued to

decrease with subsequent doses of R-568.

R-568 was also used for the treatment of hypercalcaemia

due to a parathyroid carcinoma (141). Conventional

treatment (saline hydration, furosemide, pamidronate and

calcitonin) proved to be ineffective, so R-568 was added to

the regimen and resulted in considerable improvement.

After discharge, the patient received R-568 as a

monotherapy and continued to do so for at least 2 years

with no discernible side-effects. Doses under 600 mg/day

failed to reduce serum calcium to acceptable levels, while a

dose of 600 mg/day resulted in levels which were satisfactory

overall, but tended to fluctuate rather than remain steady. 

Despite impressive results achieved by using R-568 in

patients with primary and secondary hyperparathyroidism,

the development of the drug was eventually discontinued

because of a problematic pharmacokinetic profile, including

a very low bioavalaibility index and an unsatisfactory half-

life (140). The second generation Type II calcimimetic

AMG 073 is currently undergoing phase III clinical trials

and is producing promising results.

Clinical trials using AMG 073: AMG 073 was introduced to

bypass the shortcomings of R-568 treatment. Several studies

have been conducted in hemodialysis patients suffering from

secondary hyperparathyroidism (142-145,148). Lindberg et
al. performed a double-blind, placebo-controlled study in 78

hemodialysis patients on conventional vitamin D sterols and

calcium-containing or non-calcium-containing phosphate

binders (143). Dose titration occurred during the first 12

weeks using daily doses of 10, 20, 30, 40 and 50 mg of AMG

073. During the maintenance period, a 7.5% decline in

mean serum phosphorous was observed in patients receiving

AMG 073, while the placebo group experienced a 10.9%

increase. A 4.7% reduction in mean serum calcium levels

occurred in patients treated with AMG 073, while no

change was observed in the placebo group. This dose

titration study also demonstrated a 11.9% decrease in the

calcium x phosphorus product levels in patients given AMG

073 over the maintenance period and while a 10.9%

increase was witnessed in the placebo group. High calcium x

phosphorus levels are a common problem in the treatment

of secondary hyperparathyroidism in patients suffering from

chronic renal failure (146). These high levels are associated

with the occurrence of metastatic calcifications.

The latest data from the phase III clinical trials currently

being conducted support the previous findings and indicate

that the major advantage of AMG 073 compared to

conventional treatment is the normalization of calcium x

phosphorus levels. On the other hand, Quarles et al.
demonstrated an apparent beneficial effect of AMG-073 on

bone metabolism as well (145). They assessed bone mineral

density (BMD) in a study group treated with AMG-073 and

in a control group. After 1 year of treatment, the study

group experienced an increase in total body BMD of 0.5%

and femoral neck BMD of 2%, whereas the control group

showed BMD decreases of 1-1.6% in both zones. These

increases in BMD correlated with parallel decreases in

serum concentrations of bone-specific alkaline phosphatase,

which is a reliable biomarker of bone formation.

Safety profile and side-effects: Lindberg et al., during their 18-

week dose titration trial concluded that daily doses of 50 mg

were well-tolerated while side-effects were similar among

the AMG 073-treated patients and the placebo group (143).

Similar results were found by Quarles et al. in another 18-

week double-blind randomized dose titration study (144).

The only adverse effect occurring with greater frequency in

AMG 073-treated patients was nausea. No other significant

side-effects have been demonstrated apart from transient

episodes of hypocalcaemia during the dose titration phases.

In another randomized, double-blind, placebo-controlled

study evaluating the clinical use of AMG-073 in patients

with primary hyperparathyroidism, 56% of the study group

reported adverse effects. The most frequent adverse effect

was paresthesiae occurring in 19% of patients (33% in the

placebo group) (147). Consequences of overzealous

treatment of secondary hyperparathyroidism, such as a

dynamic bone disease, have not been identified in patients

taking calcimimetics.

Antagonists of the CaR

Calcilytics: In most fields the discovery of receptor

antagonists constitutes an easier task than the identification

of receptor agonists, but this does not seem to be the case

with the CaR. A small compound, NPS 2143 has been

studied extensively in recent years and is currently under

investigation (29). Recently Calhex 231, a new potent

calcilytic compound, has been discovered (149). The site of

action of calcilytic compounds has evaded researchers in the

past but Petrel et al. have shed some light on this question.

By creating a model of the CaR based on the crystal

structure of bovine rhodopsin, they were able to identify

specific residues necessary for the binding of calcilytics to

the receptor which are located in TMD 6 and TMD 7 (150).

Apparently these identical residues are crucial for the

binding of calcimimetics such as R-568. In contrast, efforts

to identify an endogenous antagonist have been

unsuccessful (29). Antagonism of the CaR in the

parathyroid gland elevates the serum levels of PTH.

Intravenous infusion of NPS 2143 in healthy rats resulted in

a sudden 4- to 5-fold increase in PTH levels, which reached

a maximum 15 to 30 minutes after infusion (29). It has been

speculated that NPS 2143 probably causes a release of

stored PTH in the parathyroid glands and not increased
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proteosynthesis of the hormone. The properties of calcilytics

could be extrapolated to clinical usage. It has been known

for some time that transient elevated levels of PTH or its 1-

34 fragment have a paradoxical anabolic effect on bone

formation (151) and this approach has been utilized recently

in the treatment of osteoporosis (152,153). Despite the fact

that the PTH peptide has proven its beneficial effect on

bone mineral density and has been accepted as a part of the

conventional treatment of osteoporosis, it suffers from

serious disadvantages such as the high cost of the drug and

the necessity for intravenous administration, which results

in a low level of patient acceptance. An orally administered

compound such as NPS 2143 or Calhex 231 obviously has

comparative advantages.

Conclusion

The identification and cloning of the CaR has enabled

researchers to delve deeper into the physiology and the

disorders of calcium ion homeostasis and to ascertain its

role as one of the key factors in divalent and polyvalent

mineral ion homeostasis in general. Despite the success of

clarifying the CaR’s role in organs participating directly in

calcium ion homeostasis, such as the parathyroid glands and

the kidneys, details of the extracellular calcium sensing

mechanism of bone cells remain sketchy and this is of great

significance since the effects of prolonged calcimimetic

treatment on bone metabolism will need further

investigation. As mentioned earlier, one of the great

achievements of CaR research was the discovery of

calcimimetic agents which, according to the latest clinical

data, will be at the forefront of hyperparathyroidism

treatment in the near future. First generation Type II

calcimimetics were the first compounds discovered after the

cloning of the CaR which promised a novel approach to the

treatment of a number of disorders of calcium homeostasis.

Preclinical trials proved their ability to suppress PTH

secretion and clinical trials demonstrated that

phenylalkylamine derivative compounds such as R-568 were

safe and could be used to counter primary and secondary

hyperparathyroidism. Second generation Type II

calcimimetics are still under evaluation but seem to offer a

promising solution to the shortcomings of the first

generation Type II drugs.  Despite the relative success of

AMG-073 in recent studies, questions concerning its clinical

use still need to be addressed.

Although the role of the CaR is well understood in cells

and tissues participating directly in the regulation of calcium

levels in the body, many questions remain to be addressed

concerning its presence in a wide variety of loci which in

turn do not take part, at least directly, in calcium

homeostasis. The identification of the CaR in many of these

tissues is unequivocally accepted, but at the moment we can

only speculate on its putative role in these sites. Does the

CaR serve another purpose than the ones already described

or should we treat its wide distribution in the human body

as a relic of our evolutionary past? Will the use of

calcimimetics or calcilytics have any discernible effects on

these systems or should we retain our confidence in the

long-term safety of these drugs? Either way, further

investigation into these issues will be required which will

hopefully, in the near future, provide us with convincing

answers and explanations of the multidimensional role of

the CaR in the human organism.
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